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Abstract 
Sex presents a vital determinant of a person’s physiology, anatomy, and development. Recent clinical studies indicate that 
sex is also involved in the differential manifestation of various diseases, affecting both clinical outcome as well as response 
to therapy. Genetic and epigenetic changes are implicated in sex bias and regulate disease onset, including the inactivation 
of the X chromosome as well as sex chromosome aneuploidy. The differential expression of X-linked genes, along with the 
presence of sex-specific hormones, exhibits a significant impact on immune system function. Several studies have revealed 
differences between the two sexes in response to infections, including respiratory diseases and COVID-19 infection, autoim-
mune disorders, liver fibrosis, neuropsychiatric diseases, and cancer susceptibility, which can be explained by sex-biased 
immune responses. In the present review, we explore the input of genetic and epigenetic interplay in the sex bias underlying 
disease manifestation and discuss their effects along with sex hormones on disease development and progression, aiming to 
reveal potential new therapeutic targets.

Key messages 
• Sex is involved in the differential manifestation of various 

diseases.
• Epigenetic modifications influence X-linked gene expres-

sion, affecting immune response to infections, including 
COVID-19.

• Epigenetic mechanisms are responsible for the sex bias 
observed in several respiratory and autoimmune disor-
ders, liver fibrosis, neuropsychiatric diseases, and cancer.
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Abbreviations
ACE2  Angiotensin converting enzyme 2
AD  Alzheimer’s disease
ASD  Autism spectrum disorder
ATRX  ATRX chromatin remodeler
CD40L  Cluster of differentiation 40 ligand
CXCL1  C-X-C motif chemokine ligand 1
CXCL2  C-X-C motif chemokine ligand 2
COPD  Chronic obstructive pulmonary disease

CNKSR2  Connector enhancer of kinase suppressor 
of Ras 2

Cyp  Cytochrome P family
DDX3X  DEAD-box helicase 3 X-linked
Ephx2  Epoxide hydrolase 2
ER  Estrogen receptor
ERE  Estrogen response element
FOXP3  Forkhead box P3
H3K27me3  Histone 3 lysine 27 trimethylation
HCC  Hepatocellular carcinoma
H19  H19 imprinted maternally expressed 

transcript
IGF2  Insulin like growth factor 2
IL-17A  Interleukin 17 alpha
IFRD1  Interferon related developmental regulator 
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KRT77  Keratin 77
KDM5C  Lysine demethylase 5C
lncRNAs  Long non-coding RNAs
LRTIs  Lower respiratory tract infections
MAGEC3  MAGE family member C3
MDD  Major depressive disorder
miR  microRNA
mKDM6A  Mutated lysine demethylase 6 alpha
NLGN4  Neuroligin 4 X-linked
NOS-3  Nitric oxide synthase-3
PRC2  Polycomb repressive complex 2
PAH  Pulmonary arterial hypertension
PCDH11XY  Protocadherin 11 X/Y-linked
SIRPD  Signal regulatory protein delta
Sult  Sulfotransferase
XCL  X-C motif chemokine ligand 1

Introduction

Gene expression is heavily influenced by epigenetic DNA 
changes, as well as post-translational modifications (PTMs) 
of histones which affect chromatin accessibility and struc-
ture [1–7]. DNA exists in a condensed form in the nucleus, 
wrapped around the nucleosomes, which are the functional 
units of chromatin, consisting of histone octamers (a pair of 
each H3, H4, H2A, H2B). Histone PTMs are mainly located 
at the N-terminal part of H3 and H4 and include methyla-
tion, acetylation, phosphorylation, ubiquitination, and 
sumoylation. The entirety of histone PTMs at different sites 
at each specific time point comprise the “histone code” and 
play a crucial role in the fate of gene expression by altering 
chromatin dynamics, including accessibility and transcrip-
tion factor binding [8–12]. In this way, gene expression can 
be altered without any changes in the underlying nucleotide 
sequence, thus creating a link between genotype and pheno-
type. During development, a cross talk between epigenetic 
mechanisms, PTMs and hormones, such as estrogens and 
androgens acting upstream, have been shown to enhance a 
cascade of events that regulate mechanisms of gene expres-
sion inside the nucleus [13–16].

During embryogenesis in mammals, a single female X 
chromosome undergoes silencing, forming the Barr body. 
This developmental imprinting event ensures the proper 
dosage compensation of expression in the X-linked genes 
between males and females. Recent studies have revealed 
several genes which can evade X silencing process and are 
important for sex determination, immune response as well 
as developmental growth [17–19].

The choice of the silenced X chromosome creates a 
mosaic pattern, called lyonization in female cells. Although 
the inactivation of the X chromosome is random in humans, 
once the X chromosome gets inactivated, it remains inactive 

throughout the cell’s lifetime. On the contrary, the X inac-
tivation process in marsupials and in mice is taking place 
exclusively at the paternally derived X chromosome [17–21].

