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The transcriptional regulator nuclear factor kappa B (NF-κB) modulates cellular biological
activity by binding to promoter regions in the nucleus and transcribing various protein-
coding genes. The NF-κB pathway plays a major role in the expressing genes related
to inflammation, including chemokines, interleukins, and tumor necrosis factor. It also
transcribes genes that can promote neuronal survival or apoptosis. Epilepsy is one of
the most common brain disorders and it not only causes death worldwide but also
affects the day-to-day life of affected individuals. While epilepsy has diverse treatment
options, there remain patients who are not sensitive to the existing treatment methods.
Recent studies have implicated the critical role of NF-κB in epilepsy. It is upregulated
in neurons, glial cells, and endothelial cells, due to neuronal loss, glial cell proliferation,
blood-brain barrier dysfunction, and hippocampal sclerosis through the glutamate and
γ-aminobutyric acid imbalance, ion concentration changes, and other mechanisms. In
this review, we summarize the functional changes caused by the upregulation of NF-
κB in the central nervous system during different periods after seizures. This review is
the first to deconvolute the complicated functions of NF-κB, and speculate that the
regulation of NF-κB can be a safe and effective treatment strategy for epilepsy.
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INTRODUCTION

Epilepsy is among the most common brain disorders (Scheffer et al., 2017) and is characterized by
repeated convulsions due to abnormal excitation of neurons (Wijnen et al., 2017). It is estimated
that 50–70 million people (Trinka et al., 2019), accounting for approximately 1–2% of the world’s
population, are affected by epilepsy. According to a survey, approximately 70% of people with
epilepsy can have normal lives if they are adequately treated with anti-epileptic drugs (World
Health Organization, 2005). However, anti-epileptic drugs used by patients block epileptic seizures
but do not affect the underlying pathology or disease progression. Recently, some studies have
highlighted the important pathophysiological role of inflammation in epilepsy (Paudel et al., 2019)
and revealed that excessive activation of inflammatory pathways is a sign of epilepsy (Marcheselli
and Bazan, 1996; Russmann et al., 2017). Studies have demonstrated that brain injury-induced
inflammation and apoptosis are causative factors of epilepsy (Kwon et al., 2013); therefore, seizures
can also cause the expression of inflammatory factors. These mediators can trigger the activation
of the nuclear factor kappa B (NF-κB) pathway, and the activated NF-κB can, in return, promote
their transcription.
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Nuclear factor kappa B encodes various proteins that play a
crucial role in immunity, inflammation, cell growth, survival,
and apoptosis (Singh and Singh, 2020). Moreover, NF-κB up-
regulation can increase the expression of pro-inflammatory
cytokines during the proliferation of hippocampal glial cells
(Wang et al., 2017), and this plays a crucial role in epilepsy. The
NF-κB transcription factor family in mammals consists of five
proteins (Oeckinghaus and Ghosh, 2009) and can be subdivided
into the Rel subfamily [including c-Rel, Rel B, and Rel A (aka
p65)] and the NF-κB subfamily (including p105/p50, p100/p52
and so on), both of which have a Rel homology domain (Mitchell
et al., 2016). Rel proteins have a C-terminal transactivation
domain that can activate transcription. Some proteins in the NF-
κB subfamily that cannot function as transcriptional activators
become shorter (p105 to p50 and p100 to p52) through limited
proteolysis (Gilmore, 2006). Normally, NF-κB exists in an
inactive state as a dimer (usually p50 and p65) bound to an
inhibitor (IκB) (Karin, 1999) in the cytoplasm. Theoretically,
there are 15 possible combinations of dimers but only 13 dimers
are known to exist in cells (Zhang et al., 2017). The IκB protein
family consists of IκBα, IκBβ, IκBγ, IκBδ, IκBε, and Drosophila
Cactus, among others. When the cell receives a stimulus,
there is an intracellular activation of the IκB kinase (IKK)
complex comprising catalytic kinase enzymes including IKK-
α, IKK-β, and IKK-γ/NF-κB essential modulator, which further
integrates the downstream activating signals by phosphorylating
the inhibitor of NF-κB (Mitchell et al., 2016).

