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Abstract: Despite the outstanding chemical, thermal and transport properties of amorphous and
glassy perfluorinated polymers, only few works exist on the preparation and transport properties
of perfluoropolymer/molecular sieves mixed-matrix membranes (MMMs), probably because of
their poor compatibility. In this review, the compatibilization of ceramic molecular sieves with
perfluorinated matrices is considered first, examining the effect of the surface treatment on the gas
transport properties of the filler. Then the preparation of the defect-free hybrid membranes and their
gas separation capabilities are described. Finally, recent modelling of the gas transport properties of
the perfluoropolymer MMMs is reviewed. The systematic use of molecular sieves of different size and
shape, either permeable or impermeable, and the calculation of the bulk transport properties of the
molecular sieves—i.e., the unrestricted diffusion and permeability—allow to understand the nature
of the physical phenomena at work in the MMMs, that is the larger the perfluoropolymer fractional
free volume at the interface, and restricted diffusion at the molecular sieves. This knowledge led to
the formulation of a new four-phase approach for the modelling of gas transport. The four-phase
approach was implemented in the frame of the Maxwell model and also for the finite element
simulation. The four-phase approach is a convenient representation of the transport in MMMs when
more than one single interfacial effect is present.

Keywords: glassy amorphous perfluoropolymers; mixed matrix membranes; zeolitic molecular
sieves; gas separation; interfacial compatibilization; fractional free volume; restricted diffusion;
barriers to mass transport; four phases Maxwell model; finite element modelling of transport

1. Introduction

Fluoropolymers display better chemical and solvent resistance with respect to similar hydrocarbon
polymers, therefore they are widely used to prepare membranes for battery separators, microfiltration
and ultrafiltration, membrane contactors and chemical reactors [1–5]. The best thermal, chemical and
solvent resistances are obtained in perfluorinated polymers (PFPs), where the strength of C–C and C–F
bonds and the shielding of the carbon skeleton by fluorine atoms prevent chemical attacks [6–8].

Perfluoropolyacids (e.g., Nafion®) are semi-crystalline and hydrophilic PFPs. They are used
as proton exchange membranes in fuel cells and for electrolysis, such as in the chlor-alkali process.
Perfluoropolyacid-based mixed-matrix membranes (MMMs), i.e., mixtures of a filler in a polymeric
matrix [9], were reviewed elsewhere [7]. In this work, instead, the few pioneering examples of MMMs
made of molecular sieves embedded in amorphous and glassy PFP matrices will be considered.

Poly(tetrafluoroethylene) [10] is insoluble because of its semi-crystalline nature, but the presence
of bulky or atactic substituents on the carbon chain affords amorphous, glassy and hydrophobic
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polymers which can be dissolved in fluorinated solvents, lending themselves to the preparation of
membranes via solvent evaporation. Hydrophobic PFPs are apolar thanks to the symmetry around the
carbon atoms, and the strong attraction of F atoms towards all electrons in the molecule minimizes
the interactions with light and the polarizability of the material. As a consequence, hydrophobic and
amorphous PFPs display very low refractive indexes [11], the only intermolecular interactions are
very weak dispersion forces, and their cohesive energy density and solubility parameters are smaller
than those of the corresponding hydrocarbon polymers [12,13]. These features correspond to peculiar
macroscopic properties of amorphous and hydrophobic PFPs, i.e., no solubility in common solvents,
low specific surface energy, hydrophobic and organophobic behavior, poor adhesion of almost any
substance, including glues and adhesives. The main difficulty to overcome to prepare hydrophobic
PFP-based MMMs is the homogeneous mixing of finely dispersed nano-fillers in the polymer, and a
good adhesion at the interface.

The first commercial soluble and glassy PFPs appeared about 30 years ago (Figure 1):
co-polymers of perfluoro-1,3-dioxoles (Teflon® AF, grades 1600 and 2400, from DuPont; Hyflon®

AD, grades 40, 60 and 80, from Ausimont—now Solvay Advanced Polymers) [14], and
poly(perfluoro-4-vinyloxy-1-butene), also known with the commercial name Cytop® (Asahi Glass) [11].
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Figure 1. Repeat units of amorphous perfluorinated polymers: (a) Teflon® AF, grade 2400: x = 87,
grade 1600: x = 65; (b) Hyflon® AD, grade 80X: x = 85, grade 60X: x = 60; (c) Cytop®. x and y represent
the molar composition and do not imply a sequence length.

Theoretical studies indicate very high potential energy barriers for the rotation around the bonds
linking two dioxolane rings in Teflon AF (Figure 1a) and Hyflon AD (Figure 1b). The polymer chains
have limited or no rotational freedom, and the stiffness of the backbone increases with the bulkiness
(Teflon AF > Hyflon AD, see Figure 1) and the percent of dioxole monomer [15]. In turn, stiffness of
the backbone and amount of bulky groups correlate with the glass transition temperature (Tg), the gas
permeability, and the fractional free volume (FFV), i.e., the fraction of the volume which is not occupied
by the electronic clouds of the polymer: Teflon AF2400 (Tg = 240 ◦C) > Teflon AF1600 (Tg = 160 ◦C) >
Hyflon AD 80 X (Tg = 135 ◦C) > Hyflon AD 60X (Tg = 110 ◦C) > Cytop (Tg = 108 ◦C) [6,16,17]. Teflon®

AF 2400, the most permeable polymer of this group, has a free volume of more than 30% [6,18,19],
and it is one of the most permeable polymers known today [9].

Gas transport through dense membranes is governed by Equation (1) [20,21]:

Ji = Pi(pil − pi0)/l (1)

where Ji is the volume (molar) flux of component i (e.g., in units cm3(STP)/(cm2·s)), l the membrane
thickness, pi0 the partial pressure of component i on the feed side, pil the partial pressure of component
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i on the permeate side, and the permeability Pi represents the ability of molecules i to permeate through
the membrane material.

The mass transport through dense, non-porous membranes obeys a solution–diffusion
mechanism [20,21]. In its simplest form, the permeability Pi of the substance i is a function of its
solubility in the membrane (Si, a thermodynamic quantity) and of its diffusivity in the membrane
(Di, a kinetic quantity), as defined in Equation (2):

Pi = Si·Di (2)

Selectivity measures a membrane’s ability to separate the components of a mixture. Ideal
selectivity (αij) is the ratio of permeabilities of pure gases i and j, and is defined by Equation (3):

αij = Pi/Pj (3)

The combination of Equation (2) and Equation (3) yields Equation (4):

αij = (Si/Sj)·(Di/Dj) = αS·αD (4)

which highlights the fact that the overall permeability selectivity αij is the product of the solubility
selectivity αS and of the diffusion selectivity αD.