Epigenetic mechanisms are highly implicated in gene 
regulation during the X-chromosome inactivation. In order 
to achieve proper dosage of X-chromosome–encoded pro-
teins, a well-controlled fine-tuning of gene expression in 
females has been developed [19, 22]. During female mam-
mal development, X chromosome inactivation (XCI) occurs 
through the action of Xist (X-inactive specific transcript), a 
long non-coding RNA (lncRNA) that is transcribed from the 
X chromosome. Each X chromosome contains an X inac-
tivation center which contains both the Xist locus and its 
antisense transcription unit, Tsix [23]. Once XCI starts, Xist 
covers almost the entirety of one of the two X chromosomes 
and induces its silencing through Xist-mediated recruitment 
of chromatin-modifying, transcriptional-silencing, as well as 
other RNA-binding proteins [24]. In turn, this leads to epi-
genetic and structural modifications of the X chromosome, 
giving rise to one condensed Barr body covered by the Xist 
RNA [23]. In more detail, Xist promotes the aggregation of 
supramolecular complexes (SMACs) which include many 
copies of the Msx2-interacting protein (SPEN), critical for 
transcriptional repression. SMACs also favor the epigenetic 
regulators, polycomb group proteins (PcG) deposition induc-
ing chromatin compaction. In this way, increased SMACs 
levels around genes propagate gene silencing along the X 
chromosome [24].

The polycomb repressive complex 2 (PRC2), one of 
the two PcG classes that is recruited by Xist, deposits 
H3K27me3 histone marks leading to further downregula-
tion of target gene expression. Male cells contain one less 
chromosome X compared to females. This process aims to 
nullify the increased expression of X chromosome genes in 
females compared to males, in the absence of XCI. In com-
bination, differential DNA methylation at CpG islands of 
the X-linked genes mediates the fine tuning of their expres-
sion [17–19]. This imprinting event in females is established 
through epigenetic mechanisms including DNA and histone 
methylation (especially H3K27 trimethylation, H3K27me3), 
mediated by the action of PCR2. It has been shown that the 
PRC2 subunit binds to a non-coding RNA (ncRNA) within 
the Xist RNA and is thereby targeted to the female X chro-
mosome, mediating its inactivation [2, 20, 25–28].

Subsequently, the PRC2 complex plays an important 
role in establishing an inactive status of many genes on the 
X inactive chromosomes during development. The PRC2 
group consists of four core components—the enhancer of 
zeste (EZH1/2 in mammals, E(z) in Drosophila); extra sex-
combs (Eed in mammals, Esc in Drosophila); suppressor 
of zeste 12 (Suz12 in mammals, Su(z)12 in Drosophila); 
and a nucleosome remodeling factor (Rbbp7/4 in mammals, 
Nurf55 in Drosophila). The methyltransferases EZH1 and 
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2 are responsible for establishing and maintaining the inac-
tive histone mark H3K27me3 on the female X chromosome 
[20, 25–28].

It is therefore evident that a better understanding of the 
epigenetic mechanisms that underlie the dosage compensa-
tion in different sexes may explain the differential response 
in disease progression such as chronic inflammation, autoim-
mune diseases, and liver fibrosis (Fig. 1).

Differential manifestation of infectious diseases 
in male and female patients

It has long been observed that males and females harbor dif-
ferences in their immune responses against most bacterial, 
viral, and parasitic infections, such as influenza, hepatitis, 
AIDS, tuberculosis, and malaria. The underlying pathways, 
which promote these sex-based immunologic differences 
in response to infectious diseases, have only recently been 
investigated. Among them, the influence of sex hormones 
on pathways regulating the immune system, along with the 
effect of X-chromosome inactivation on X-related immune 
genes, appears to play a central role.

Susceptibility differences to lower respiratory tract 
infections between the two sexes have been reported and 
extensively studied in different mice models. Intranasal 
inoculation of mice with Streptococcus pneumoniae, the 
most commonly isolated cause of bacterial pneumonia, 
demonstrated a higher susceptibility and decreased survival 
in males compared to females [29]. This was attributed to 
the differential immune response between the two sexes. 
It has been suggested that increased mortality from infec-
tious diseases in males was related to testosterone-induced 

immunosuppression in post-pubertal males [26]. Moreover, 
a greater number of neutrophils was shown to infiltrate the 
pulmonary tissues, being accompanied by elevated inflam-
matory mediators, such as IL-17A, which has been linked 
to lower levels of female sex hormones [29, 30]. Yang et al. 
showed that female sex hormones exhibit a protective effect 
against bacterial pneumonia by enhancing the antimicro-
bial action of macrophages [31]. This was explained by the 
estrogen-mediated increase in the expression of nitric oxide 
synthase-3 (NOS-3), which enhances the killing of bacte-
ria ingested by macrophages. Previous studies have dem-
onstrated an association between estrogen receptors (ERs) 
with NOS-3 and the lncRNAs HOTAIR and MALAT1 in 
breast and prostate cancer cells [32]. These two lncRNAs 
were shown to be regulated by estrogens and further interact 
with NOS-3 and ERs [32], suggesting a potential role for sex 
hormones to control the macrophage bactericidal properties 
in an epigenetic manner.

