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Abstract 

While single-cell studies ha v e made significant impacts in various subfields of biology, they lag in the Glycosciences. To address this gap, we 
analyzed single-cell glycogene expressions in the Tabula Sapiens dataset of human tissues and cell types using a recent glycosylation-specific 
gene ontology (GlycoEnzOnto). At the median sequencing (count) depth, ∼40–50 out of 400 gly cogenes w ere detected in individual cells. Upon 
increasing the sequencing depth, the number of detectable glycogenes saturates at ∼200 glycogenes, suggesting that the average human cell 
expresses about half of the glycogene repertoire. Hierarchies in glycogene and gly copathw a y e xpressions emerged from our analysis: nucleotide- 
sugar synthesis and transport exhibited the highest gene e xpressions, f ollo w ed b y genes f or core enzymes, gly can modification and extensions, 
and finally terminal modifications. Interestingly, the same cell types sho w ed v ariable gly copathw a y e xpressions based on their organ or tissue 
origin, suggesting nuanced cell- and tissue-specific glycosylation patterns. Probing deeper into the transcription factors (TFs) of glycogenes, 
we identified distinct groupings of TFs controlling different aspects of glycosylation: core biosynthesis, terminal modifications, etc. We present 
webtools to explore the interconnections across glycogenes, glycopathways and TFs regulating glycosylation in human cell / tissue types. Overall, 
the study presents an o v ervie w of glycosylation across multiple human organ systems. 
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ntroduction 

lycosylation is a ubiquitous post-translational modification
hat results in the formation of an array of cellular complex
arbohydrate structures or glycans ( 1 ). These glycans, which
ppear either in branched or extended form on the cell surface
r as single-monosaccharide additions within cells, control or
ne-tune a multitude of biological functions during normal
hysiology and disease ( 2 ,3 ). The common glycoconjugate
ypes on mammalian cells include the branched N-linked gly-
ans on glycoproteins, O-GalNAc (N-acetyl galactosamine)
ype O-glycan modifications on glycoproteins, long repeat-
ng saccharide chains called glycosaminoglycans (GAGs) on
 select set of proteoglycans, carbohydrate modifications on
lycolipids, and finally O-GlcNAc type single residue modi-
cations on nuclear proteins and transcription factors (TFs).
esides these major families of glycoconjugates, glycans also
orm the anchor for glycosylphosphatidylinositol (GPI)-linked
ell-surface proteins. There also exist a growing list of rarer
-linked glycan modifications, including O-Glc (glucose),
-Fuc (fucose) and O-Man (mannose) type glycosylation

 4 ). 
Glycans on cells are formed by the concerted action of

2% of the expressed proteome that are collectively called
glycoEnzymes.’ These enzymes are products of the corre-
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sponding ‘glycogenes.’ An ontology called ‘GlycoEnzOnto’
has recently been curated to organize the existing knowl-
edge of human glycoEnzymes within the domain of Glyco-
sciences ( 5 ). In this ontology, the ∼400 glycogenes are anno-
tated according to their molecular functions, biological pro-
cesses and physical location (cellular component), following
the Gene Ontology convention ( 6 ). Besides the genes encod-
ing enzymes in the glycan biosynthesis, GlycoEnzOnto also
includes the entities involved in the regulation of nucleotide-
sugar metabolism, glycosyl-substrate / donor transport, gly-
can degradation and other regulatory components. From
the molecular function perspective, glycogenes are grouped
into glycosyltransferases, other transferases (e.g. sulfotrans-
ferases), modifying enzymes (e.g. epimerases and kinases), gly-
cosidases, molecular transporters and other regulators. Addi-
tionally, glycogenes / glycoEnzymes can also be classified ac-
cording to their role in glycoconjugate biosynthesis, including
(i) the ‘initiation’ step that results in the attachment of the first
monosaccharide or oligosaccharide to the protein / lipid, (ii)
the ‘elongation and branching’ reactions that extend the orig-
inal glycan often via lactosamine chain synthesis / branching,
and (iii) the ‘termination or capping’ processes that prevent
further chain extension. GlycoEnzOnto and other databases
such as GlycoGene Database (GGDB) in GlyCosmos portal
er 11, 2024. Accepted: November 21, 2024 
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able from 10.5281/zenodo.14177056 . 
( 7 ) represent invaluable shared resources for Systems Glyco-
biology analysis ( 8–12 ). 

Advances in single-cell profiling technologies have gener-
ated voluminous multimodal single-cell data and have trans-
formed our understanding of cell biology, from development
( 13 ,14 ) to immune systems ( 15 ,16 ) and to aging ( 17 ,18 ). Of
note is the scRNA-seq dataset for human from the Tabula
Sapiens (TS) project, comprising 483 152 human cells from
15 donors that are organized into 24 tissues and over 400 cell
types ( 19 ). Such single-cell data may reveal subtle, yet poten-
tially vital, differences in glycosylation processes among dif-
ferent cells within the same tissue or organ as this is not pos-
sible using bulk sequencing. A study by Joshi et al. employed
the TS dataset to examine the activity and regulation of glyco-
syltransferases and associated pathways across human tissues
and cell types. The study identified key transcriptional regula-
tory hotspots in different glycopathways and generated a tool
called Glycopacity for characterizing the capacity of glycosyl-
transferase pathways using gene expression data ( 20 ). Besides
gene expression, other recent studies generated multimodal
single-cell data of lectin-based profiling and scRNA-seq for
integrative analysis of glycans ( 21–23 ). While different single-
cell methods have their advantages and disadvantages, they
share a few issues, such as low messenger RNA (mRNA) cap-
ture efficiency and high dropout rates, that particularly affect
the measurement of genes with low expression ( 24 ,25 ). 