Two types of NF-κB signal transduction pathways have
been identified. In the classical pathway, NF-κB is activated by
extracellular stimuli such as Tumor Necrosis Factor-α (TNF-α),
which activates cell surface receptors and recruit adaptor proteins
through the cytoplasmic domain, triggers a signaling cascade that
ultimately activates the IKK complex through phosphorylation
of the serine of IKKβ (Ser177 and Ser181). The activated
IKK complex phosphorylates IκBα (at Ser32/Ser36 on IκBα)
(Kendellen et al., 2014), which is degraded by ubiquitination.
This causes NF-κB dimers (mostly p65 and p50), which actively
shuttle between the nucleus and cytosol, to stay nuclear and
induce gene expression. In contrast with this, the signal-related
adaptor protein, in the non-canonical pathway, can only be
recruited by some molecules, such as CD40, and ubiquitination
is not required. In this pathway, IKKα is phosphorylated, and
p100 is recruited leading to the phosphorylation of p100 by
IKKα, partial hydrolysis, and conversion to p52 to expose its
nuclear localization signal and DNA binding domain. It can
form a complex with Rel B in the human nucleus to activate
the target gene expression (Verma et al., 2019). Cross-talk exists
between activation pathways. Both Rel B and p100 genes contain
κB binding sites, and their transcription is dependent on p65
(Bren et al., 2001). p100, also called IκBδ, can inhibit p65 (Shih
et al., 2011). When p52 is lacking, Rel B forms a dimer with
p50. Similarly, when p50 is lacking, p65 forms a dimer with p52,
which has almost the same level of p65 activation and target
inflammatory gene expression (Hoffmann et al., 2003). IκBα is
a target gene of NF-κB, and re-expressed IκBα inhibits NF-κB
activity. Other target genes, such as interleukins (ILs) and TNF-
α, can block IKK-dependent phosphorylation of IκBα to inhibit

NF-κB activation. Studies have found that the NF-κB pathway
can stay active for 30–60 min in most cells (Qin et al., 2007)
and be activated under several conditions that can promote the
transcription of target genes that affect the function of neurons.

Nuclear factor kappa B overexpresses various genes implicated
in oxidative stress and inflammatory diseases and can regulate
neurogenesis, neuronal death survival, and synaptic plasticity
(Buckmaster and Dudek, 1997; O’Neill and Kaltschmidt, 1997).
Brain tissue analysis of epileptic patients and animal models
has shown that NF-κB has complex functions related to neuron
survival and injury (Mattson, 2005). Therefore, targeting of NF-
κB by selective or non-selective inhibitors or agonists in epilepsy
can serve as an attractive therapeutic approach.

CHANGES OF NUCLEAR FACTOR
KAPPA B EXPRESSION IN STATUS
EPILEPTICUS

Increased NF-κB expression has been observed in brain tissue
from both animal models (Lerner-Natoli et al., 2000) and patients
with epilepsy (Lubin et al., 2007; Table 1).

In animal models, the increase in NF-κB first occurs in
neurons after seizures. The first report demonstrating the
expression of NF-κB in the rat brain showed that the activity of
NF-κB (p50) in hippocampal neurons increases rapidly (within
4 h) in response to epilepsy induced by pentylenetetrazole (Prasad
et al., 1994). Another study also showed a significant upregulation
of NF-κB 4 h after kainic acid (KA) injection that peaked 8–16 h
post-treatment (Rong and Baudry, 1996). Given the different cells
in the brain, Lerner-Natoli et al. (2000) found that the changes
in NF-κB expression first occurred in the hippocampal neurons
24 h after KA injection, which was earlier than that in glial
cells. Thus, the NF-κB upregulation at this timepoint in neurons
was independent of glial cells and may be related to calcium
influx (Furukawa and Mattson, 1998) caused by the activation of
N-methyl-D-aspartic acid (NMDA) and α-amino-3-hydroxy-5-
methyl-4-isoxazole-propionic acid receptors.

Nuclear factor kappa B expression increased in glial cells
later than its change in neurons. Pérez-Otano et al. (1996)
proposed that NF-κB expression increased in astrocytes 2 days
after KA injection. Matsuoka et al. (1999) found that NF-κB
expression was upregulated in blood vessels and glial cells, but it
disappeared in vertebral neurons after 1 day of status epilepticus
(SE) induced by KA microinjection Similarly, Lerner-Natoli
et al. (2000) demonstrated that overexpression and increased
activation of NF-κB occurred in thickened astrocytes 4–8 days
after SE. Previous studies have proposed that the activation of
inflammatory signals in glial cells is involved in KA-induced
neurodegeneration, which suggests that the activated NF-κB in
glial cells participates in the delayed and long-term response
of glia to injury.

Astrocytes and microglia have been extensively studied in
epilepsy. However, the cell types that overexpress NF-κB have
not been established. Pérez-Otano et al. (1996) and Lerner-Natoli
et al. (2000) both found that the number of microglia increased
after SE but NF-κB was expressed in astrocytes. On the other
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TABLE 1 | NF-κB proteins with abnormal expression and/or activity associated with epilepsy.