A similar trend has been reported in mouse models 
treated with Mycoplasma pulmonis, where the mortality 
of males was increased compared to females and was cor-
related with dense inflammatory cell infiltrates within the 
pulmonary alveoli of males [33]. Interestingly, there were 
no big differences in IgM serum levels between male and 
female mice.

Effects of COVID‑19 infection in male versus female 
patients

The COVID-19 pandemic has led to numerous deaths world-
wide. In a recent study, an increased incidence of COVID-19 
without respiratory failure was observed in males (57.7%) 

Fig. 1  Genetic changes and 
epigenetic reprogramming dur-
ing development underlie the 
dosage compensation in female 
and male cells, contributing to 
sex-biased disease (3.1) mani-
festation and progression
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compared to females (42.3%), but a significantly increased 
incidence of COVID-19-related severe respiratory failure 
was detected in males (89.3%) compared to females (10.7%). 
Moreover, the death rates in the different age groups revealed 
that males were more likely to die of the infection in age 
groups below 90 years old [34].

In search of the underlying mechanisms that define the 
sex bias in infection severity and pathogenicity of the virus, 
several preliminary studies have proposed different bio-
logical mechanisms regulating immune responses in a sex-
biased manner, contributing to viral defense mechanisms 
[29–35].

Studies in mice have shown that male mice demonstrate 
a greater susceptibility to severe acute respiratory syndrome 
coronavirus 2 (SARS-CoV-2) infection compared to female 
mice of the same age, with the difference being far more 
prominent at increasing age. Males exhibited increased virus 
titers and vascular leakage, more alveolar edema as well as 
inflammatory monocyte and neutrophil lung accumulation, 
whereas no differences between the two sexes were associ-
ated with T or B cell activity. The increased susceptibility 
of male mice to SARS-CoV-2 infection was mainly attrib-
uted to the effect of estrogens and their contribution to viral 
defense, since ovariectomy or the use of estrogen receptor 
antagonists led to increased mortality in female mice, high-
lighting the protective effects of estrogen receptor signaling 
in SARS-CoV-2 infections [35].

On the other hand, several molecular factors induce the 
expression of key proteins in viral entry at the epithelial 
cells, which are also affecting the infectivity rate. One such 
entry protein expressed in host cells is angiotensin convert-
ing enzyme 2 (ACE2). ACE2 is a dipeptidyl carboxy dipepti-
dase of the angiotensin-converting enzyme family which 
cleaves angiotensin I into angiotensin 1-9 and angiotensin 
II into the vasodilator angiotensin 1-7. ACE2 is the entry 
point of the SARS-CoV-2 virus, and its levels define the 
magnitude of viral infection. Regulation of this protein is 
fine-tuned by genetic and epigenetic mechanisms [36–41]. 
The Ace2 gene in humans is located on the X chromosome, 
implying a potential sex-specific gene regulation. The Ace2 
gene is highly expressed in a lot of tissues including the epi-
thelial cells of the lung, heart, and testis. It is an X chromo-
some inactivation escaper gene and therefore its expression 
is not regulated by the dosage compensation machinery [42]. 
Male cells are expressing higher levels of the ACE2 protein, 
especially in the lungs, evidence that may explain potential 
sex differences that have been observed during the progres-
sion of the COVID-19 infection and its complications [43]. 
A study of 450 DNA methylation data from 244 fresh human 
lung tissues has detected a differential methylation profile for 
the Ace2 gene at cg23232263 and cg16734967 [44]. It was 
shown that the male lung tissue had decreased methylation 
levels of this gene compared to females. Furthermore, males 

and females who were smokers or had chronic obstructive 
pulmonary disease demonstrated increased levels of Ace2 
gene methylation [44]. In addition, DNA methylation lev-
els at a CpG island in the dataset related to the Ace2 gene 
exhibited a large degree of variability in both men and 
women suggesting that DNA methylation of Ace2 varies by 
individual. Of note, these datasets did not have comparable 
metadata for age and the differences in DNA methylation 
related to Ace2 may reflect the cell type differences in lung 
tissues [19, 45–47].