This study presents a comprehensive analysis of single-cell
glycogene and glycopathway expressions in the TS dataset,
informed by GlycoEnzOnto, to shed light on the variation of
glycopathway expression across various cell and tissue types.
Our results show that only ∼50% of glycogenes are expressed
in a given cell, with expression levels varying depending on
gene function. In contrast to conventional thinking based on
microarray / quantitative-PCR data analysis ( 26 ) that suggests
that glycogenes are lowly expressed, our more holistic single-
cell analysis reveals that the glycogenes are expressed at levels
that are comparable to other protein-coding (PC) genes. Fur-
ther, our analysis presents a map of glycopathway expression
across tissue, illustrating the inherent heterogeneity across hu-
man cells and tissues. Specifically, the findings showed how
enzymes involved in the metabolism of nucleotide sugars
(NSs), glycan degradation processes and biosynthesis of core
structures exhibit uniform and ubiquitous expression patterns
across cell types and tissues, consistent with their foundational
roles in glycan biosynthesis. Meanwhile, terminal glycoen-
zymes often serve specialized roles, and they are more selec-
tively expressed in individual cell types. Lastly, the analysis of
transcriptional factors using mutual information (MI) of TF–
glycogene expression in the TS dataset fills the gap in knowl-
edge of transcriptional regulators of glycosylation ( 27 ). The
result reveals five regulatory modules (RMs), with each mod-
ule controlling a different aspect of glycosylation. To bolster
accessibility, we also developed webtools, called glycoC AR TA
and glycoTF (links available at virtualglycome.org), to allow
further exploration of glycogenes, glycopathways and related
TFs at single cell level. 

Materials and methods 

Data preprocessing 

The scRNA-seq data in the TS project were generated us-
ing two different single-cell sequencing technologies: 10X and
Smart-seq, with the majority of the data coming from 10X 

(456 101 cells versus 27 051 cells). TS scRNA-seq data were 
obtained from the public website ( 28 ). This study focused only 
on scRNA-seq data from 10X platform to avoid any potential 
batch effects associated with different sequencing platforms. 

The data preprocessing is illustrated in Figure 1 A, with 

individual steps being carried out using the Python pack- 
age scanpy ( 29 ). The analysis started with the decontami- 
nated Unique Molecular Identifier (UMI) counts from the 
TS dataset. Decontamination of background RNA was pre- 
viously performed using the method decontX ( 30 ). Following 
the standard practice, UMI counts were scaled cellwise so that 
each cell has a count depth of 10 000. This scaling produced 

relative RNA abundances x i that are comparable across cells.
For differential expression (DE) analysis, the scaled UMI 

counts were log-transformed (i.e ., log ( x + 1 ) ) to satisfy the 
input requirement of the method MAST ( 31 ). For subsequent 
analyses, we subset the preprocessed count matrix to 19 847 

transcripts (from a total of 58 559) associated with PC genes 
as defined in BioMart (access date 10 October 2022). On av- 
erage, PC genes make up 89.4% of the total number of reads.
Among the PC genes, we extracted data for 398 glycosylation- 
related genes (glycogenes, see Supplementary Table S2 ) as de- 
fined in the GlycoEnzOnto ( 5 ). Python and R codes and the 
list of PC genes used for data analysis are available from 

10.5281/zenodo.14177056 . 

scVI + UMAP embedding 

To visualize glycogene expression in single cells, single-cell 
variational inference (scVI) was applied to the decontam- 
inated glycogene UMI counts to generate a lower dimen- 
sional embedding of the glycogene expression ( 32 ). The 
method scVI produces a probabilistic latent space of single- 
cell gene expression data based on zero-inflated negative bi- 
nomial distribution. Specifically, the Python’s scvi-tools pack- 
age ( 33 ) was implemented with the following parameters: 
n latent = 50, n layers = 3, n latent = 50 and dropout rate = 50. For 
this study, only the variational posterior of the scVI model 
was employed. For visualization of this embedding, a Uni- 
form Manifold Approximation and Projection (UMAP) using 
n neighbors = 15 and n components = 2 (2D) was used ( 34 ). 

Differential expression analysis of glycopathways 

Glycosylation-related pathways (glycopathways) are de- 
scribed in Supplementary Table S3 . DE analysis using MAST 

requires as inputs the log ( x + 1 ) -transformed UMI counts for 
the glycogene expression. For each pathway, its expression 

was evaluated by averaging the expression of glycogenes be- 
longing to that pathway. DE analysis of glycopathways was 
then performed using the MAST (model-based analysis of 
single-cell transcriptomics). MAST adapts a hurdle model to 

tackle zero-inflation and biomodality of single-cell transcrip- 
tome data ( 31 ). As illustrated in Figure 2 A, MAST produces 
fold-change differences of the mean expression of a glycopath- 
way between cells from a specific tissue, with respect to all 
other tissue with the same glycopathway. Associated statisti- 
cal significance is also calculated using P -values adjusted for 
multiple hypothesis testing using Bonferroni correction ( 35 ).
The DE analysis was implemented using the Seurat package 
(version 4.1.0) in R, specifically FindAllMar k er s function ( 36 ).
The code and the result of DE analysis using MAST is avail- 

https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae169#supplementary-data
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Figure 1. Transcriptomic analysis of glycogenes at single cell level. ( A ) Summary of data preprocessing and analyses of TS data (see ‘Materials and 
methods’ section for details). ( B ) Number of glycogenes with RNA count > 0. Each dot represents a cell. Dark line represents the median value. The 
shaded areas show the contours of percentiles at 10% increments from the median, spanning the 0th to 100th percentile. The data collection results in 
a shoulder at ∼65 0 0 0 UMI counts / cell corresponding to ∼165 glycogenes. ( C ) A positive correlation is observed between the number of detected 
gly cogenes v ersus other PC genes. T he f ace color represents the UMI depth. ( D ) Distribution of PC and gly cogene e xpressions in terms of the number 
of expressing cells (i.e., cells with nonzero RNA count for the gene). Glycogenes are generally more commonly expressed in the TS cells than other PC 

genes. ( E ) Distribution of single cell expression of glycogenes. Glycogenes are grouped based on their biological functions as defined in the 
GlycoEnzOnto (see Supplementary Table S2 ). ‘Transporters and regulators’ are generally more broadly expressed compared to other glycogenes 
including glycosyltransferases. ( F ) Distribution of single cell expression of glycosyltransferases in core, extension and terminal groups (see 
Supplementary Table S3 ). Core enzyme expression is higher compared to extension and terminal modifiers. ( G–H ) UMAP visualization of scVI latent 
embedding of glycogene expression in epithelial cells and blood tissue. 
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Table 1. Contingency table for glycopathway enrichment analysis 