Author Year Country Treatment drug Time after treatment Method Type of NF-κB Species Brain areas

Qu et al. (Qu
et al., 2019)

2019 China Lithium-pilocarpine 24h qRT-PCR, WB p65 SD rats Hippocampus

Shi et al.
(Pérez-Otano
et al., 1996)

2018 China – – IHC p65 Human Brain

Ojo et al. (Ojo
et al., 2019)

2019 Nigeria Kainic acid 6h IHC p65 Swiss rats Hippocampus

Singh et al. (Bai
et al., 2018)

2018 India Pentylenetetrazole – WB – Wistar rats Hippocampus

Mohamed et al.
(Singh et al.,
2018)

2020 Egypt Pentylenetetrazole 14d ELISA – Wistar rats Hippocampus

Wang et al.
(Wang et al.,
2017)

2017 China Lithium-pilocarpine 1,7,14,30,60d qRT-PCR – SD rats Hippocampus

Blondeau et al.
(Rosciszewski
et al., 2019)

2001 France Kainic acid 1,24,72h WB p50, p65 Wistar rats Hippocampus

Ryu et al.
(Lanzillotta et al.,
2010)

2011 Korea Lithium-pilocarpine 3-4d IHC p65-Ser536 (while
p52-Ser865,
p52-Ser869,
p65-Ser276,

p65-Ser311, p65-
468,p65-Ser529

were decreased in
degenerating

neurons)

SD rats Hippocampus

Won et al. (Kim
and Kang, 2017)

1999 Korea Kainic acid 0.5,4,8,24,72h IHC,WB p50 SD rats Hippocampus

Firdous et al.
(Soerensen et al.,
2009)

2021 Pakistan Pentylenetetrazole – ELISA pNF-κB SD rats Cortex, Hippocampus

Miller et al.
(Carrasco et al.,
2000)

2014 United States Kainic acid 24h IF – cis- NF-κBEGFP

transgenic
reporter mice

Hippocampus

Paudel et al.
(Paudel et al.,
2020)

2020 Malaysia Pilocarpine 10d RT-PCR – Zebrafish Brain

d, days; ELISA, enzyme linked immunosorbent assay; h, hours; IF, immunofluorescence; IHC, immunocytochemistry; qRT-PCR; Real-Time Quantitative Reverse
Transcription Polymerase Chain Reaction; RT-PCR, Reverse Transcription-Polymerase Chain Reaction; Ser, Serine; SD rats, Sprague Dawley rats; WB, Western-Blot.

hand, Kim and his group found an increase in phosphorylated
NF-κB at the threonine 435 site in microglia after SE (Kim et al.,
2019). Similarly, NF-κB serine 276 phosphorylation was found
to be increased in microglia in the frontoparietal cortex (Kim
et al., 2020) or piriform cortex (Lee et al., 2014). The elevated high
mobility group protein B1 after epilepsy must activate microglia
through the toll-like receptor 4 (TLR4)/receptor for advanced
glycation endproducts for late glycation end products of the NF-
κB pathway to disrupt the function of neurons (Shi et al., 2018;
Massey et al., 2019; Rosciszewski et al., 2019). Currently, there is
no literature on NF-κB expression in oligodendrocytes and NG2
cells (polydendrocytes) in epilepsy.

There has also been controversy about how long NF-κB
persists after SE. Voutsinos-Porche et al. (2004) and his group
found that the immunohistochemical expression of NF-κB began
increasing 12 h post-injection and returned to basal levels by
3 and 6 days. In contrast, Wang et al. (2017) found that the
expression of NF-κB in the epileptic hippocampus was highest
on the 14th day after SE; on the 60th day the expression of

NF-κB in the epilepsy group was higher than that in the controls
Despite these inconsistencies, the close relationship between
inflammation and epilepsy has been confirmed. Thus, as a major
regulatory factor of inflammation, NF-κB plays an important role
in the occurrence and development of epilepsy (Figure 1).

ABNORMAL EXPRESSION OF NUCLEAR
FACTOR KAPPA B AND ITS TARGET
GENES CAN AFFECT NEURONAL
FUNCTION AND SURVIVAL

Nuclear Factor Kappa Band Neuronal
Survival
After establishing that NF-κB expression changes in epilepsy,
several studies related to NF-κB function in neurons have
emerged. When neuronal cells were exposed to external
stimuli related to NF-κB, such as TNFα pretreatment
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FIGURE 1 | A mind map of NF-κB dysfunction in epilepsy. Bcl2, B-cell lymphoma-2; CCL2, chemokine (C-C motif) ligand 2; COX-2, cyclooxygenase 2; CX3CL1,
fractalkine; Glu, glutamate; GABA, γ-aminobutyric acid; ILs, interleukins; IFN, interferons; MnSOD, manganese-superoxide dismutase; MRP, multidrug resistance
protein; MDR, multiple drug resistance; NF-κB, nuclear factor kappa B; NOS, nitric oxide synthase; eNOS, endothelial nitric oxide synthase; iNOS, inducible nitric
oxide synthase; nNOS, neuronal nitric oxide synthase; PG, prostaglandin; P-gp, P-glycoprotein; TNF, Tumor Necrosis Factor.