The size of a certain molecule (Table 1) governs its mobility in a polymer: the larger the size,
the smaller D. Instead, the higher its condensability (e.g., as measured by boiling point or critical
temperature) the larger its solubility in the polymer. In rubbers, the solubility selectivity dominates over
diffusion, because the liquid-like motions of the polymer chains determine a high penetrant mobility
and have a leveling effect on the different sizes of the penetrants. The frozen macromolecular motions
of glassy polymers instead limit diffusion, and the mobility selectivity dominates over solubility.
Therefore, glassy polymers are usually size selective and poorly permeable. However, when the glassy
polymer backbone is extremely stiff, and an effective polymer packing cannot be reached, very high
FFVs and large permeabilities are observed, such as in certain polyacetylenes [22,23], in the polymers
of intrinsic micro-porosity (PIMs) [24], and in glassy amorphous PFPs, as described above.

Table 1. Kinetic diameter (dk) [25] and critical temperature (Tc) [26] of six gases.

Gas He H2 CO2 O2 N2 CH4

dk/Å 2.6 2.89 3.3 3.46 3.64 3.80
Tc/K 5.2 33.18 304.20 154.58 126.19 190.6

Glassy amorphous and hydrophobic PFP membranes perform best in those gas separations
(He/H2, H2/hydrocarbons, He/N2, He/CO2, He/CH4, N2/CH4) where the diffusion selectivity
in favour of the smaller molecule is offset, in part, by the solubility selectivity in favour of the
tardier, more condensable species [9]. In such cases the modest affinity of the penetrants to PFPs
further reduces the unfavorable contribution of solubility to the overall selectivity, when compared
to hydrocarbon-based polymers [6]. Another interesting province of PFPs is natural gas sweetening,
where CO2 is at the same time smaller and more soluble than CH4. The outstanding resistance to
solvents (aliphatic and aromatic hydrocarbons, water, amines) and to plasticization of Hyflon AD60X
is used in commercial high flux membranes for the upgrading of natural gas containing large fractions
of CO2, that would spoil the separation properties of cellulose acetate or polyimide membranes [5].

In the last few years, other amorphous and glassy PFPs have been synthesized and studied for
gas separation: atactic poly(hexafluoropropene) [27], new perfluoro-1,3-dioxoles [28], homo- and
co-polymers of perfluoro(2-methylene-1,3-dioxolane)s (Figure 2) [29–31]. The latter class of PFPs looks
extremely interesting for the preparation of gas separation membranes, with impressive separation
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factors, beyond the 2008 Robeson upper bound for the H2/CH4, He/CH4, CO2/CH4, and N2/CH4

separations [30,31].Membranes 2019, 9, x FOR PEER REVIEW  4 of 26 
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Figure 2. Repeat units of homo- and co-polymers of perfluoro(2-methylene-1,3-dioxolane)s. R1–R4 = F, CF3.

In gas separation, the outstanding properties of perfluoropolymers are potentially useful to
overcome the limited resistance of hydrocarbon-based polymers, as in the purification of natural
gas [32], but unfortunately their intrinsic permselectivity often represents a limit for the potential
applications of gas separation membranes [9]. The trade-off between gas permeability and selectivity
of polymers can be overcome by using MMMs, i.e., membranes in which small particles of a filler are
dispersed in a continuous polymeric phase. Mixed-matrix membranes combine the advantages of
both components, since they couple the ease of production and the good mechanical properties of
polymeric membranes with the outstanding transport properties of suitable fillers [33].

Fumed silica, titania, and magnesium oxide are among the non-porous fillers used to prepare
MMMs. Porous fillers offer an additional degree of freedom for the improvement of the separation
capabilities of the polymeric matrices. The porous fillers used for MMMs have been recently
reviewed [34]: zeolites, metal-organic frameworks (MOFs), carbon nanotubes, activated carbon,
microporous organic polymers, mesoporous oxides, porous bi-dimensional graphene, and graphene
oxides, and more. Molecular sieves are crystalline materials with uniform, well-defined micropores
(<2 nm), which are able to sort molecules according to their size; they include zeolites, made of
SiO4 and AlO4 tetrahedra, zeotypes containing TO4 tetrahedra other than SiO4 and AlO4 (e.g., PO4,
GeO4, TiO4), and analogous non-zeolitic materials containing elements with different coordination
number, such as TiO6 octahedra in ETS-4 and ETS-10 [34]. In the following, the preparation and the
transport properties of MMMs made of molecular sieves dispersed in glassy and hydrophobic PFP is
reviewed. First, the strategy for the compatibilization of molecular sieves with the perfluoropolymers
is considered. Then the preparation and the separation properties of several MMMs are described.
Finally, the macroscopic modelling of the gas transport properties of PFP MMMs is analysed, together
with the microscopic features of the membranes. The new four phase approach developed to account
for the physical phenomena observed in the PFP MMMs can be used for other MMMs with complex
interfacial effects.

2. Surface Modification of Molecular Sieves and Surface Permeability

A good adhesion of the glassy PFP to the surface of the molecular sieve is a key factor to avoid
the formation of defective gaps at the interface, which would spoil the separation performances
of the MMMs, acting as non-selective by-passes for the transport of gases [35]. Unlike rubbers,
the achievement of a good adhesion is complicated by the mismatch between the vitrified glassy
polymer, which keeps shrinking during the removal of the residual solvent, and the rigid zeolitic
molecular sieve. It has to be considered that hydrophilic hydroxyls covering the outer surface of the
molecular sieves [36] strongly repel hydrophobic PFPs and perfluorinated solvents.

The several strategies used to disperse molecular sieves in glassy, hydrocarbon-based polymers
—polysulfones, polyimides, polybenzimidazoles, etc.—rely on the formation of the strongest possible
interactions between the two phases. Covalent bonds form when the dangling 3-aminopropyl groups
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of zeolites treated with 3-aminopropylalkoxysilanes open and react with the imide rings of polyimides.
The covalent bonds strongly facilitate the adhesion of the polymer and the production of defect-free
polymer-filler interfaces [37]. In other cases, hydrogen bonds or polar interactions are intense enough
to guarantee an intimate contact between the two phases. The strongly polar surface of zeolite 4A
is able to adhere to the hydrophobic but highly polarizable poly(1-trimethylsilyl-1-propyne) [38].
Unfortunately, hydrophobic PFPs are chemically inert, apolar, and not polarizable, therefore the
strategy was chosen to make the zeolitic molecular sieves fluorophilic, via a post-synthetic grafting of
perfluorinated alkyl tails.