Expressing cells Non-expressing cells 

Cells in tissue a b 
Cells not in tissue c d 

 

 

 

 

lycopathway enrichment analysis 

nrichment analysis was performed to assess whether cells
rom a specific tissue are over-represented or depleted with
ells expressing a given glycopathway. Here, a cell is labeled as
n ‘expressing cell’ when the average expression (scaled UMI
ount) of genes in a glycopathway is nonzero. For a given pair
f glycopathway and tissue, a contingency table as shown in
able 1 was constructed to distribute the cells into two distinct
ategorizations: expressing cells / non-expressing cells and cells
n the tissue / cells not in the tissue. The odds ratio OR, given
y ad/bc , indicates the over-representation (odds ratio > 1 or
og(OR) > 0) or depletion (odds ratio < 1 or log(OR) < 0) of
expressing cells in a tissue. The statistical significance was es-
tablished via Fisher’s exact test based on hypergeometric sam-
pling. The enrichment analysis was implemented in Python
using fisher_exact function from the scipy package (version
1.10.1). 

https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae169#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae169#supplementary-data
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Figure 2. Differential expression analysis of glycopathway in epithelial 
cells. ( A ) ‘GSLs diversify’ pathway including the gene set B4GALNT1, 
B3GALT4, B3GNT5, B3GALT5, B4GALT1, B3GALNT1 and A4GALT is 
used to illustrate the calculation scheme. Here, mean pathw a y gene 
expression in each tissue is first calculated from the zero-inflated 
single-cell data. LogFC expression is then determined, and this is 
presented using dots where a thicker red (blue) linewidth represents 
higher (lo w er) le v els of the pathw a y e xpression in a giv en tissue with 
respect to all other tissue. The intensity of the face color of the dot 
represents the mean expression of the glycopathway among the cells in 
a specific tissue. ( B ) DE of gly copathw a y s is presented for selected core, 
extension and terminal pathways for epithelial cells. The grayscale 
heatmap in the last column presents the mean gly copathw a y e xpression 
among all epithelial cells. As an example, O-GlcNAc-related genes (OGA 

and OGT) are highly expressed across tissue. Among the tissue, this is 
most highly expressed in the liver compared to kidney and large 
intestine. In contrast the GSL diversity genes are higher in eye and 
trachea compared to other tissue. Mean expressions data are provided in 
Supplementary Table S4 , while logFC data are a v ailable from online 
repository 10.5281 / zenodo.14177056. 

 

 

 

 

 

Transcriptional factor analysis 

The curation of TF–glycogene and glycopathway interactions 
involved evaluating MI of single-cell expression between ev- 
ery possible pair of TF–glycogene in the TFLink database 
( 37 ). TF–gene interactions in the TFLink database were origi- 
nally compiled from numerous databases that relied on differ- 
ent evidence of TF binding on the regulatory elements of the 
genes ( 37 ). Here, MI was used to provide additional evidence 
for TF–glycogene interactions based on shared information in 

their single-cell expression. The following equation gives the 
basis for evaluating MI for TF–glycogene relations: 

I ( TF , G ) = 

∑ 

t i 

∑ 

g j 
P TF , G 

(
t f , g 

)
log 

P TF , G 

(
t f , g 

)

P TF 
(
t f 

)
P G 

( g ) 
(1) 

where P TF , G 

denotes the joint probability distribution of 
single-cell expression of a transcription factor TF and a glyco- 
gene G , and P TF and P G 

denote the marginal probability distri- 
bution of TF and G , respectively. We evaluated I( TF , G ) using 
the scaled UMI counts from all 10X cells in the TS dataset.
The calculation of MI was performed using the Python pack- 
age sklearn ( 38 ). 

We employed the TFLink database ( 37 ) as the ground 

truth to assess the accuracy of MI scores for establishing TF–
glycogene interactions. Specifically, we evaluated the area un- 
der precision-recall curve (AUPRC) using the Python package 
sklearn ( 38 ). The AUPRC has a value between 0 and 1 with 1 

describing the ideal predictor. To assess the empirical P -value,
we performed a bootstrap approach by generating a set of ran- 
dom MI scores ( n = 100 000), representing the outputs of a 
random predictor. The empirical P -value is set to the propor- 
tion of the AUPRCs from a random predictor that is higher 
than the AUPRC of the MI scores computed using the single- 
cell gene expression data. 

Transcriptional regulatory module analysis 

Transcriptional RMs were identified by hierarchical cluster- 
ing of glycogenes using their log1p of MI with TFs, i.e.,
log ( 1 + I( TF , G ) ) (see Transcription factor analysis). Thus,
each cluster corresponds to a group of glycogenes with simi- 
lar MI patterns. The hierarchical clustering was performed us- 
ing the ‘linkage’ function from the SciPy library . Specifically ,
we employed the complete linkage method which defines the 
distance between two clusters as the maximum distance be- 
tween any pair of elements across the clusters. The Euclidean 

distance metric was used to quantify dissimilarity between 

glycogenes. The resulting linkage matrix was visualized as a 
dendrogram. Finally, the clusters of glycogenes were assigned 

using the fcluster function from the SciPy library with the 
criterion ‘maxclust’ to obtain the desired number of clusters 
( n = 5). The hierarchical clustering above was implemented 

using the scikit-learn package (version 1.2.2). 
Each glycogene cluster was taken as a Transcriptional Reg- 

ulatory Module (TRM). Enrichment analysis was performed 

using the Fisher’s exact test to identify the over-representation 

of glycopathways. For this purpose, we employed the glyco- 
pathway definition given in Supplementary Table S3 . Given 

two sets of glycogenes, one from a TRM and another from a 
glycopathway, we constructed the contingency table as shown 

in Table 2 . The odds ratio calculation ( OR = mt/ns ) and 

Fisher’s exact test were performed following the same proce- 
dure for the ED analysis (see ‘Glycopathway enrichment anal- 
ysis’ section). Hierarchical and k- means clustering were im- 

https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae169#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae169#supplementary-data
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Table 2. Contingency table for TRM enrichment analysis 