(Furukawa and Mattson, 1998) or activation of TNF receptors
(Marchetti et al., 2004), their survival rates could increase. Rel
A knockout (Carrasco et al., 2000) or IκBα overexpression
in cells induced apoptosis by NF-κB elimination (Mattson
and Camandola, 2001), which suggests that NF-κB actively
inhibits cell death signaling. At the same time, some studies have
suggested that the upregulation of NF-κB plays a neuroprotective
role in the short-term after seizures in animal models (Rong and
Baudry, 1996; Mattson et al., 1997; Carrasco et al., 2000; Lerner-
Natoli et al., 2000; Blondeau et al., 2001; Lanzillotta et al., 2010),
which may be due to an increase in the expression of proteins
associated with neuronal survival. Singh et al. concluded that
NF-κB activation in neurons during epilepsy can promote the
expression of B-cell lymphoma-2 (Bcl2) (Singh and Singh, 2020),
and Mattson et al. showed that manganese-superoxide dismutase
and Bcl2, which were necessary for neuronal plasticity and
physical activity, were the target genes of NF-κB (Mattson and
Camandola, 2001). Since NF-κB has different subunits, studies
are now investigating whether the phosphorylation of different
subunits has different effects. The phosphorylation mentioned
in the above studies has almost always been of the p65 subunit.

However, Ryu et al. (2011a) and Kim et al. (2013) showed that
the phosphorylation of p52 can promote the expression of Bcl2,
the phosphorylation of p65-Ser529 participates in cell growth,
while phosphorylation at other sites on p65 may be related to cell
death and inflammation. Moreover, c-Rel can induce apoptosis
and is strongly activated in apoptotic neurons (Abbadie et al.,
1993). We cannot know the exact NF-κB subunit upregulated in
neurons during early epileptic onset, but there is no doubt that it
is associated with neuron survival.

Dysfunctions of Nuclear Factor Kappa B
and Neurons
Nuclear factor kappa B is a major inducer of pro-inflammatory
cytokines (Mattson, 2005), which can cause increased
spontaneous epileptic recurrence and encode neurotoxic
substances. NF-κB acts as a key point of convergence for
multiple stress signals, including pro-inflammatory cytokines
and oxidative stress (Miller et al., 2014). The target genes of
NF-κB associated with epilepsy include cytokines, enzymes, and
receptors, among others (Grilli and Memo, 1999).
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Nuclear Factor Kappa B Inflammation, Abnormal
Neuronal Function, and Apoptosis
The molecules induced by NF-κB are mainly divided into ILs,
interferons (IFNs), TNF superfamily, colony-stimulating factors,
and some enzymes, which can cause neuronal death by inducing
inflammation. Among these, the most widely studied are ILs,
TNFs, cyclooxygenase 2 (COX-2), and nitric oxide synthase.

Pro-inflammatory cytokines, such as IL-1α, IL-1β, IL-6, IL-10,
TNF-α, and IFN-γ, are usually released by activated microglia
and astrocytes (O’Neill and Kaltschmidt, 1997; Vezzani and
Baram, 2007) and typically concentrated in low quantities within
the brain. Their expression increased after seizures (Scorza et al.,
2018), and they can enhance neuronal excitability and form
a toxic microenvironment that promotes the progression of
epilepsy (Kovács et al., 2011; Huang et al., 2021). The imbalance
between glutamate and γ-aminobutyric acid (GABA) in the brain
after epileptic seizures depends on the action of these cytokines
(Hu et al., 2000; Takeuchi et al., 2006), and they may cause
neuronal death through mitochondrial dysfunction or abnormal
ion currents (Folbergrová and Kunz, 2012). Particularly, TNF-α
has been found to increase microglial glutamate (Takeuchi et al.,
2006) and induce GABA receptor endocytosis (Stellwagen et al.,
2005). Moreover, IL-1β, TNF-α, and IFN-γ inhibit glutamate
reuptake in astrocytes, and this can be blocked by IFN-β (Hu
et al., 2000). The activation of TLR4/NF-κB in glial cells increases
susceptibility to epilepsy (Iori et al., 2013) and is possibly
associated with increased concentrations of IL-1β (Dubé et al.,
2005), TNF-α (Balosso et al., 2005), IL-6 (Fukuda et al., 2007),
and IL-2 (De Sarro et al., 1994). NF-κB target genes can also, in
turn, activate it through corresponding receptors on neurons and
glial cells to promote the expression of pro-inflammatory factors
(Listwak et al., 2013), which further aggravates brain injury. These
pro-inflammatory factors can also have beneficial effects, such as
increased survival rates, observed in TNF-α-pretreated neurons
in response to harmful stimuli; these effects may be mediated by
NF-κB (Furukawa and Mattson, 1998).