Sex‑bias effects in respiratory diseases

Sex-based differences are also prevalent in respiratory 
diseases, with DNA methylation changes between the two 
sexes being observed as early as at birth [48]. In respect to 
asthma, during the early years of childhood, there is an uneven 
distribution of the disease between males and females, with 
exceeding incidence in males compared to females [49–52]. 
This distribution, however, changes at pre-adolescence, when 
females begin to get asthma more frequently than males, and 
continues at post-adolescence where the increased incidence 
in females leads to a “sex-reversal” [53] and a more severe 
phenotype [54]. Asthma appears to be associated with changes 
in the DNA methylome [55]. In the study by Patel et al., 
the DNA methylation patterns were observed in a variety 
of genes in pre-adolescent and post-adolescent subjects 
[56]. Their results pointed towards 13 CpG sites which 
demonstrate sex and age-related changes. They also detected 
a sex-related effect difference at 9 of those CpG islands, 
including an increase in CpG site cg03269757 methylation 
which led to decreased risk of asthma acquisition in males 
and increased risk in females. In a similar manner, 5 genes 
which were mapped to CpG islands showed a sex-related 
response to elevation of DNA methylation, indicating that 
the effect of DNA methylation was affected by the subject’s 
sex. Increased methylation of the cg11295724 CpG island at 
subjects of 10 years of age resulted in increased expression 
of the signal regulatory protein delta precursor (SIRPD) gene 
which regulates T cell activation in males and its decreased 
expression in females. Moreover, the interferon related 
developmental regulator 1 (IFRD1) gene, a transcription 
factor which regulates skeletal muscle differentiation in 
asthmatic responses of the airway, shows strong sex-specific 
effects on asthma transition.

Sex-related differences have also been observed in 
chronic obstructive pulmonary disease (COPD) [57] and 
many epigenetic pathways have been associated with smok-
ing [58]. Koo et al. investigated tissue samples from adult 
patients and fetal lungs, as well as cord blood and detected 
differences in CpG sites, such as cg03691818 where the 
keratin 77 (KRT77) gene is mapped. Of note, keratins are 
involved in the structural integrity of epithelia cells and this 
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site was found to be hypomethylated in males compared to 
females, an effect observed also in other CpG sites [59].

Furthermore, females demonstrated a predisposition for 
the development of pulmonary arterial hypertension (PAH) 
which has been partly attributed to the epigenetic regula-
tion of the Ephx2 gene [60]. This gene codes for the soluble 
epoxide hydrolase, an enzyme which degrades epoxyeico-
satrienic acids (EETs), regulating pulmonary circulation. 
The increased amount of estrogens observed in females is 
responsible for the downregulation of this gene expression 
through an epigenetic pathway, leading to increased EETs 
and subsequently, high PAH susceptibility [60].

Sex bias in autoimmune diseases

Autoimmune diseases demonstrate a high prevalence, affect-
ing an estimated 5–10% of the population, with a female 
predominance. However, differences have been observed 
in female to male ratios of each autoimmune disease. For 
instance, the sex ratio in inflammatory bowel disease and 
diabetes mellitus type I exceeds 1:1 by a slight amount, but 
increases to almost 2:1 in multiple sclerosis (MS), to 3:1 
in rheumatoid arthritis (RA), and to 9:1–10:1 in systemic 
lupus erythematosus (SLE) [22]. The molecular mechanisms 
underlying these differences are not well-understood. How-
ever, recent studies suggest that sex hormones such as estro-
gens and the X chromosome silencing are important drivers 
of sex-biased manifestations in autoimmune diseases [61].

Estrogens act through four different pathways, including 
the classical receptor-mediated, the non-classical, the non-
ligand-mediated genomic (nuclear), and the non-genomic 
(extranuclear) pathway, to influence downstream gene 
expression, protein modifications, and signaling. The molec-
ular actions of estrogens are mediated through the genomic 
and non-genomic pathways [62]. In the genomic pathway, 
estrogens bind to intracellular receptors (estrogen receptor, 
ERα, and ERβ). Upon binding, ERs are dimerized and trans-
located to the nucleus where they bind to specific motifs, 
the estrogen response elements (ERE), present in the target 
DNA. The consensus ERE site is 5′-GGTCAnnnTGACC-3′ 
and is located in promoters as well as in the distal regula-
tory elements of genes, affecting immune response and cell 
signaling pathways. On the other hand, in the non-classical 
genomic pathways, ER directly bound to DNA, cross talks 
with various transcription factors, or it may act in a tether-
mediated manner as a co-factor of transcription factors, 
including the activating protein 1 (AP-1), NF-κB, and p300 
proteins. In this way, estrogens are able to molecularly fine-
tune adaptive and immune cell responsive pathways [62]. 
For example, activated T cells demonstrate estrogen receptor 
expression. At the same time, both ER mRNA and protein 
levels have been found in T and B cells, monocytes, and 

dendritic cells showing the importance of the hormone in 
immune response activation [63].