Glycogenes in 
pathway 

Glycogenes not 
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lemented using the scikit-learn package (version 1.2.2) and
he Fisher’s exact test using the scipy package (version 1.10.1)
n Python. The statistical significance was established using
enjamini–Hochberg adjusted P -values to account for multi-
le hypothesis tests ( 39 ). 
To identify the key TFs, we developed a ranking procedure

hat generates a list of TFs, ordered based on their relevance
o each TRM. First, for every glycogene within a cluster, we
orted the TFs according to their MI score with the glycogene.
hen, we calculated an average ranking for each TF across
ll glycogenes within the cluster. This process was replicated
or each glycogene cluster. The results of this analysis are pre-
ented in Supplementary Table S6 . 

esults 

lycogene expression in single cells 

s glycogenes are traditionally thought to be lowly expressed
 26 ), this study assessed the ability of single-cell data to in-
orm us about genes and pathways involved in glycosylation
y analyzing scRNA-seq data from the TS project. We ap-
lied the bioinformatics analysis workflow depicted in Figure
 A to the TS dataset, focusing on glycogenes and glycopath-
ays presented in GlycoEnzOnto ( 5 ). We compared the ex-
ression profiles of 400 glycogenes to 19 447 PC genes in the
S dataset ( Supplementary Table S1 ). As expected, the num-
er of detectable glycogenes in the TS cells increased with the
ell’s UMI count (Figure 1 B). Specifically, at the median (mean)
MI count depth of 6496 (10 181), we detected between 2
nd 98 glycogenes (2 to 118 genes) with RNA count > 0
nd a median value of 40 glycogenes / cell (mean value of 58
lycogenes / cell). Thus, only 10% of all glycogenes are de-
ected in the median cell in the TS dataset (14.5% of glyco-
enes for the mean cell). The low level of detection of glyco-
enes (i.e ., 10–14.5%) might stem from the overall low ex-
ression of glycogenes. In this regard, increasing UMI count
epth did enhance glycogene detectability. However, the max-
mum number of captured glycogenes reached a plateau at
220, suggesting that, at most, only 50–60% of all glycogenes

re expressed in individual cells. Lastly, only a marginal im-
rovement in the number of detected glycogenes was observed
eyond ∼65 000 UMI counts per cell, at which point about
65 glycogenes (median) were detected (Figure 1 B). 
We observed a strong correlation between the number of

lycogenes and the number for other PC genes detected in
ells (Figure 1 C). Comparing the distribution of expression
etween glycogenes and other PC genes, using the fraction
f expressing cells as an indicator of gene expression level,
evealed a significant difference between the two groups ( P-
alue = 1.19 × 10 

−7 , Kolmogorov–Smirnov test) (see ‘Ma-
erials and methods’ section and Figure 1 D). Interestingly, in
he TS cells, glycogenes were more commonly expressed than
ther PC genes ( P -value = 5.33 × 10 

−5 , two-sided Wilcoxon
ank sum test). This trend is consistent across different tis-
ues (see Supplementary Figure S1 ). But, despite this preva-
lence, glycogenes were not among the highly expressed genes
in the TS dataset (Figure 1 D inset)—in fact, glycogenes were
depleted among the top 10% of highest expressing PC genes
(odds ratio = 0.655, P -value = 0.03, two-sided Fisher’s ex-
act test). Overall, the data suggested that while the glycogenes
may not be among the most highly expressed genes, they are
ubiquitously expressed commonly at levels comparable to or
higher than the average PC gene. 

Variability in glycogene expression patterns across 

cell types and tissues 

We delved deeper into the variability of glycogene expression
among functional sub-groups using the GlycoEnzOnto as a
guide. To do this, we evaluated the fraction of cells express-
ing glycogenes across different sub-groups ( Supplementary 
Tables S2 and S3 ). Figure 1 E reveals that glycogenes be-
longing to the ‘Transporters and Regulators’ sub-groups—
that is, genes involved in the creation of nucleotide-sugars,
monosaccharide transport and related metabolism—generally
exhibited higher expression than other glycogene sub-groups.
Glycogenes responsible for glycan modifications and those
producing glycosidases displayed comparable expression lev-
els with both gene groups presenting moderate expression.
Finally, the glycotransferases and other transferases demon-
strated the lowest expression levels. Delving further into
glycogenes associated with the biosynthesis of core structures
(core), glycan chain elongation (extension) and capping of
glycan structures (terminal), the core and extension groups
showed similar levels of expression that were higher than the
expression of glycogenes in the terminal group (Figure 1 F).
These patterns align with the role of the core enzymes in initi-
ating the formation of specific glycan types, except perhaps for
the case of O-GalNAc type carbohydrate chain formation that
can be catalyzed by various isoenzymes. Thus, these core genes
are more broadly expressed in various cells compared to ter-
minal modifiers that are expressed in a tissue specific manner
( 20 ). Although our analysis employed the fraction of express-
ing cells as the metric for gene expression level—following
the recommendation for lowly expressed genes ( 40 )—we ob-
served similar trends using the mean expression of genes
across cells (see Supplementary Figure S2 ). 