The most widely studied enzymes induced by NF-κB in glial
cells during epilepsy include COX-2 and nitric oxide synthase.
After SE, the expression of COX-2 in glial cells and neurons
increases, and it is often considered a marker of inflammation
(Drion et al., 2018). COX-2, which is expressed at low to
moderate levels in the cell bodies and dendritic spines of
hippocampal neurons, is shown to be modulated by NF-κB
(Yamagata et al., 1993) in neurons during SE (Yagami et al., 2016;
Arena et al., 2019). COX-2 expression is regulated by synaptic
activity (Kaufmann et al., 1996) and corresponds to the role of
NF-κB in synaptic transmission (Yamagata et al., 1993). COX-2
inhibition prevents long-term potentiation of the perforant-path
synapse to the dentate granule cells (Chen et al., 2002). After
selective inhibition of COX-2, the excitability of hippocampal
CA1 pyramidal neurons and dendritic membranes significantly
reduced, which may be due to alterations in potassium currents
(Chen and Bazan, 2005). COX-2 can also transform arachidonic
acid into prostaglandin and other harmful substances to promote
inflammation (Xu et al., 2020). At the same time, antiepileptic
treatments can reduce the COX-2 in glial cells (Drion et al., 2018).
Neuronal nitric oxide synthase, which is primarily expressed

in neurons (Cinelli et al., 2020), can trigger pentylenetetrazole
kindling epilepsy-induced endoplasmic reticulum stress and
oxidative damage (Zhu et al., 2017). It can oxidize amino acids to
produce nitric oxide (NO) and promote inflammation, like other
nitric oxide synthases (Dreyer et al., 2004), as well as mediate
glutamate-induced neuronal death and cause mitochondrial
damage (Brown and Bal-Price, 2003). Activated microglial cells
can kill neurons via NO from inducible nitric oxide synthase
(iNOS) by inhibiting neuronal respiration, rapid glutamate
release from both astrocytes and neurons, and subsequent
excitotoxic death of the neurons (Brown and Bal-Price, 2003).
Both COX-2 (Mazumder et al., 2017) and iNOS (Tawfik et al.,
2018) cause oxidative stress, and they may be related to neuronal
apoptosis induced by mitochondria (Wang et al., 2019).

Circulation Between Chemokines and Nuclear Factor
Kappa B in Epilepsy
Chemokines are small cytokines or signaling proteins secreted
by cells, with a molecular weight of approximately 8–10 kDa,
and they can be regulated by NF-κB. They have four conserved
cysteine residues to ensure their tertiary structure and can
be divided into the following four major subfamilies: CXC,
CC, CX3C, and XC (Fu et al., 2010; Huang et al., 2014,
2017; Karimian et al., 2017). Astrocytes, resident microglia, and
endothelial cells have been identified as the cellular source of
chemokines in the central nervous system under physiological
and pathological conditions (Ambrosini and Aloisi, 2004; Fabene
et al., 2010; Bozzi and Caleo, 2016). As their receptors are
usually expressed on glial cells, chemokines affect epilepsy by
regulating glial function. Several chemokine variants are known
to alter neuronal physiology by modulating voltage-dependent
channels, activating g-protein-gated potassium inflow channels,
and increasing the release of certain neurotransmitters (Fabene
et al., 2010). Wang et al. (2016) found that the levels of chemokine
(C-C motif) ligand 2 (CCL2) and CC chemokine receptor 2 were
increased in patients with intractable epilepsy. An increase in CC
chemokine receptor 2 was also observed in CD68 + microglia,
which can be caused by seizures (Bozzi and Caleo, 2016).
Fractalkine (CX3CL1) is a transmembrane chemokine expressed
by neurons (Pawelec et al., 2020) and glial cells (Ali et al.,
2015). Microglia maintain the neurogenic niche environment
through the interaction with neurons via fractalkine signaling
under physiological conditions (Araki et al., 2021). However,
under pathological conditions, the CX3CL1/chemokine (C-X3-
C motif) receptor 1 axis can alter synaptic activity in epilepsy
through microglia (Wake et al., 2009), and the upregulation
of CX3CL1 can decrease GABA currents through the GABAA
receptor (Roseti et al., 2013). Temporal lobe epilepsy patients also
exhibit increased chemokine (C-X-C motif) ligand and (CXCL) 4
receptor expression in microglia and astrocytes, which eventually
increase the glutamate levels (Lee et al., 2007). The increase in
CXCL2 mRNA production has been demonstrated in epilepsy
(Hu et al., 2020), and knockout of the CXCL2 receptor gene in
astrocytes can affect the functioning of the blood-brain barrier
(BBB) (Liu X. X. et al., 2020). Chemokines and their receptor
genes are targeted by NF-κB (Fu et al., 2010; Duan et al., 2014;
Ni et al., 2019), and chemokine receptors can also activate NF-κB
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(Ding et al., 2016; Bai et al., 2018; Zhuang et al., 2019), which may
serve as a vicious circle in epilepsy.