The reaction of a moderate excess of 1H,1H,2H,2H-perfluorodecyltrichlorosilane with the external
−OH groups of the molecular sieves (e.g., silicalite-1, SAPO-34) made the water contact angle increase
from 89◦ to 150◦ [39]. The control on the reaction parameters (e.g., dry conditions, low temperature,
hydrophobic solvents, short reaction times) produced a continuous mono-layer of vertically aligned
perfluorinated moieties tightly packed on the outer surface of the molecular sieves, as indicated by
the results of X-ray photoelectron spectroscopy [40]. The modified sieve crystals exposed the terminal
−CF3 groups of the grafts, and their surface properties became comparable to those of Teflon particles,
as indicated by the formation of homogeneous suspensions in perfluorinated solvents. The practically
unchanged BET surface area (e.g., 611 vs. 616 m2·g−1 before the grafting of SAPO-34 [41]) indicated
that the external modification did not plug the pores of the particles.

The effect of the external grafting on the transport of penetrants in and out of silicalite-1 crystals
was tested with H2 at cryogenic temperatures [36], and with n-heptane at room temperature [40].
The first relevant result of the experiments was that the rate of sorption in both cases depended
on the modification of the outer surface. This can only happen if the surface permeability is
the rate determining step in adsorption, i.e., that barriers for the transport of mass exist on the
outer surface of silicalite-1, and that the sorption/desorption rates of species of different size
(H2, n-heptane), at different temperatures, was determined by the presence of these barriers. The second
surprising result was that the bulky 1H,1H,2H,2H-perfluorodecyl tails on the surface enhanced the
sorption/desorption rates of both H2 and n-heptane with respect to the as-made molecular sieve.
The explanation of this effect was the reduction of the hydrophilic character of the outer surface, where
the terminated crystal framework, rich of silanol ≡Si–OH groups, promotes the adsorption of moisture
(Figure 3). This hypothesis was supported by a theoretical study predicting, at room temperature,
the‘formation of a water layer on the surface of silicalite-1, extending into the silicalite pores for about
1.0–1.5 nm [41].
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3. Preparation of Hydrophobic PFP/Molecular Sieve MMMs

As made zeolitic molecular sieves are usually impermeable, because their pores are filled with the
templates, the organic substances directing their synthesis. At this stage, their BET area was measured,
in order to determine the stoichiometric amount of the modification agent needed [40]. Then the sieves
were calcined to free their pores from the organics. If the size of the crystals was small, they were
first embedded in a cross-linked network of an organic polymer. The larger average distance among
them greatly reduced the sintering into aggregates [42]. Also, as made, impermeable molecular sieves
were used to prepare MMMs, with the aim to study the influence of the sole polymer phase on the
gas transport properties [43,44]. Next, the molecular sieves were made fluorophilic as described in
Section 2 above, and then were used for the preparation of membranes according to Scheme 1. In a
typical procedure, the molecular sieves were homogeneously suspended in a polymeric solution by
repeated cycles of mechanical stirring and ultrasound treatments (1). The resting suspension was
poured into a vessel with a flat, levelled bottom (2), to allow for the evaporation of the solvent at room
temperature (3). The residual solvent lingering in the peeled MMM was eliminated in a vacuum oven
(4). The similar values in the density of the fillers (1.53–1.87 g·cm−3), of the solvents (about 1.7 g·cm−3)
and of the polymers (1.7–2.0 g·cm−3) is probably the reason behind the absence of sedimentation
problems during the slow evaporation step (3).
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Scheme 1. Sequences in the preparation of self-supported perfluorinated polymer (PFP)/molecular
sieve MMMs.

Defect-free MMMs containing various amounts of silicalite-1 crystals of different size (from 0.08 to
1.5 µm) and aspect ratio (the ratio between the largest and the smallest dimension, AR in the following)
were produced with Teflon AF1600, Teflon AF2400 and Hyflon AD60X, up to a volume fraction of 45%
(Figure 4) [39,45].
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Other MMMs were prepared by embedding 20–35% SAPO-34 crystals of different size (0.2–2 µm)
and shape (AR 2–9), both permeable and impermeable, in Hyflon AD60X (Figure 5) [43]. Increasing
fractions of molecular sieves made the membranes more rigid, but a good flexibility was still retained
at 35 v% loading (Figure 6).
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4. Transport Properties of Hydrophobic PFP/Molecular Sieve MMMs

4.1. PFP/Silicalite-1 MMMs

Silicalite-1 is a hydrophobic medium pore zeolite (5.4–5.6 Å) with channels delimited by
10-member rings of SiO4 units [46]. It is the siliceous form of ZSM-5 (structure topology MFI),
with a three-dimensional pore network of straight and zigzag channels. It was chosen as the porous
filler of PFPs because it can be easily prepared in a wide range of sizes and shapes, it is one of the most
studied molecular sieves, with several gas sorption and mobility data available in the literature [47],
and also because it only contains a modest amount of extra-framework cations and is hydrophobic [46].
Hydrophobicity represents an advantage for the modelling of gas transport because the large amount
of water adsorbed by hydrophilic zeolites is an obstacle for the transport of gas, and in addition the
uncertain amount of moisture, which rapidly adsorbs even during short expositions to the atmosphere,
turns hydrophilic zeolite pore networks into ill-defined systems.

As a first important result, PFPs MMMs prepared with the fluorophilic silicalite-1 were all
defect-free [39,45]: no gap was visible at the polymer-zeolite interface (Figure 4), and gas permeability
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data excluded the presence of defects. Transport features were dependent on the loading, and the size
and the shape of the crystals.

A Hyflon AD60X MMM containing 42 w% silicalite-1 of 1.5 µm size (Figure 4a,b) gave an
interesting combination of permeability and N2/CH4 ideal selectivity, in excess of the 2008 upper
bound [9] (Figure 7). The ideal CO2/CH4 selectivity was also improved in a similar way, getting closer
to the 2008 upper bound for this gas pair [45]. These results were not expected, because the sizes of
CO2, N2 and CH4 (Table 1) are all much smaller than the pore size of the MFI topology.
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Figure 7. Selectivity vs. permeability plot for the N2/CH4 separation at 25 ◦C of perfluorinated
polymers and a Hyflon AD60X MMM containing 42 w% (45 v%) Silicalite-1 (AD60_1500_42).
Reproduced from Reference [45] with permission. Copyright of John Wiley & Sons, Ltd.