Next, we investigated how glycogene expression pattern
in individual cells varies across different cell types and tis-
sue types using scVI for latent embedding and UMAP (Unified
Manifold Approximation and Projection) for 2D visualization
(Figure 1 G and H; Supplementary Figure S3 ). Examining ep-
ithelial cells (Figure 1 G), clusters (grouping) of cells emerged
in the UMAP plot following their tissue sources. Interestingly,
even for cells from the same tissue, for example liver, pan-
creas and salivary gland, distinct cell groupings appeared. We
made similar observations for endothelial, stromal and im-
mune cells in the TS dataset (see Supplementary Figure S3 A
and B). Shifting focus to cells in the blood tissue (Figure
1 H and Supplementary Figure S3 D), these cells formed clus-
ters according to their lineage along the hematopoietic stem
cell (HSC) differentiation pathway . Specifically , cells from
the lymphoid path, including B cells, T cells, Natural Killer
(NK) T cells and plasma cells appeared in overlapping clus-
ters, while cells from the granulocyte—macrophage lineage
(macrophages, monocytes and neutrophils) formed separate
groups. The overt grouping of cells, influenced by their tissue
of origin and lineage, suggests that mammalian tissues and

https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae169#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae169#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae169#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae169#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae169#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae169#supplementary-data
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cell types possess unique single-cell glycogene expression pat-
terns, potentially indicating their varied glycan structures. In
subsequent analyses, as 2D UMAP plots may distort cell-cell
similarities in single-cell gene expression ( 41 ,42 ), we verified
our observations on glycogene expression directly, without re-
lying on UMAP latent embeddings. 

Glycopathway expressions vary with tissue and cell
type of origin 

A rich diversity of glycan structures arise from sets of reac-
tions operating together as ‘glycopathways’. To gauge the ex-
pression of these glycopathways in TS cells, we calculated the
expression of glycopathways in the TS cells by taking the av-
erage expression of the genes from each glycopathway as de-
lineated in the GlycoEnzOnto (see Supplementary Table S3 ).
To further discern the patterns of glycopathway expressions,
DE analysis was performed (Figure 2 ). As illustrated in Figure
2 A, the DE analysis combined two information: zero-inflated
mean expression of glycopathways for cells in each tissue type
and log2-fold change (logFC) of the glycopathway mean ex-
pression value in a given tissue against cells in all other tis-
sues. The intensity of green color in the DE heatmap plot in-
forms the glycopathway expression while the border thickness
indicates the logFC. A higher (lower) glycopathway expres-
sion suggests a higher (lower) capacity of the related glycan
processing ( 20 ). In the example of enzymes involved in ex-
tension of the glycosphingolipid (GSL) core and its diversifi-
cation into ganglio-, lacto-, neolacto- and globo-series (GSL
diversify, Figure 2 A), we found a higher expression of rele-
vant genes in eyes, trachea and bladder compared to other
tissues. 

Figure 2 B visualizes the mean and DE of various glyco-
pathways across epithelial cells found in multiple tissue-types.
Here, glycopathways are grouped into three major functional
categories: core, extension and terminal pathways ( 5 ). The
results for three additional glycopathway groups: core sub-
class, NS metabolism and degradation processes are provided
in Supplementary Figure S4 A. The same analyses are also per-
formed for endothelial, stromal and immune cell types, and
the results are presented in Supplementary Figure S5 A and
S7 A. Supplementary Table S4 provides the average expres-
sions of the glycopathways for the cell types in the TS dataset.
The color scale bar for mean expression used in Figure 2 and
the aforementioned Supplementary figures is the same, allow-
ing direct comparison between the cell / tissue types. Addition-
ally, the observations are independent of cell sample size since
the mean expression of glycogenes in a system did not depend
on either the number of cells in the tissues ( ρ = −0 . 22 , P -
value = 0.30) or the number of cells of a given population
( ρ = −0 . 15 , P -value = 0.81). 

The data present several striking observations. Comparing
the average expressions across cell types, endothelial and stro-
mal cells consistently manifested higher levels of glycopath-
way expression in comparison to epithelial and immune cells
(see Supplementary Table S4 ). Surveying the groups of glyco-
pathways, the core, NS metabolism and degradation groups
had the highest mean glycogene expressions. These observa-
tions are in agreement with the expression analysis of glyco-
genes from these pathways in Figure 1 E and F. The trend also
underscores the broad functions that these groups of glyco-
pathways have in terms of controlling global glycan turnover
rates and pathway initiation steps. In general, the most highly
expressed core gene set across all cell / tissue type belonged to 

the O-GlcNAc forming enzymes OGT and OGA. This high- 
lights the importance of O-GlcNAc post-translational modifi- 
cation in regulating a broad swath of cellular signaling, tran- 
scription and disease processes ( 43 ). Besides these enzymes,
we also observed consistent high expressions of several other 
core-pathways in diverse cell types, particularly those initiat- 
ing GSL biosynthesis (i.e ., ‘GlcCer-series’) and those initiating 
the synthesis of N-linked glycans (i.e., ‘dolichol pathways’). In 

addition to the core dolichol pathway, high gene expression 

was also observed for N-glycosylation processing enzymes 
that trim the initial dolichol precursor to enable protein fold- 
ing and the biosynthesis of complex type structures. Finally,
the prevalence of core-3 and core-4 O-GalNAc biosynthetic 
genes were largely restricted to the intestines, and this too is 
consistent with literature knowledge ( 44 ,45 ). 