Sex hormone receptors are widely expressed in immune 
cells, while androgen and estrogen response elements are 
present in several genes involved in immune response, indi-
cating a major effect of sex hormones on the inflammatory 
response pathways. Furthermore, a lot of variations have 
been detected during puberty, pregnancy, and menopause 
demonstrating the complex regulation of immunity by sex 
hormones [64].

The X chromosome contains a wide variety of genes 
which are related to the immune response [65]. In this way, 
immune function and dysregulation may stem from abnor-
mal silencing of the X chromosome as well as from major 
defects on X chromosome genes, such as IL-1R associated 
kinase 1 (IRAK1), IL-2R γ chain, IL-3R α chain, IL-13 α 
chain, GATA1, TLR7, CD40L, and FOXP3 [61]. The involve-
ment of the X chromosome in sex-biased immune responses 
is demonstrated in inherited disorders, including Klinefel-
ter syndrome in males with XXY and Turner syndrome 
in females with XO, both characterized by hormonal and 
immune abnormalities [66, 67].

The effects of microRNAs (miRNA) in a sex-specific 
manner could potentially further promote differences in the 
immune response between the two sexes. It has been pre-
viously shown that miRNAs could play an inflammatory 
role by controlling the expression of important genes, such 
as IL-1 and TNF-α which are involved in systemic inflam-
mation [68]. Differences between the two sexes based on 
the expression of the X-linked miRNA could explain the 
stronger immune system in females [61]. Despite the vast 
gap in knowledge concerning the differences between male 
and female miRNA expression, it has been found that the X 
chromosome contains nearly 800 miRNAs [69]. Some of 
the X-linked miRNAs have been associated with immune 
regulation. More specifically, miR106a, which is located on 
the X chromosome, has been shown to downregulate the 
anti-inflammatory cytokine IL-10 [70]. Furthermore, the X 
chromosome-contained miR-17-92 cluster was shown to be a 
crucial factor for B and T cell maturation [71, 72]. The other 
side of this phenomenon is that females are more likely to 
develop autoimmune diseases [67].

The X chromosome contains the information coding for 
10% of the human genome miRNAs versus 2% of miRNAs 
on chromosome Y. The differential expression of miRNAs 
(for example, miR-18b, miR-223) from X chromosomes due 
to female mosaicism, X inactivation, and silencing escape 
may explain the higher responses of the immune system 
upon infection that are observed in females compared to 
males [68, 73].

A recent study by Moeser et  al. showed that perina-
tal sex hormones during the embryonic development are 
responsible for mast cell-associated disorders later in life. 
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Naturally, a high level of perinatal androgens is associated to 
reduced severity of mast cell-mediated anaphylaxis in male 
mice [74–76]. Mast cells recognized as effector cells of the 
immune system represent the first line of defense against 
various toxins. Their production and function are orches-
trated by the activity of sex hormones, such as androgens 
and testosterone, regulating immune responses. Overacti-
vation of mast cells has been connected to immunological 
disorders, chronic inflammatory diseases, and death. As part 
of their defense mechanism, mast cells release proteases, his-
tamine, and serotonin [75]. Previous studies have shown that 
female mast cells produce, store, and release more proteases 
and amines than males. Thus, female mast cells are more 
capable to induce aggressive immune responses, leading to 
inflammatory and autoimmune diseases than the respective 
male cells [75, 77].

Current research has unraveled the mechanisms of action 
of perinatal hormones and the way sex may interfere with 
the severity of anaphylactic responses. In male embryos, 
high levels of perinatal androgens stimulate mast stem cells 
in the bone marrow to acquire a “masculinized” phenotype 
with reduced production and storage of granule mediators. 
As a result, they produce and release lower levels of inflam-
matory substances, leading to reduced possibility of anaphy-
lactic responses and manifestation of chronic inflammatory 
disorders during the adult life. On the other hand, female 
embryos exposed to perinatal androgens exhibit reduced 
histamine levels and less-severe anaphylactic responses as 
adults [75].

Changes in chromatin configuration have been associated 
with the relaxation of XCI in female patients and the mani-
festation of autoimmune diseases. Notably, both naive T and 
B lymphocytes are characterized by an uncommon pattern 
of the inactive X chromosome at the level of chromosomal 
organization. Xist RNA and histone repressive marks are 
delocalized and reversed, leading to a minor biallelic tran-
scription of autoimmune disease-associated X-linked genes, 
such as CD40L and CXCR3 [78]. Following lymphocyte 
activation, such epigenetic changes on the X chromosome 
are normally reversed in females but not in SLE patients. 
Biallelic expression of genes connected to the manifesta-
tion of the disease is higher in female patients compared to 
healthy individuals [79–81].