Teflon AF2400 MMMs were tested for the n-butane/CH4 separation [44]. Permeability and ideal
separation factor of an MMM containing 40 w% silicalite-1 (1.5 µm size and AR 3, AF24_1500_40 in
Figure 8) were higher than those of Teflon AF2400 hybrid membranes containing fumed silica [48].
The increase of polymer permeability upon the introduction of an impermeable filler (in that case
fumed silica) was not expected. Positron annihilation (PALS) experiments demonstrated that the larger
permeability of Teflon AF2400 hybrid membranes stems from free volume elements of larger size,
probably caused by a looser packing of the polymer at the interface with silica [48]. Larger free-volume
elements had been observed already for hybrid membranes containing fumed SiO2 of other glassy, high
FFV polymers, such as poly(1-trimethylsilyl-1-propyne) (PTMSP) [49] and poly(4-methyl-2-pentyne)
(PMP) [50], characterized by rigid backbones like Teflon AF2400. The decrease of the polymer density
in Teflon AF1600 and Teflon AF2400 MMMs containing fumed silica was confirmed by detailed studies
using the non-equilibrium lattice fluid (NELF) model, based on a non-equilibrium thermodynamics
approach to glassy polymers [51,52]. The larger butane permeability measured when a porous filler
is present with respect to the case in which fumed silica is incorporated indicated the active role
of silicalite-1 in the transport of butane; also the larger C4H10/CH4 selectivity indicated the active
participation of silicalite-1, in which the strongly adsorbed butane excludes methane [53].

When the AF24_1500_40 membrane was fed with equimolar butane-methane mixtures, a reversal
of the selectivity from methane to butane on increasing the butane partial pressure (from 50 to 106
kPa at 25 ◦C) was observed. It is also interesting to note the advantages of a larger aspect ratio of the
silicalite-1 crystals on the transport properties of the MMMs. The AF24_dC5_40 membrane, containing
same loading (40 w%) of platy silicalite-1 crystals (3 µm, AR 8, Figure 4c), in all conditions afforded
better butane/CH4 selectivity in the mixture experiments than the AF24_1500_40 membrane, with the
same permeability [45].
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Figure 8. Selectivity vs. permeability plot of Teflon AF 2400 based hybrid membranes for the
n-C4H10/CH4 pair at 25 ◦C: pure gas data of fumed silica filled AF2400 (♦: 0, 25 and 40%, ∆p =
0.33–0.44 bar) from Reference [48]; pure gas data of membrane AF24_1500_40 (�, ∆p = 1.00 bar); mixed
gas data (2% n-butane feed, ∆p = 11.2 bar) of fumed silica filled AF2400 (•: 0, 18, 30 and 40%), from
Reference [48]; for all measurements the downstream pressure was atmospheric. Reproduced from
Reference [45] with permission. Copyright of John Wiley & Sons, Ltd.

Teflon AF1600 MMMs containing tiny silicalite-1 crystal (80 nm) were more permeable (He, H2,
CO2, O2, N2 and CH4) than the polymer, and less selective. This behaviour might be the effect of a
larger permeability of silicalite-1, of the increase of the FFV around the crystals, similarly to the Teflon
AF2400/fumed silica MMMs, or else of the voids in the crystal aggregates contained in the MMMs.

Larger 350 nm silicalite-1 crystals, instead, distributed homogeneously in the Teflon AF1600 matrix
(Figure 4a). A generalized decrease of gas permeability and a steady improvement of the sieving
properties of the polymer were observed, as evidenced by the larger gas/CH4 ideal selectivity [45].
This effect was not expected, because silicalite-1 (pore size 5.4–5.6 Å) does not sieve small gas molecules
(Table 1).

If the fillers are perfectly dispersed and do not interact with each other or with the matrix, the
permeability of MMM is described by the Maxwell model [54] (Equation (5)):

PMMM = PM PF + 2PM − 2φ
(

PM − PF)
PF + 2PM + φ(PM − PF)

(5)

In Equation (5), PMMM is the gas permeability of the MMM, PF is the gas permeability of the
dispersed phase (silicalite-1), PM is the gas permeability of the continuous phase (the polymer), and φ is
the volume fraction of the dispersed phase. Since the experimental permeability of the polymer and of
the MMMs were available, the gas permeability of silicalite-1 could be easily worked out. The different
behaviour of the MMMs with silicalite-1 crystals of different size indicated that probably the filler
does influence the physical state of the polymer. Therefore, it was decided to derive a theoretical
permeability of the MMM from the gas permeability of filler and polymer, and to compare this value
to the experimental results. The polymer permeability was readily measured, whereas the silicalite-1
permeability cannot be measured directly.

4.1.1. Derivation of the Permeability of Silicalite-1

Care should be taken in the choice of the right gas permeability of a zeolitic molecular sieve from
literature values. It has to be noted that in the literature a large scatter of the permeability values of
different supported zeolitic membranes made of the same zeolite is found [47]. This happens because
the gas permeability of zeolite membranes is affected by two major sources of error: (a) the presence of
a variable amount of non-zeolitic pores, usually inter-crystalline space at the boundaries of the crystal
domains [55], which act as non-selective defects increasing the membrane permeability, and (b) the
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presence of barriers to the transport of gas on the surface or in the interior of the crystals—crystal
defects, interfaces in intergrowth crystals, presence of amorphous matter, moisture and/or coke [36,41,
47,56–71]—which instead decrease gas permeability.

In practice, a more reliable method is to obtain the intrinsic gas permeability of a molecular
sieve by combining solubility coefficients with the unrestricted intra-crystalline diffusion coefficients
in Equation (2). Reproducible solubility of several gases in a variety of zeolites is available from
experimental measurements; instead, the intra-crystalline gas diffusion coefficients are not, in general,
available. The gas diffusion coefficients in molecular sieves, as obtained experimentally with different
techniques, sometimes differ by three orders of magnitude or more. It is found that this scatter is the
effect of surface and intra-crystalline barriers. The macroscopic techniques (e.g., sorption kinetics,
chromatographic pulse methods) based on gas uptake usually measure a slower gas mobility than
microscopic methods (such as pulsed field gradient nuclear magnetic resonance (PFG-NMR) and
neutron scattering techniques), which are able to probe unrestricted diffusion inside the crystals [47].
Unfortunately, PFG-NMR and neutron scattering can only be used with some gases, and they are
not readily available for investigation. Molecular dynamics (MD) simulations [47,72–76] represent
a convenient way to evaluate the mobility of penetrants inside micro- and meso-porous media (the
Maxwell–Stefan diffusion coefficient), in equilibrium conditions (self-diffusion), in the presence of
concentration gradients, and with other co-adsorbed species.