GAGs were expressed in stromal cells, particularly with 

respect to hyaluronan forming enzymes (HAS1, HAS2 and 

HAS3), which were consistently high in fibroblasts and 

connective tissue in multiple organs. Among the rarer O- 
linked glycan modifications, enzyme contributing to O- 
mannosylation of cadherin superfamily ( 46 ), particularly 
TMTC1 was highly expressed in vascular endothelial cells 
( Supplementary Figure S5 A). Not much is known about 
these pathways, but the measured high gene expression war- 
rants additional investigation regarding its biological func- 
tion. Among the enzymes involved in nucleotide biosynthe- 
sis, we noted high levels of UGDH (UDPGlcA_synth) and 

UXS1 (UDPXyl_synth), which are involved in the biosynthe- 
sis of starting materials that contribute to GAG biosynthesis 
( Supplementary Figure S5 B). Enzymes in the biosynthesis of 
other nucleotide-sugar donors were also present in all cells, al- 
beit at lower levels. Finally, several enzymes involved in lyso- 
somal targeting and trafficking (lyso_target) of glycosidases 
were also highly expressed ( Supplementary Table S4 ). 

Among the enzymes mediating glycan extension, high ex- 
pressions were noted in pathways involved in the biosynthesis 
of Type-II lactosamine (Gal β1–4GlcNAc β) and Type-III lac- 
tosamine (Gal β1–3GalNAc β) chains across all cell and tissue- 
types, compared to Type-I lactosamine (Gal β1–3GlcNAc β) 
chains. This is generally consistent with current biological 
knowledge related to the high abundance of Type-II lac- 
tosamine chains on N- / O-linked glycans and GSLs. Interest- 
ingly, the abundance of I-branching enzymes GCNT2 and 3 

were restricted to specific tissue types supporting the emerging 
notion that such GlcNAc β1–6 branching may have important 
biological functions for example in regulating cell growth and 

survival ( 47 ). Additional extension glycopathways that were 
highly expressed were involved in the N-glycosylation pro- 
cessing enzymes that are expressed in the endoplasmic retic- 
ulum (Ngly_trim) and the keratan sulfate extension enzymes 
(KS_poly). The epithelial cells of the liver, which is a major 
source of heparan sulfate biosynthesis, also had expression of 
HS extension genes at high levels. 

The expression levels of chain terminating enzymes were 
often low and heterogenous, across cell types. The only ex- 
ception to this were the enzymes involved in protein tyrosine 
sulfonation (TyrP-synth), which were uniformly expressed at 
higher levels than other terminal glycopathways in all cells and 

tissues. This is consistent with the ubiquitous nature of this 
modification. Genes related to ABO antigen had the highest 
expression in epithelial cells (see Supplementary Table S4 ) as 
these cells are a major source of blood group antigens. Finally,

https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae169#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae169#supplementary-data
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https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae169#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae169#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae169#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae169#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae169#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae169#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae169#supplementary-data
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Figure 3. ED analysis of glycopathway in epithelial cells. ( A ) GSLs 
div ersify pathw a y is used to illustrate calculation scheme. ED analy sis 
w as perf ormed b y constructing the contingency table. The size of the dot 
represents the P -value of the Fisher’s exact test for significance, while 
the face color gives the sign of the log-odds ratio (logOR, blue: negative 
logFC and red: positive logFC). A negative logOR represents a depletion, 
while a positive logOR represents an enrichment of glycopathway in a 
tissue with respect to all other tissue with the same pathw a y. ( B ) ED of 
gly copathw a y s in core, extension and terminal groups for epithelial cells. 
The last column presents the fraction of expressing cells for each 
gly copathw a y among all epithelial cells using gra y scale heatmap. This 
allo ws e v aluation of ho w pre v alent a giv en pathw a y is in epithelial cells 
compared to other pathw a y s. 

 

 

 

 

 

 

 

 

mong the lowly expressed glycopathways, SDA antigen (Sda)
iosynthetic enzymes were restricted to epithelial and immune
ells while the enzymes forming sialyl Lewis-X epitope were
ominant in T cells, monocytes and neutrophil populations
ased on expression of the enzyme FUT7. 
The logFCs for glycopathway expression are generally
oderate, ranging from –0.81 to 1.37 (see 10.5281/zenodo.
4177056 for result of DE analysis), suggesting the prevalence
f similar pathways in different cell types. Among the path-
ays, core and extension groups display greater logFC mag-
itudes than those in the terminal group suggesting heightened
issue-to-tissue variability. Similar to the terminal group, the
ore subclass, together with the NS and degradation groups,
xhibits only modest logFCs across different tissues. Upon ex-
mining individual tissues, cells in the eye, heart and lung typ-
cally demonstrated higher overall glycopathway expressions
hen compared to other cells. In contrast, cells in the kidney
nd liver display relatively lower overall expressions. Inter-
stingly, cells originating from tissues that are related to each
ther, such as large and small intestines, present similar ex-
ression patterns as shown by hierarchical clustering in Figure
 and Supplementary Figure S4 . Overall, several observations
rom comparing glycopathway expressions across tissues and
ell types are consistent with literature and our analyses also
uggest additional hypotheses that require experimental vali-
ation. To facilitate such comprehensive exploration of glyco-
athways, we have developed a web tool called glycoC AR TA
hat is accessible from virtualglycome.org. 

While DE analysis focuses on differences in mean gene ex-
ression, we complemented this with enrichment-depletion
ED) analysis. This analysis determines if a specific tissue is
isproportionately enriched or depleted of cells that are ex-
ressing a given glycopathway—termed as ‘expressing cells’—
hen compared to the overall proportion of expressing cells in

he entire TS dataset. Given that a number of glycopathways
emonstrated low single-cell expressions, the fraction of ex-
ressing cells has previously been proposed as a better metric
or gauging expression within a cell population ( 40 ). To this
nd, for every combination of glycopathway and tissue, we
onstructed a contingency table showing the count distribu-
ion of expressing / non-expressing cells for the glycopathway
nd of cells from / outside of the tissue (see Figure 3 A and ‘Ma-
erials and methods’ section). Utilizing this table, we evaluated
he log2 odds ratio (logOR). A logOR > or < 0 suggests that
he particular tissue contains more or fewer expressing cells
han expected based on the overall proportion of expressing
ells in the TS dataset. In effect, a positive (negative) logOR,
hown as a red (blue) colored dot in Figure 3 , indicates en-
ichment (depletion) of cells expressing the designated glyco-
athway in that tissue. In the example shown in Figure 3 A,
here was enrichment of expressing cells for the GSL diversify
athway in the bladder, trachea and eye, i.e., these tissues have
igher fractions of cells expressing the genes in this pathway
han expected based on cells in the TS dataset. This observa-
ion is in good agreement with the DE analysis in Figure 2 A,
here the same three tissues (bladder, trachea and eye) have