Functional Crosstalk Between Nrf2 and Nuclear
Factor Kappa B Inhibits the Expression of
Antioxidant Molecules
Nuclear factor (erythroid-derived 2) -like 2 (Nrf2) is a
transcription factor that can enhance the expressions of several
antioxidants (Singh et al., 2018). In epilepsy models, Nrf2
expression reduction has been observed (Geng et al., 2018), but
the ablation of the Nrf2 gene also enhances the degradation
of IκBα, which leads to increased activation of the NF-κB
protein and further upregulation of the expression of pro-
inflammatory cytokines (Thimmulappa et al., 2006). Another
mechanism is the competition between Nrf2 and NF-κB for
the transcriptional coactivator creb binding protein complex
(Singh et al., 2019). Injury-induced increase in NF-κB expression
limits the availability of creb binding protein for Nrf2 complex
formation and leads to an increase in the expression of NF-κB-
driven inflammatory genes (Wardyn et al., 2015). Moreover, the
decreased expression of antioxidant molecules may lead to the
aggravation of neuronal damage caused by oxidative stress, which
further affects the function of the nervous system.

Other Factors Influencing Neuronal Apoptosis
Pathway Associated With Nuclear Factor Kappa B
As a key regulator of apoptosis, increased levels of NF-κB in
the hippocampus inevitably lead to increased levels of caspase-3,
which is associated with apoptosis (Mohamed et al., 2020). The
excitotoxicity of neurons caused by overstimulation of NMDA
receptors can directly activate NF-κB and cause cell apoptosis
(Engelmann et al., 2014), which may be related to calcium influx
(Vezzani et al., 2008).

ABNORMAL ACTIVATION OF NUCLEAR
FACTOR KAPPA B CAN AFFECT GLIAL
CELL ACTIVITY THROUGH
PROLIFERATION AND POLARIZATION

The following are the four main types of glial cells: astrocytes,
microglia, oligodendrocytes, and nerve/glial antigen 2 cells
(polydendrocytes) (Pitkänen and Lukasiuk, 2009). Of these,
astrocytes and microglia are the most widely studied in epilepsy.
Overactivation of NF-κB in glial cells can cause changes in central
nervous system function, promote seizures, and affect cellular
activity, proliferation, and polarization of the glial cell.

The pro-inflammatory factors in epileptic models are mainly
expressed through glial cells, which, in turn, affect the activity of
neurons. Because of the presence of related receptors, the changes
in the expressions of these molecules can affect the function of
the glial cells. TNF-α stimulation of primary astrocytes in vitro
can promote cell proliferation and viability and increase the
expressions of NF-κB, P-glycoprotein (P-gp), and multidrug
resistance-associated proteins 1 (Wang X. et al., 2018). The latter
two are associated with drug resistance in epilepsy. TNF-α and
IL-1β can promote the activity and proliferation of astrocytes

(Cui et al., 2011) and microglia (Bruttger et al., 2015; Zhao et al.,
2018) and inhibit glutamate reuptake into primary astrocytes
(Ye and Sontheimer, 1996), thereby aggravating seizures. IL-1
receptor-associated kinase 1 is also regulated by NF-κB (Deng
et al., 2019), which can also activate NF-κB to produce pro-
inflammatory effects in glial cells (Liu G. J. et al., 2020).
Chemokines such as CCL2 can also promote primary cultured
microglia proliferation (Zhang et al., 2018).

Microglia activation plays a key role in regulating
inflammation and immune response and can have a pro-
inflammatory or anti-inflammatory effect depending on
the M1/M2 polarization phenotype (Zhao et al., 2019). The
phosphorylation of p65-Ser276 can convert microglia from
the resting state to the activated state (Kim et al., 2020). The
increase of p65 in microglia can promote the transition to the
M1 phenotype of microglia (Zhang et al., 2019). Activated M1
microglia can release IL-1α and TNF, which can induce an A1
astrocyte phenotype, leading to neuronal and oligodendrocyte
death, as well as synaptic collapse (Liddelow et al., 2017). The
increased NF-κB expression in astrocytes also has the same effect
(Xu et al., 2018).