The diffusion coefficients of CO2 and CH4 in silicalite-1 obtained with a transient pulse-response
technique [77] were combined with the experimental solubility of the same gases [78] in Equation (2)
in order to obtain the permeability coefficients in the molecular sieve [45].

4.1.2. Modelling of the Transport Properties of Teflon AF1600/MFI MMMs

It turned out that silicalite-1 is definitely more permeable to CO2 and CH4 than Teflon AF 1600.
As a consequence, the Maxwell Equation (5) predicted a larger permeability of the silicalite-1 containing
MMMs with respect to the polymer. It was therefore surprising to discover that the experimental
permeability of the MMM containing 30 w% of 350 nm silicalite crystals was smaller than the one
of Teflon AF 1600 for both CO2 and CH4. The authors concluded that the silicalite permeability
was strongly reduced by some barrier to the transport of gas at the surface or in the interior of the
crystals [45]. In that work the average diffusion coefficients of gases through the Teflon AF 1600 MMMs
was measured by means of the Daynes–Barrer time-lag method [79]. In this method the transient
permeation behaviour before the attainment of the steady state is used to obtain average diffusion
coefficients by means of Equation (6) below:

D = l2/6θ (6)

where l is the thickness of the membrane and θ (the time-lag) is the intercept of the pressure vs. time
asymptotic line at long times with the time axis (Figure 9).

Silicalite-1 partially immobilizes the penetrant gases and due to its large adsorptive capacity,
it acts like a sink for CO2 and CH4. Therefore, additional time is required to accumulate the excess
penetrant before steady state can be reached [80–84]. This was probably the origin of the anomalous
increase of the CO2 permeability observed after the apparent attainment of the steady state in a Teflon
AF1600/silicalite-1 MMM [39]. The simplified treatment of the transient permeation experiments
via Equation (6) underestimated the real, steady-state diffusion. Nevertheless, the time-lag diffusion
coefficients of the two gases worked out with Equation (6) were higher in the MMM than through the
Teflon AF 1600 polymer. Combined with the reduced permeability of the MMM, this circumstance
indicated that the polymer phase in the MMM offered faster diffusion paths to gases, i.e., the polymer
in the defect-free MMM was endowed with a larger free volume.

These earlier studies on PFP MMMs demonstrated that porous ceramic fillers, after the grafting
of the perfluorinated tails, can be homogeneously dispersed in perfluorinated polymers. The presence
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of the filler disrupts the effective molecular packing of the polymer chains in the bulk, creating an
interface with larger FFV. The increase of the ideal gas selectivity proved that such an interface is
characterized by a good adhesion between the two phases. The macroscopic modelling of gas transport
demonstrated also the presence of barriers for the transport of mass at the silicalite-1 crystals.
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4.2. Hyflon AD60X/SAPO-34 MMMs

SAPO-34 is a family of silicon aluminium phosphate molecular sieves with the same pore topology
of chabazite (CHA), a natural zeolite. In SAPO-34, large cavities are connected by narrow ports (3.8 Å)
delimited by eight member rings of TO4 units [85]. Due to its small pore size, comparable to the
diameter of methane (Table 1), SAPO-34 is very selective for the CO2/CH4 separation [86–88], and also
displays interesting N2/CH4 selectivity [89].

On the basis of the experience with the PFP/silicalite-1 hybrids, new experiments were planned
to make clear the importance for MMMs of interfacial polymer free volume and restricted diffusion in
molecular sieves. Several Hyflon AD60X MMMs were prepared with different loadings (20–35 v%) of
both permeable and impermeable SAPO-34 of different size and aspect ratios, with the aim to study in
detail the effect of these variables on the final transport properties, and to isolate the behaviour of the
polymer in the MMMs from the properties of the filler.

The MMMs prepared with the fluorophilic SAPO-34 were all defect-free [43]. No gap was visible
at the polymer-zeolite interface (Figure 5), and gas permeability data (He, H2, N2, CH4, CO2) excluded
the presence of defects. Transport features were dependent on the loading, the size and the shape of
the crystals, as seen in the diagram of the Robeson’s plot for the CO2/CH4 gas pair (Figure 10).

In all cases the presence of SAPO-34 enhanced the selectivity of Hyflon AD60X for the CO2/CH4

separation. Thanks to the combination of the improved selectivity and of the plasticization resistance
of the polymer, the MMMs may represent a viable option for the purification of natural gas containing
large amounts of CO2. SAPO-34 afforded large selectivity gains with respect to the polymer, especially
with 35% flat crystals of the largest aspect ratio (+81%). Inspection of Figure 5a revealed that the flat
SAPO-34 crystals in this membrane were preferentially oriented with their largest dimensions about
parallel to the membrane faces. The largest selectivity was accompanied by a decrease of permeability
with respect to Hyflon AD 60X. Low aspect ratio SAPO-34 crystals at the same loading, resulted instead
in an increase of both permeability and selectivity, with better results for the small (200 nm) SAPO-34.
Since the Maxwell model—Equation (5)—predicts the same behaviour for the permeability of MMMs
with the same loading of filler, irrespective of size and shape [54], it was evident that non-ideal effects
were at work in Hyflon AD60X/SAPO-34 MMMs.
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Figure 10. CO2/CH4 Robeson plot of Hyflon AD60X (AD60, black star) and of its MMMs containing
calcined and permeable SAPO-34: tiles (1.5 µm, AR = 9, triangles), large (2 µm, AR = 2, diamonds),
small (0.2 µm, AR = 2, circles); empty symbols 20 v% loading, full symbols 35 v% loading. 1 Barrer is
equivalent to 10−10 cm3 (STP) cm cmHg−1·s−1·cm−2. Reproduced from Reference [43] with permission.
Copyright of the Korean Society of Industrial and Engineering Chemistry and Elsevier B.V.

4.2.1. Derivation of the Gas Permeability of SAPO-34

As in the case of the PFP membranes containing silicalite-1, the approach for the understanding
of the underlying physical phenomena was the derivation of the unrestricted, intra-crystalline gas
permeability of SAPO-34 (bulk values in the following), and its use in the macroscopic modelling of
the transport phenomena in the MMMs [43].

The bulk permeability of He, H2, N2, CH4 and CO2 in SAPO-34 was assumed to be equal to the one
of an all-silica zeolite with the same CHA topology. Bulk permeability was calculated as the product
of solubility and diffusion (Equation (2)) [43] on the basis of in silico simulation results [90] of the
pressure-dependent gas loading, and of the loading-dependent gas diffusivity in a SiO2 molecular-sieve
with the CHA structure, in the fugacity interval 100–600 kPa.