he highest mean expressions. Overall, the results of ED anal-
sis as shown in Figure 3 B resonate well with the DE analysis
ndings. Indeed, the logORs have a strong positive correlation
ith the logFC (Pearson’s correlation, ρ = 0.61). With the ex-

eption of the GalCer pathway in the kidney, pathways with
ositive (negative) logORs generally had positive (negative)

og2FCs. 
In summary, the results of both DE and ED analysis
highlight a moderate variability in glycopathway expressions
across tissues, especially in the core and extension groups.
Conversely, the terminal, core subclass, nucleotide sugar and
degradation manifest higher variation in single-cell expres-
sion across different tissues. Additional wet-lab studies are
warranted to determine how the variation in gene expres-
sion across tissue relate to tissue-specific glycan structure
patterns. 

https://doi.org/10.5281/zenodo.14177056
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae169#supplementary-data
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Figure 4. Glycosylation transcription factor analysis. ( A ) Hierarchical clustering of glycogenes based on the log1p of MI scores of TF–glycogene (i.e . , 
(log(1 + MI)). The numbers indicate cluster labels. ( B ) Enrichment analysis of glycogenes in each cluster for glycopathway classes. Blue bars indicate 
those with Benjamini–Hochberg adjusted P -value < 0.1 (two-sided Fisher’s exact test). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Transcriptional factors regulating glycosylation 

extracted from single-cell RNA-seq 

Literature reported experimentally validated TFs regulating
glycogenes are few ( 5 ). To address this gap, we leveraged sin-
gle cell transcriptomics data in the TS and the TF–gene bind-
ing interaction data in TFLink database ( 37 ). Our strategy in-
volved evaluating MI of single-cell gene expression between
every possible pair of TF and glycogene. Here, MI gives a
measure of how much the uncertainty in the expression of
a glycogene is reduced given the corresponding expression
data for a TF. Applying this strategy, the MI yielded an ac-
curate prediction for TF–glycogene interactions, achieving an
AUPRC of 0.447, when compared to TF-binding interactions
sourced from the TFLinks ( 37 ). This accuracy outperformed
both the pairwise Pearson’s correlation (AUPRC = 0.367) and
the Spearman’s rank correlation (AUPRC = 0.396). All of the
above interaction scores, MI, Pearson’s correlation and Spear-
man’s rank correlation, surpass the performance of a random
predictor (AUPRC = 0.318, P < 10 

−5 ). This outcome suggests
that single-cell gene expression data may be used to infer TF–
glycogene interactions. 

Our single-cell TF–glycogene evaluation facilitates the iden-
tification of RMs of glycosylation. In this context, a RM refers
to a set of glycogenes whose transcription is controlled by a
shared regulatory program ( 48 ). To this end, we performed a
hierarchical clustering of glycogenes using their log1p of MI
scores with 1184 TFs (i.e., log(1 + MI)). The clustering reveals
five RMs, as depicted in Figure 4 A (see Supplementary Table 
S5 for glycogene membership in clusters). Subsequent analysis
using Fisher’s exact test linked each cluster with specific gly-
copathway classes (two-sided Fisher’s exact test, Benjamini–
Hochberg adjusted P -value < 0.1; see ‘Materials and meth- 
ods’ section). The odds ratios presented in Figure 4 B (see also 

Supplementary Figure S8 ) indicate that different RMs are as- 
sociated with distinct classes of glycopathways, implying a 
shared transcriptional regulatory program among glycogenes 
from the same pathway class. We also curated a ranked list 
of TFs for each RM (see Supplementary Table S6 ), providing 
insights into potential regulatory factors. To explore the TF–
glycogene analysis more fully, we developed a web-tool called 

glycoTF that is available at virtualglycome.org. 
The first RM (Cluster 1) is strongly associated with the syn- 

thesis of Core glycan structures. The glycogenes in this cluster 
encode enzymes involved in the formation of the oligosaccha- 
ryltransferase (OST) complex (i.e., dolichol pathway): DAD1,
DDOST, RPN1, RPN2 and STT3B; enzymes involved in initial 
processing of N-glycans: PRKCSH and GANAB; glycopro- 
tein folding chaperones: C ANX, C ALR, ERLEC1, HSP90B1,
HSPA5, IGF2R, LMAN2, OS9 and SE1L; O-GlcNAc biosyn- 
thesis enzymes: OGT and OGA; and other high abundance 
genes: B4GALT1, GPI, M6PR and MGAT1. The second RM 

(Cluster 2) is connected to a multitude of processes involves in 

the core subclass (see also Supplementary Figure S8). Specif- 
ically, glycogenes in Cluster 2 are involved in a number of 
glycopathways responsible for the biosynthesis of GAG and 

lipid-linked oligosaccharides, and the O-linked glycan post- 
translation modification such as POFUT and POMT genes. A 

number of transporter genes also belong to Cluster 2. 
The third RM (Cluster 3) is significantly enriched for glyco- 

genes involved in the terminal class. More specifically, cluster 
3 includes UDP-Glucuronosyltransferase family genes that are 
involved in the glucuronidation that enable drug metabolism 

https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae169#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae169#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae169#supplementary-data
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nd also metabolism of pollutants, bilirubin, androgens, es-
rogens, mineralocorticoids, glucocorticoids, fatty acid deriva-
ives, retinoids and bile acids. This cluster also comprises a
umber of sulfotransferases that modify both GAGs and gly-
oproteins; a majority of genes (8 out of 11) that participate in
he terminal protein fucosylation; and several members of the
ialyltransferase family (10 out of 20). Importantly, the Termi-
al class is under-represented in all clusters besides Cluster 3
OR < 1), suggesting that these processes are under a distinct
ranscriptional regulatory program than the others. 