The Y chromosome in mammals is responsible for car-
rying genes contributing to sex differences and especially 
those related to testis maturation and spermatogenesis. Sev-
eral studies in mice have revealed the importance of this 
chromosome in immune responses and manifestations of 
autoimmune diseases. Gene expression profiling in these 
mice demonstrated that Y variants control many immune 
response genes found on other chromosomes, functioning as 
trans-expression quantitative trait loci (eQTLs) [82].

In females, several genetic variants and X-linked genes 
are associated to the risk of autoimmune diseases, such as 
SLE and MS. One of these important genes, forkhead box 
p3 (FOXP3a), encodes a pioneer factor controlling T lym-
phocyte development into regulatory cells and suppressing 
self-reactivity [83].

An interesting observation comes from the studies in 
men with Klinefelter syndrome (XXY) and in females with 
Turner syndrome (X0). The presence of two X chromosomes 
increases the incidence of severe autoimmune diseases, indi-
cating that X chromosome imbalance rather than hormonal 
differences is likely to contribute to immune disorders in a 
sex-specific manner [84]. This imbalance could come from 
both epigenetic and genetic factors that misregulate the X 
inactivation center across the single female chromosomes. 
Supporting this hypothesis, two escape genes, TLR7 and 
CD40L, are characterized by elevated expression in XX 
females, as well as XXY males versus XY males and X0 
females [85].

Epigenetic mechanisms regulating liver fibrosis 
in a sex‑specific manner

Transcriptional silencing of targeted genes is mainly epige-
netically regulated though specific histone post-translational 
modifications, changes in DNA chemical modifications, and 
interplay with miRNAs that influence chromatin accessibil-
ity and gene expression patterns. Dysregulation of epigenetic 
mechanisms is often linked to certain diseases, such as can-
cer, liver fibrosis, and autoimmune disorders [86].

One of the most important protein complexes mediating 
gene silencing is PRC2 and its components EZH1 and EZH2 
which deposit H3K27me3, inducing chromatin compaction. 
EZH1 and EZH2 possess complementary functions. EZH1 
is mainly expressed in adult tissues and EZH2 dominates in 
embryonic cells, while both enzymes regulate a small set of 
the same genes through their activity [87–90].

Although the importance of chromatin states in the sex-
dependent regulation of genes in female and male mouse 
livers was previously reported [91], the recent study of 
Lau-Corona et al. elucidated the sex-biased action of the 
two methyltransferases EZH1 and EZH2 in liver fibrosis 
and liver metabolism [92]. They detected that the trimeth-
ylation of histone H3K27 (H3K27me3) is a significant sex-
biased repressive mark localized on many female-specific 
expressed genes, including cytochrome P450 (Cyp genes) 
and sulfotransferase (Sult genes) of male mouse livers, but 
not at male-biased genes of female mouse livers. In support 
to these findings, RNAseq data showed that various female-
biased genes were upregulated (derepressed) in E1/E2-KO 
male livers and only a few male-biased genes in E1/E2-KO 
female livers [91, 92].
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Sex-biased expression of related liver genes could 
explain why males exhibit increased susceptibility to liver 
fibrosis and showed increased male incidence, as well as 
progression of HCC [91]. Thus, several studies evaluated 
the implementation of the PRC2 complex in the progression 
of the disease. By using double knock-out mice for Ezh1 
and Ezh2, they evaluated the epigenetic effects of these 
enzymes on a genome-wide level and the differences 
between the two sexes in the liver. As a result, more HCC 
and fibrosis-related genes were found to be dysregulated 
in E1/E2-KO male versus E1/E2-KO female liver. Thirty-
two (32) sex-independent genes were identified as more 
highly upregulated in E1/E2-KO female than in E1/E2-KO 
male mouse livers. Moreover, in the double knock out 
mice, three genes which are strictly associated with HCC, 
including the lncRNA gene H19, Igf2, and miR675, were 
further characterized by accumulation of active marks on 
their promoters and open chromatin configurations that led 
to their overexpression in female mice [91].

Sex bias in neuropsychiatric disorders

Genes usually upregulated in autism spectrum disor-
der (ASD) were found to be located in hypermethylated 
regions in females. Hypermethylation could be responsible 
for decreased ASD-associated gene expression in females 
compared to males, explaining the difference in prevalence 
between the two sexes [93]. On the other hand, genes that 
are downregulated in major depressive disorder (MDD) were 
also found to be hypermethylated in females, which could 
explain the higher disease predisposition in females [93].

XY homologous genes escape X-inactivation, and the 
homolog genes of the Y-chromosome non-recombining 
region are of special interest in males. Differences in the 
X and Y homolog gene pairs contribute to sex differences, 
for example, in the ages of onset in psychosis. One example 
is the KDM5C gene which escapes X-inactivation and the 
NLGN4 gene which has been linked to autism, as well as the 
Protocadherin11 XY gene-pair which has been associated 
with psychosis [94].