4.2.2. Modelling of the Transport Properties of Hyflon AD60X/SAPO-34 MMMs

The macroscopic model calculation of the gas transport in the MMMs varied according to the
aspect ratio of the SAPO-34 crystals [43]. The resistance model of Cussler [91], derived for regular
arrays of parallel ribbons (flakes) (Equation (7)), in which AR is the aspect ratio of the filler,

PMMM =
PM

1− φ + {1/[(1/φ)(PF/PM) + 4(1− φ)/(AR2φ2)]}
(7)

approximates more closely the morphology of the MMMs containing oriented crystals of larger aspect
ratio and is currently used to fit the experimental data in such cases [92,93].

The effective medium theory approach of Maxwell [54] was used for the MMMs containing
crystals of smaller aspect ratio. Both the Cussler and the Maxwell models ignore interfacial effects,
since they are based exclusively on the gas permeability of the unperturbed polymer, of the molecular
sieve, on the aspect ratio of the filler (Cussler model only), and on their volume fractions.

The gas permeability of the MMMs containing flat crystals demonstrated the presence of barriers
to the transport of mass at SAPO-34 [43]. The gas permeability of SAPO-34 is compared in Figure 11a
with the experimental values of Hyflon AD60X (AD60) and of the MMMs with permeable SAPO-34
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crystals of AR 9 (tiles). The unrestricted intra-crystalline permeability of the SAPO-34 crystals was
much larger than that of the polymer, but the permeability of the MMMs was lower, with larger volume
fractions (0.35 vs. 0.20) reducing the permeability even further. The experimental permeability did
not obey the model prediction (Figure 11b), but it was larger than the prediction for an impermeable
filler, indicating that SAPO-34 is permeable, and that its permeability is restricted. The presence of
barriers for the transport of mass at zeolitic molecular sieves is the norm [47], although this is not
acknowledged in most of the literature of MMMs. Diffusion experiments with infrared micro-imaging
demonstrated the existence of surface barriers on SAPO-34 crystals, as well as the variability of surface
barriers at different crystals from the same batch [64].
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Two distinct non-ideal effects, namely the increase of polymeric FFV at the interface with the 
filler and the barriers at SAPO-34, combined in the Hyflon AD60X/SAPO-34 MMMs [43]. The 
experimental gas permeability of MMMs containing small (0.2 μm) permeable SAPO-34 of aspect 
ratio 2 (Figure 13a) was comparable to the prediction of the Maxwell model, because the larger 
interfacial polymer free-volume compensated the effect of the barriers at SAPO-34. Instead, the 
experimental gas permeability of MMMs containing large impermeable SAPO-34 (Figure 13b) was 
lower than the values predicted by the Maxwell model, because in this case the quantity of the 
interfacial polymer of higher free volume was minimal [43]. 

Figure 11. Experimental (continuous lines) and calculated (dash-dotted lines) gas permeability of
Hyflon AD60X (AD60, stars) MMMs: 0%, 20% and 35% v/v of SAPO-34 tiles (1.5 µm, aspect ratio
AR = 9). (a) MMMs and Hyflon AD60X experimental results; SAPO-34 (CHA, cross-hatched circles)
permeability calculated after MD simulations [90] for the siliceous CHA structure. (b) Comparison of
experimental (permeable tiles) and analytical results (Cussler model, both permeable and impermeable
tiles), 35 v% loading. 1 Barrer is equivalent to 10−10 cm3 (STP) cm cmHg−1·s−1·cm−2. Reproduced
from Reference [43] with permission. Copyright of the Korean Society of Industrial and Engineering
Chemistry and Elsevier B.V.

When SAPO-34 is impermeable, gas only permeates through the polymer phase, therefore the
behaviour of MMMs prepared with same volume fractions of impermeable SAPO-34 gave valuable
information on the state of Hyflon AD60X only in the MMMs [43]. Gas permeability for MMMs
containing small (0.2 µm) impermeable SAPO-34 of aspect ratio 2 (Figure 12a) was larger than predicted
by the Maxwell model, demonstrating the enlargement of the polymer free-volume at the interface
with the filler. Small (0.2 µm) and large (2 µm) SAPO-34 of same aspect ratio were characterized by
outer surface area of 39 and 5.3 m2·cm−3, respectively, therefore the volume of interfacial polymer
in the MMMs containing small and large fillers, being roughly proportional to the outer surface
area, was several times larger for the former. This circumstance was used to explain why the gas
permeability of MMMs containing large impermeable SAPO-34 (Figure 12b) was close to the values
predicted by the Maxwell model [43].
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with permission. Copyright of the Korean Society of Industrial and Engineering Chemistry and
Elsevier B.V.

Two distinct non-ideal effects, namely the increase of polymeric FFV at the interface with the filler
and the barriers at SAPO-34, combined in the Hyflon AD60X/SAPO-34 MMMs [43]. The experimental
gas permeability of MMMs containing small (0.2 µm) permeable SAPO-34 of aspect ratio 2 (Figure 13a)
was comparable to the prediction of the Maxwell model, because the larger interfacial polymer
free-volume compensated the effect of the barriers at SAPO-34. Instead, the experimental gas
permeability of MMMs containing large impermeable SAPO-34 (Figure 13b) was lower than the
values predicted by the Maxwell model, because in this case the quantity of the interfacial polymer of
higher free volume was minimal [43].
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Figure 13. Experimental (continuous lines) and calculated (Maxwell model, dash-dotted lines) gas
permeability of Hyflon AD60X (AD60, stars) MMMs with permeable SAPO-34, aspect ratio AR = 2:
(a) MMMs containing small SAPO-34 (0.2 µm), 20 and 35% v/v; (b) MMMs containing large SAPO-34
(2 µm), 20 and 35% v/v. 1 Barrer is equivalent to 10−10 cm3 (STP) cm cmHg−1·s−1·cm−2. Reproduced
from Reference [43] with permission. Copyright of the Korean Society of Industrial and Engineering
Chemistry and Elsevier B.V.