Individual studies have demonstrated different points of
view. For instance, the p50 subunit can regulate the balance
of microglia M1/M2, and its dysfunction can lead to chronic
inflammation (Taetzsch et al., 2015). Moreover, the expressions
of TNF-α, IL-1β, and colony-stimulating factors can decrease
the activation of microglia and astrocytes (Pérez-Otano et al.,
1996). SE causes autophagic death of astrocytes through TNF-α,
and the phosphorylation of p65/RelA-Ser529 (Ryu et al., 2011b)
and IL-1 has an inhibitory effect on pentylenetetrazole (PTZ)-
induced (Miller et al., 1991) or kindling-induced (Sayyah et al.,
2005) seizures. Andrzejczak et al. suggested that the different
functions of pro-inflammatory factors may depend on their
concentration and the type of receptors involved in the response
(Andrzejczak, 2011).

NUCLEAR FACTOR KAPPA B,
ENDOTHELIAL CELLS, THE
BLOOD-BRAIN BARRIER, AND
DRUG-RESISTANT EPILEPSY

Nuclear factor kappa B is expressed in neurons, glial cells, and
endothelial cells. The expressions of cytokines (Liu X. X. et al.,
2020), receptors (Kamali et al., 2020), enzymes, and P-gp (Ke
et al., 2019) are altered in endothelial cells just like in neurons
and glial cells, and similar effects are observed.

Under physiological conditions, activating NF-κB can protect
the BBB (Ridder et al., 2015). Dysfunctions of NF-κB threonine
435 phosphorylation and endothelial NOS in endothelial cells
(Kim et al., 2019) can lead to vasogenic edema with neutrophil
infiltration and loss of astrocytes (Kim et al., 2012). After SE,
resident microglia are the main source of chemokine (C-C motif)
ligand 2. Due to the destruction of the BBB integrity, chemokine
(C-C motif) ligand 2 and CC chemokine receptor 2 can recruit
monocytes and macrophages, leading to the infiltration of white
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blood cells and the formation of vasogenic edema (Kim et al.,
2020). Excitotoxicity is a central pathological pathway in epilepsy
with BBB dysfunction (Barna et al., 2020). Seizures may modulate
the BBB function, affect astrocytes and the innate immune
system, and ultimately alter neuronal networks (Löscher and
Friedman, 2020). This may, in turn, lead to changes in the central
nervous system (Marchi et al., 2012).

Several studies have shown that BBB dysfunction is one
of the main causes of drug resistance in epilepsy (Ogaki
et al., 2020). P-gp is a member of the ATP-binding box
superfamily of transmembrane proteins and is targeted by several
pharmacological barriers (Ambudkar et al., 2006). Specifically,
its expression increases through different signaling pathways by
L-glutamate stimulation (Zhu and Liu, 2004). It binds to drugs
and ATP, which, in turn, pumps the drugs out of the cell,
reducing the intracellular concentration of drugs and making
the cell resistant to them. Ke et al. (2019) found that P-gp was
overexpressed in bEnd.3 cells and showed that endothelial cells
play a role in the development of drug-resistant epilepsy. The p65
subunit can be combined with the Multi-Drug Resistance Gene 1
to promote the expression of P-gp on the cell membrane (Geick
et al., 2001; Yu et al., 2011; Deng et al., 2019). The activation
of NF-κB enhances the spillover transport of antiepileptic drugs
across the BBB (Yu et al., 2011). The NMDA receptor and
COX-2 can increase the expressions of P-gp in the BBB after
SE (Bauer et al., 2008). P-gp is also expressed in glial cells
(Wang X. et al., 2018) and neurons (Deng et al., 2019; Merelli
et al., 2019) and may have an abnormal expression after SE.
Interestingly, the overexpression of P-gp may be one of the
mechanisms for the development of drug-resistant epilepsy that
is closely associated with sudden unexpected death observed in
epilepsy (Auzmendi et al., 2021). However, specific inhibitors of
P-gp are known to produce unpredictable toxicity in clinical trials
(Deng et al., 2009).