The fourth RM (Cluster 4) is intermixed with glycogenes
rom the NS metabolism, core subclass and extension groups,
ut none of these classes crossed the statistical significance
utoff (Benjamini–Hochberg adjusted P -value < 0.1). Impor-
ant genes involved in the synthesis of nucleotide sugars, such
s GALT, GALK2, GALE, PGM1-3 and GMPPA / B, belong
o this RM. Another prominent feature of Cluster 4 is the
resence of genes involved in the initiation of heparan sul-
ate and chondroitin sulfate biosynthesis including B4GALT7,
AM20B, B3GALT6, CHPF, CHPF2, EXT1 and EXT2. This
luster also includes genes involved in GPI anchor biosynthe-
is (PIGC, PIGG, PIGH, PIGK, PIGN, PIGS and PIGX) and in
he modification of N-glycosylation, specifically in terminal
ialylation and core-fucosylation (ST6Gal1 and FUT8). The
eason why a single cluster of TFs would regulate a diverse
roup of pathways remains to be studied in literature. 

The last RM (Cluster 5) is strongly linked to NS metabolism
nd degradation classes. Genes involved in NS biosynthe-
is in this cluster comprise CMAS, DPM1, DPM2, GALK1,
FPT1, GFUS, GNPDA1, PAPSS, UAP1 and UGDH. The

luster also includes a set of genes involved in the degrada-
ion processes, such as CTBS, CEMIP2, GLB1, GNS, GUSB,
EXA, HEXB, HGSNAT, IDS, NEU1 and FUCA2. Except

or collagen degradation, all glycopathways in the degrada-
ion class are over-represented in this RM (OR > 1, see
upplementary Figure S8 ). 

iscussion 

 key contribution from this study is the description of
he broad landscape of glycoEnzymes and glycopathways
n normal human cell and tissue types. The findings are in
road agreement with the recent work by Joshi et al. ( 20 )
hat showed that core enzymes are more ubiquitously ex-
ressed among cells than enzymes that modify terminal glycan
esidues which cater to more specialized functions. However,
t is important to note differences in the study design as the
lycogene set used in this work is considerably larger (224
n Joshi et al. versus 400 in this work), owing to the inclu-
ion of glycosidases, transporters and other regulators of car-
ohydrate biosynthesis. In addition, the focus on glycopath-
ays and well-defined ontologies represents a step away from

he previous approach. Importantly, we also analyze single-
ell gene expression data directly without pseudobulking. The
se of DE and ED analysis, as opposed to using inter-quartile
istances to judge the importance of specific glycogenes, is an-
ther difference. Finally, our study presents the first detailed
nalysis of TF–glycogene relations using single-cell gene ex-
ression data. This reveals the possibility that distinct TF RMs
ontrol various aspects of mammalian glycosylation. 

Another contribution of our work is the online webtools
or glycosciences, namely glycoC AR TA for exploring glyco-
gene and glycopathway expressions at single cell level and
glycoTF for candidate transcriptional factors of glycosylation.
Presently available online tools for single-cell gene expression
data such as the CellXGene Discover ( 49 ) allow broad ex-
ploratory investigation of human transcriptome. Meanwhile,
glycoC AR TA enables a more targeted and in-depth exami-
nation of glycogenes and glycopathways in human, includ-
ing comparisons of their expressions in different cell types
and tissues. Further, in comparison with glycosylation-focused
webtool Glycopacity by Joshi et al. that includes mainly gly-
cosyltransferases ( 20 ), glycoC AR TA covers a larger set of gly-
coEnzymes, as described above. We are not aware of any on-
line resources for TFs of glycosylation. 

While our study presents a broad analysis of human gly-
cosylation pathways, it is not without limitations. At the se-
quencing depth employed in the TS, out of the anticipated
∼220 glycogenes expressed human cells, less than one fifth
are detected in a typical cell in this dataset. While this low
detection is comparable with other PC genes, such high data
sparsity impedes data analysis such as single-cell clustering.
The underlying TS data also do not include key organs like
the brain which have distinct glycosylation profiles compared
to other organs. Further data analysis is thus required to in-
tegrate the findings of this work with brain initiatives and re-
lated activities ( 50 ). In addition, while our analysis reveals the
nuances of gene expression patterns related to glycosylation,
additional wet-lab studies are needed to explore the causal
mechanisms and also to extrapolate these findings to glycan
structures on the individual cell types and related functional
outcomes. Such an endeavor requires the development of
novel technologies to measure glycoenzyme activity in greater
depth at single cell level and parallel development of gly-
comics analysis. Despite limited coverage, recent advances in
simultaneous single-cell sequencing of RNA and lectin bind-
ing (e.g. scGR-seq ( 23 ,51 ) and Sugar-Seq ( 21 )) and the in-
tegrated analysis of the resulting data ( 22 ,52 ), have shown
promise in employing single-cell analysis to elucidate the regu-
lation of glycosylation (transcription, translation and biosyn-
thetic reactions) and their impact on cell function. Thus,
at this time, the observed variations in gene expression de-
scribed in this manuscript only describe a portion of the fac-
tors affecting cellular variations in the glycome. Direct vali-
dation, such as through glycomics analysis at single-cell level
and CRISPR (short for Clustered Regularly Interspaced Short
Palindromic Repeats) technology based molecular screens are
paramount in solidifying our inferences and bridging the gap
between gene expression and functional glycan structures on
proteins. 

Data availability 

The data underlying this article are available in Figshare
at https:// doi.org/ 10.6084/ m9.figshare.14267219 . The source
codes are available in 10.5281 / zenodo.14177056. Interac-
tive webtools glycoC AR TA and glycoTF are available at http:
//www.virtualglycome.org . 
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