The Maxwell (Equation (5)) and the Cussler (Equation (7)) models were used to calculate the
expected ideal CO2/CH4 selectivity for Hyflon AD60X MMMs containing 35% v/v of SAPO-34 with
different aspect ratios [43]. If mass transport in SAPO-34 were not restricted by the presence of barriers
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(filled squares in Figure 14), then the gain in selectivity with respect to the polymer would be irrelevant.
If instead the restricted diffusion of mass reduced the effective average permeability of SAPO-34 by
two orders of magnitude (empty squares in Figure 14), then the selectivity raised asymptotically to
about 45 for AR ~50. This finding demonstrated that very selective fillers do not improve the MMM
selectivity if they are too permeable compared to Hyflon AD60X, as predicted in the literature [92,93].
Another interesting information was that most of the selectivity gain could be obtained already with
aspect ratio 9 (Figure 14).
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Figure 14. Experimental (asterisk) and calculated (squares, Cussler model) CO2/CH4 ideal selectivity
of Hyflon AD60X MMMs containing 35% v/v of SAPO-34 of different aspect ratios (a on the abscissa).
The constant selectivity of the polymer [43] is reported as a full line for comparison; full squares refer
to the ideal selectivity of MMMs calculated after MD simulations for the siliceous CHA structure [90];
open squares refer to the ideal selectivity of MMMs calculated after MD simulations for the siliceous
CHA structure [90], when the derived, unrestricted gas permeabilities used for the model calculation
are divided by 100. Reproduced from Reference [43] with permission. Copyright of the Korean Society
of the Industrial and Engineering Chemistry and Elsevier B.V.

The modelling of gas transport in Hyflon AD60X/SAPO-34 MMMs with the effective medium
approach (Cussler and Maxwell models) made it clear that, besides the unperturbed (bulk) polymer
and filler, a region of interfacial polymer and some barrier at SAPO-34 must be considered. Starting
from this evidence, Di Maio et al. [44] introduced a new four phase approach of MMMs which explicitly
takes into account, besides the matrix and filler bulk phases, the interfacial polymer phase (“matrix*”
in Figure 15) and the barriers at SAPO-34. For the sake of simplicity, the latter were concentrated into a
skin of reduced permeability encapsulating the core with unrestricted mobility (“filler*” and “filler”,
respectively, in Figure 15).

The new four-phase approach was implemented for He, H2, N2 and CO2 permeation in Hyflon
AD60X/SAPO-34 MMMs in two ways: by means of the effective medium analytical formula
(4M Maxwell model), and through the finite element solution (FEM) of the transport differential
equations [44].
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different size and shape (large, small, and tiles in the text) in the four resistance models (see text).
“filler*” (dark-blue) and “matrix*” (light-orange) denote, in all of the three illustrations, the modified
diffusion layers of SAPO-34 and Hyflon AD60X, respectively.

The 4M Maxwell model was inspired by a previous three-phase Maxwell model introduced by
Koros and co-workers [94,95], and the procedure for the workout of the MMM permeability consisted in
three steps. First the SAPO-34 crystals were treated as pseudo-particles made of a very permeable core
with a poorly permeable skin (“filler” and “filler*”, pseudo-particle 1 in Figure 16a). The permeability of
pseudo-particle 1 was calculated by means of the Maxwell Equation (5). Second, a new pseudo-particle
made of the whole filler (pseudo-particle 1) surrounded by the modified polymer (pseudo-particle 1
plus “matrix*”, pseudo-particle 2 in Figure 16b) was considered, and its permeability was calculated
by using again the Maxwell Equation (5). Finally, the MMM permeability was calculated by combining
the permeability of the pseudo-particle 2 with the permeability of the bulk polymer (pseudo-particle
2 plus “matrix”, Figure 16c). The unknowns regarding the polymer (i.e., the permeability and the
thickness of the interfacial polymer, “matrix*” in Figure 16) were removed in part by applying the
Maxwell Equation (5) to the experimental permeability data of MMMs containing same volume
fractions of identical, but impermeable, molecular sieve particles [95]. The unrestricted permeability of
SAPO-34—i.e., the permeability of the SAPO-34 core, “filler” in Figure 16—was calculated as described
in Section 4.2.1. More details on the formulations of the relevant analytical equations can be found
in the Supplementary Materials of Reference [44]. It has to be noted that the permeability and the
thickness of the interfacial polymer surrounding the particles of filler (“matrix*”) are not independent
of each other, as well as the thickness and the permeability of the barrier skin at SAPO-34 (“filler*”).
From the mathematical point of view, in both cases a larger difference in the permeability from the
value of the bulk corresponds to a thinner layer, and vice versa. A thickness of 20 nm for the modified
polymer layer (“matrix*” in Figure 15) was adopted in order to avoid the overlapping of vicinal layers
in the FEM simulation (vide infra), because this length was just less than half of the average distance
among the smallest (200 nm) crystals at maximum (35%) volumetric loading. A 20-nm thickness
was also chosen for the barrier layer at SAPO-34 (“filler*” in Figure 15). A recent theoretical work
on a comparable zeolite—SAS topology, made of large cavities connected by 8-member rings of TO4

units—found a thickness of surface barriers of the same order of magnitude, i.e., 3, 7 and 14 nm for H2,
CO2 and CH4, respectively [96]. For simplicity, gas independent filler* thickness was considered in the
4M model calculation.
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Figure 16. The three frames of the 4M Maxwell model procedure: (a) pseudo-particle 1 composed
of bulk filler and modified filler; (b) pseudo-particle 2, composed of pseudo-particle 1 and modified
matrix; (c) the whole mixed-matrix membrane, composed of pseudo-particle 2 and bulk matrix.

Numerical simulation of the gas permeation through composite membranes was carried out by
solving the finite-element approximation of the partial differential equations governing the relevant
solution/diffusion processes [44], using the commercial software COMSOL Multiphysics [97]. In order
to simplify the computational model, a body-centred cubic arrangement of oriented filler particles was
built to generate symmetrical properties of the system (Figure 17).
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Figure 17. Bi-dimensional scheme of the body-centred cubic arrangement of oriented SAPO-34 particles
built by the application software for the representation of the four-resistance model.

Pure gas diffused continuously through the distinct matrix and filler domains. Diffusion was
expressed in terms of Ci, the concentration of species i. The following equations:

Dij

(
∂2Ci
∂x2 +

∂2Ci
∂y2 +

∂2Ci
∂z2

)
= 0 (8)

in which the diffusivity coefficient Dij of species i in material j is assumed uniform and isotropic, were
solved. A concentration jump at the matrix/filler interface formed due to the different gas solubility.
At the interface boundaries both uniform mass flux and the following equilibrium condition were
applied:

Ci
I

Si
I =

Ci
I I

Si
I I (9)
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where Si is the solubility of species i and the superscripts denote the two solid phases, I and II,
in contact.

Computational grids (Figure 18) were built by using the application software.
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Figure 18. Geometry and discretization grid of the computational cell for a system containing 0.2 µm
SAPO-34, AR = 2, volume fraction 0.20. Inlet is from the left front face and outlet from the right rear face.
On the other four faces symmetry conditions apply. Reproduced from Reference [44] with permission.
Copyright of Elsevier B.V.