EFFECTS OF EXISTING TREATMENTS
ON NUCLEAR FACTOR KAPPA B

In animal experiments, it has been found that directly inhibiting
the activity of NF-κB will have a certain effect on epilepsy.
Pyrrolidine dithiocarbamate salt (PDTC) is a drug that can
specifically antagonize NF-κB (Soerensen et al., 2009). Yu et al.
(2011) found that PDTC pretreatment prolonged the seizure
onset time, decreased the P-gp overexpression, and failed to
prevent brain cell loss in KA-induced rats. Shin et al. (2004)
reported that PDTC prevented hippocampal neuronal loss in
the KA-induced seizure model, and the use of a low dose of
PDTC can almost completely protect from lesions in the piriform
cortex (Soerensen et al., 2009) and attenuate the microglial
activation (Lv et al., 2014). Treatment with 150 mg/kg PDTC
before and after SE significantly increased the mortality rate to
100% (Soerensen et al., 2009). SN50 peptide can also inhibit
the activity of NF-κB. It reduces the vasogenic edema caused by
epilepsy (Kim and Kang, 2017) and inhibits the NF-κB-induced
expression of P-gp in rat brain capillaries (Yu et al., 2011). The
mRNA and protein levels of P-gp were remarkably reduced when

NF-κB p65 was knocked down by siRNA transfections (Ke et al.,
2019). Furthermore, NF-κB “decoy” inhibited COX-2 expression
in an epileptic rat brain (Xu et al., 2020).

Some non-selective drugs can also act through the NF-κB
pathway. Aspirin, a member of non-steroidal anti-inflammatory
drugs, can reduce the content of NF-κB and protect against
corticohippocampal neurodegeneration in an epilepsy model
induced by PTZ (Abd-Elghafour et al., 2017). Dimethyl
fumarate, an activator of Nrf2, downregulated the expression of
inflammatory factors (NF-κB) with the reduction of the seizure
score, percentage of kindled rats, and neurological damage score
(Singh et al., 2019). Edaravone can protect hippocampal neurons
from damage in KA-induced epilepsy rats by upregulating Nrf2
and downregulating NF-κB (Liu et al., 2018). Valproic acid can
reduce the death of neural progenitor cells through the activation
of NF-κB signaling (Go et al., 2011), which indicates that NF-
κB can promote neuronal survival mentioned above. Long-term
use of Antiseizure medications, such as phenytoin (Zhou et al.,
2015), valproic acid (Rao et al., 2007), carbamazepine (Yu et al.,
2017), pregabalin (Nader et al., 2018; Attia et al., 2019), and
diazepam (Firdous et al., 2021), can reduce the amount of NF-
κB in animal tissues or cells to protect neurons and suppress
inflammation. Carbamazepine can also regulate the expression
of P-gp, which may be related to drug-resistant epilepsy (Yu
et al., 2017). From these, we found that different antiepileptic
drugs may play different roles in the NF-κB pathway. This may
be related to the fact that phosphorylation at different sites of
different NF-κB molecules can cause different effects.

The discovery of new therapy is also important. Extracts
from plants, such as curcumin (Karimian et al., 2017), rosaceae
(Firdous et al., 2021), hyperforin (Lee et al., 2014), asiatic
acid (Wang Z. H. et al., 2018), and gastrodin (Zhou et al.,
2015), can downregulate neuroinflammation by preventing NF-
κB phosphorylation in animal models, and their mechanisms
of action are similar to that of valproate (Chen et al., 2018).
Sitagliptin and nilotinib (Nader et al., 2018; Attia et al., 2019),
neither of which is related to epilepsy treatment, can be used
to treat epilepsy via the NF-κB pathway when used together
with anticonvulsants. Anti-inflammatory miR-146a extended the
latency of generalized convulsions, reduced the seizure severity,
and decreased the expressions of its target mRNAs (IRAK-
1 and TRAF-6) and NF-κB (Tao et al., 2017). The above
treatment methods are not used in clinical practice, but the
ketogenic diet, originally developed for the treatment of epilepsy
in non-responder children, exhibits anti-inflammatory effects by
inhibiting NF-κB (Pinto et al., 2018). There are no experiments
on p65-related gene knockout mice, because mice lacking the p65
gene die within embryonic days 14–15 (Won et al., 1999).

CONCLUSION

Nuclear factor kappa B is a transcription factor whose
upregulation is responsible for increasing the expression of
pro-inflammatory cytokines during neuronal excitability and
hippocampal gliosis. It can be divided into two subfamilies
and both include many factors, but the dimers that have
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been discovered to play a role in epilepsy do not contain all
the molecules. Because the existing studies have shown that
phosphorylation of different molecules, or phosphorylation
at different sites of the same molecule, may exert different
physiological functions, the identification of the effects of
different molecules is particularly important. It is undeniable
that in epilepsy, the upregulation of NF-κB can play a
role in protecting neurons, and there is no doubt that the
inflammatory response and antioxidant imbalance caused
by NF-κB activation during epilepsy has a harmful effect
on the central nervous system. Further research is needed
to identify the role of different NF-κB molecules and
different dimers in epilepsy, and to find new and more
stable compounds that specifically inhibit one or more
molecules of NF-κB to treat epilepsy. Hopefully 1 day, these

drugs can be applied clinically and can bring good news to
patients with epilepsy.
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