Sex chromosomes also seem to contribute to sex differ-
ences in Alzheimer’s disease (AD) [95]. An additional X 
chromosome may result in a protective effect against AD by 
promoting the transcription of genes that would normally 
escape X inactivation. Around 15% of X-chromosome genes 
avoid this inactivation, leading to their increased expression 
in females compared to males [96]. For example, loss-of-
function mutations of KDM6A which encodes for a histone 
demethylase have been associated with intellectual disability 
[97]. In this context, a recent study demonstrated that adding 
an extra X chromosome to mice makes them resilient to AD, 
likely due to increased KDM6A expression [98]. Another 
example is protocadherin 11 X-linked (PCDH11X), which 

also escapes X inactivation via epigenetic mechanisms [99]. 
A single nucleotide polymorphism in the PCDH11X gene 
(rs5984894) has been linked to higher AD risk in women 
[100]. Moreover, men with higher levels of loss of chro-
mosome Y (LOY), the most common acquired somatic 
mutation associated with aging, had greater risks of AD. It 
has been suggested that LOY might cause a dysfunctional 
immune system and contribute to abnormal neuronal dif-
ferentiation as well as early cell death [101, 102]. Moreo-
ver, hypomethylated CpG islands were found in the aurora 
kinase C gene promoter in males with AD, which were 
hypermethylated in female AD patients. Females are also 
characterized by reduced histone deacetylase 2 levels, when 
compared to males [103] and long noncoding RNA levels 
were also found to differ between the two sexes in AD [104].

Cancer and sex biases rely on epigenetics

Recent studies have linked the gene dosage imbalance on the 
X chromosome with the manifestation of cancer in a sex-
biased mode. Several associations and whole genome studies 
have shown that the X chromosome contains a wide variety 
of genes which demonstrate differential expression between 
the two sexes. Moreover, XCI-evading genes have been cor-
related with cancer in humans. More specifically, six genes 
which belong to the tumor suppressor family that evade 
the XCI (i.e., CNKSR2, ATRX, DDX3X, KDM6A, KDM5C, 
and MAGEC3) have been shown to play a protective role in 
females when loss-of-function mutations are present, and 
partially explain the increased incidence of 23 cancer types 
in males compared to females [105]. Among them, KDM6A 
codes for a histone lysine demethylase which demonstrates 
functional variations from its Y homolog. A recent pioneer 
study in mice has associated the effects of this enzyme with 
the manifestation of bladder cancer, uncovering genetic and 
epigenetic alterations from hormonal effects associated with 
cancer [106].

Another interesting example is the case of increased 
male to female ratio in the incidence and mortality of glio-
blastoma which contradicts the increased mutation burden 
observed in females, but a higher incidence and mortality 
in men.

Many genes that are mutated in cancer cells are located 
on the X chromosome which has been shown to contain 
several areas which possess tumor suppressor genes [107]. 
This means that males are more susceptible to single hits in 
these loci, leading to increased propensity for cancer. These 
loci, however, are also commonly mutated in female can-
cers, such as breast and ovarian cancer [108, 109]. The alpha 
thalassemia/mental retardation syndrome X-linked (ATRX) 
gene which is responsible for DNA repair is also frequently 
found to be mutated [110]. The expression of this gene is 
tightly regulated in females by the Xist RNA and repressive 
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Table 1  Epigenetic mechanisms and sex bias in various diseases

Disease Epigenetic mechanism Affected gene References

Respiratory diseases
LRTIs Increased susceptibility and mortality of 

males, since estrogens regulate lncRNAs, 
which interact with NOS-3 that enhances 
macrophage-mediated killing of bacteria

[32]

COVID-19 Increased susceptibility and mortality of 
males, due to estrogen contribution to viral 
defense and decreased gene methylation in 
males

ACE2 [44]

Asthma Increased incidence in pre-adolescent males 
and post-adolescent females, due to sex and 
age-related changes in gene methylation

SIRPD, IFRD1 [55, 56]

COPD Decreased gene methylation in males KRT77 [59]
PAH Increased susceptibility in females, due 

to estrogen-mediated increase in gene 
methylation

Ephx2 [60]

Autoimmune diseases
IBD, MS, RA, SLE Increased susceptibility in females, due to 

estrogen-mediated control of immune 
responses, abnormal silencing of X-linked 
genes and X-linked miRNA expression 
(miR106A, miR-17-92, miR-18b, miR-223)

IL-1R/2R/3R, IL-13, TLR7, IRAK1, FOXP3, 
GATA1, CD40L, IL-10, CXCR3

[61]

Gastrointestinal diseases
HCC and liver fibrosis Increased susceptibility in males due to 

increased histone methylation in males, 
causing gene silencing

Cyp, Sult, H19, Igf2, miR675 [91]

Neuropsychiatric diseases
ASD Increased incidence in males due to:

Decreased ASD-related gene methylation and 
thus increased expression

[93]

Expression of Y-linked genes escaping 
inactivation

KDM5C, NLGN4 [94]

MDD Increased incidence in females, due to 
increased gene methylation and thus 
decreased gene expression of anti-MDD 
genes

[93]

AD Increased incidence in males due to:
Decreased gene inactivation in females

KDM6A, PCDH11X [98]

Hypomethylation of genes in males Aurora kinase C [103]
Reduced HDAC2 levels in females [103]

Cancer
43 cancer types including glioblastoma Decreased incidence and mortality of some 

cancer types, e.g., glioblastoma in females 
due to tumor suppressor genes escaping 
XCI

CNKSR2, ATRX, DDX3X, KDM6A, KDM5C, 
MAGEC3

[105]

Breast and ovarian cancer Increased susceptibility in females due to 
dysregulation of the Xist RNA expression 
and repressive marks, causing gene 
expression imbalances

ATRX [111]

Stomach and esophageal cancer Increased susceptibility in females due to 
gene mutations, hindering interaction with 
ATM protein kinase to ensure efficient 
DNA damage response and repair

EP400 [112]
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epigenetic marks, to achieve a monoallelic expression and 
proper dosage balance. Upon misregulation of the Xist RNA 
expression, incomplete DNA repair and tumor progression 
occur. Interestingly, this gene escapes the X inactivation 
center (XIC) only in the brain of female individuals, result-
ing in its biallelic expression, protecting females against 
brain tumors, and more specifically glioblastomas [111].

Moreover, the E1A-binding protein p400, EP400, a com-
ponent of the nucleosome-acetyltransferase of histone H4 
(NuA4) complex, is responsible for acetylating histones H4 
and H2A, leading to transcription and high expression of 
targeted genes. It interacts with the Myc protein to regulate 
target gene expression during proliferation. Recently, a func-
tional interaction of EP400 with the ataxia-telangiectasia 
mutated (ATM) protein kinase has been reported, which 
works to achieve efficient DNA damage response and repair 
[112]. Taken together, these findings shed light to the impor-
tance of mutations on EP400 as tumor drivers. A study of 
male and female patients with stomach and esophageal can-
cers has revealed an association between the EP400 mutation 
and an increased mutation load in female-derived samples 
when compared to male ones [113].

Lastly, there is a hypothesis in the field of cancer biology 
that chromatin configuration and genome architecture could 
be manipulated in a sex-specific manner. This change can 

further contribute to the manifestation of several diseases, 
including cancer. Supporting this working model, recent 
studies have shown that two major factors of genome topol-
ogy and genome organization (i.e., COHESIN and CTCF) 
bind via a sex-related manner to chromatin and that mutated 
binding sites of CTCF may induce tumorigenic effects [79, 
114, 115]. Moreover, sex-specific chromatin quaternary 
structure and accessibility could influence the efficacy or 
efficiency of the DNA damage response. This evidence 
provides a better understanding of the mechanistic aspect 
of the DNA damage response and its effect in the sex bias 
observed in tumor development. Further research addressing 
both genetic as well as epigenetic alterations in normal and 
precancerous tissues is expected to shed more light into the 
mechanisms underlying sex-specific differences in genomic 
mutations and their repair.

Conclusion—future perspectives

Taken all together, it is evident that several disease mani-
festations are attributed to sex bias mediated by epigenet-
ics mechanisms and are not always related to sex hormones 
(Table 1, Fig. 2). The unique genomic and epigenomic pro-
filing of the two sexes could further define the respective 

Fig. 2  Sex-bias epigenetic mechanisms underlie the manifestation 
of various diseases. Women and men differ in the susceptibility and 
manifestations of various diseases due to epigenetic mechanisms reg-

ulating the effects of sex hormones, as well as the differential expres-
sion of X-chromosome–encoded genes
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immune response. One of the main drivers for this differen-
tiation is the dosage compensation machinery between the 
two sexes. Through X inactivation and chromosomal organi-
zation, which occur very early in development, female cells 
regulate a series of critical genes in their lifespan. Misregu-
lation of X inactivation process leads to a sex-biased mani-
festation of several immunological disorders. The underlying 
regulatory mechanism is based on epigenetic factors, such as 
DNA and histone methylation, which drives gene silencing 
on the inactive female X chromosome.

Several studies are currently elucidating the critical role 
of epigenetic enzymes, such as EZH2 and respective histone 
modifications to the sex-biased manifestation of diseases. 
Recently, COVID-19 susceptibility and progression were 
connected to epigenetic factors and mechanisms that act in 
a different way between the two sexes. Further studies are, 
however, needed to fully uncover the sex-biased epigenome 
in different disease states, opening a new window to person-
alized medicine and treatment, with the use of drugs target-
ing important epigenetic mechanisms.
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