The inputs of the FEM simulations were: (i) SAPO-34 bulk diffusivity and solubility data from
simulations (see Section 4.2.1.); (ii) the experimental polymer permeability; (iii) the polymer gas
diffusivity from the literature [98]; (iv) the permeability of the ten different MMMs containing
permeable and impermeable molecular sieves. By imposing 20 nm as the thickness of each modified
phases (“matrix*” and “filler*” in Figure 15), the permeability ratios between the pristine and
the modified phases were optimized for each gas by a least square iterative minimization of the
discrepancies between calculated and experimental permeability. The properties of the modified
polymer layer (“matrix*”) were obtained in a first optimization step using the data subset including
only MMMs incorporating impermeable fillers. Then the results of the former step were used to
focus on the properties of the modified SAPO-34 layer (“filler*”). Additional details on the numerical
procedure can be found in Reference [44]. The FEM simulations indicated that the permeability in the
high FFV polymeric interface (“matrix*”) increased of 2.6± 0.3 times, whereas instead the permeability
of the barrier skin of SAPO-34 (“filler*”) decreased by a factor ranging from 3.5 × 10−5 to 1.1 × 10−4

(Maxwell 4M), or from 3.8 × 10−5 to 4.3 × 10−4 (FEM) [44].
By the above assumptions, the results of both FEM simulations and macroscopic 4M Maxwell

model compared well with the experimental data (Table 2 and Figure 19).

Table 2. Features of the Hyflon AD60X MMMs containing permeable SAPO-34. Modified from
Reference [44] with permission. Copyright of Elsevier B.V.

Experiment No. 5 6 7 8 9 10

Crystal longest size, µm 0.2 2 0.2 2 1.5 1.5
Particle Aspect Ratio, - 2 2 2 2 9 9

Particle volume fraction, - 0.20 0.20 0.35 0.35 0.20 0.35
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Figure 19. Comparison between the experimental permeability of Hyflon AD60X/SAPO-34 MMMs
and their predictions based on the 4-phase approach according to the Maxwell model and the FEM
simulations for permeable particles, cases No. 5–10 in Table 2. Reproduced from Reference [44] with
permission. Copyright of Elsevier B.V.

Not surprisingly, the best fit was found with the MMMs containing the large fillers (2 µm, AR 2,
exp. 6, 8) in which the relative importance of the interfacial effects was minimal (Table 2 and Figure 19).
In the case of small SAPO-34, both methods underestimated of the same quantities the permeability
of the MMMs (Figure 19, 0.2 µm, AR 2, exp. 5,7), probably due to the formation of percolation
paths connecting the modified polymer phase (“matrix*” in Figure 15) in real membranes. The FEM
simulation was able to reproduce in a better way the data of the MMMs containing oriented flat
crystals (Figure 19, tiles, 1.5 µm, AR 9, exp. 9, 10), because the large aspect ratio and the orientation of
the filler were implicit in the model. Instead, the macroscopic 4M Maxwell model, based on spherical
particles, showed a worse fit, overestimating the real permeability. Notice that the predictions of the
4M Maxwell model are satisfactory even at relatively high-volume fractions (35%) of the filler.

The overall agreement of the experiments with both the macroscopic 4M Maxwell modelling and
the FEM simulations is excellent if we consider the simplifying assumptions adopted, and namely: (i)
the constant, average values of solubility and diffusion coefficients for polymer and filler bulk; (ii) the
uniform constant features of the surface barrier for all of the three different samples of SAPO-34.

The major advantages of the FEM simulation consist in the quantification of the contributions of
the different phases to the overall gas transport and in the possibility to visualize the concentration
profiles in a unit cell [44] as well as the streamlines of the gas (Figure 20). The FEM simulation clearly
indicated the lesser contribution of SAPO-34 to the overall transport in the MMMs containing small
crystals of modest aspect ratio, whereas the predominant role of high free volume polymer led to
high permeability. Instead SAPO-34 contribution to transport was maximal when oriented crystals of
large aspect ratio were present, consistent with the lesser permeability and the larger selectivity of
the MMMs.
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Figure 20. Experiment No. 5 (SAPO 0.2 µm size, volume fraction 20%, AR = 2, see also Table 2 and
Figure 18): streamlines of the CO2 flow in a horizontal plane at half of the cell height. The streamlines
are initiated at 50 points uniformly distributed on an imaginary vertical line located halfway along the
transport direction and then reconstructed back and forth; their line thickness is proportional to the
flow magnitude and axis units are in µm. Reproduced from Reference [44] with permission. Copyright
of Elsevier B.V.

4.3. Remarks and Perspectives on the Modelling of Transport in MMMs

The lesson learned from the study of the PFP/molecular sieve systems is that the macroscopic
modelling of the transport properties of MMMs requires the understanding of the underlying physical
phenomena. If we had only prepared MMMs with the high aspect ratio SAPO-34 (triangles in Figure 10)
we might have argued about the prevalence either of a rigidified polymer layer around the filler, or of
a reduced permeability region within the sieve surface [35]: the possibility of a high FFV polymer shell
surrounding the filler would have not been considered.

The physical state of polymers at MMM interfaces should be investigated in depth to probe
the effect of fillers on free volume, adsorption properties, swelling ability, ageing rate. Positron
annihilation lifetime spectroscopy (PALS) [99], 129Xe NMR [17], and the NELF model [52] applied to
MMMs containing impermeable fillers look like valuable tools for this purpose.

It has to be noted that the new four-phase approach is not restricted to the modelling of PFP
MMMs, since it can be applied whenever two non-ideal phenomena are present, including those cases
in which a rigidified polymer layer is observed. Besides the consistent interpretation of the physical
phenomena, an adequate modelling of the transport properties of real systems allows predictive
capabilities to guide the preparation of better MMMs.

Crystalline porous materials, in real life, contain defects and are far from ideal. The modelling
of mass transport in MMMs needs theoretical and experimental studies of diffusion in the fillers,
both ideal and defective. The nature and the effects of the barriers to mass transport need to be studied
in depth. In MMMs containing extremely thin, exfoliated layers, either zeolitic molecular sieves,
porous graphenes, MOFs or others, the transport properties of the bulk materials may be altered to a
large extent, and interfacial effects become of primary importance.
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5. Summary and Conclusions

Grafting perfluorinated tails on the outer surface of zeolitic molecular sieves improved the
surface permeability and allowed the preparation of defect-free MMMs with hydrophobic and
amorphous PFPs.

Silicalite-1/Hyflon AD60X MMMs displayed some improvement of the CO2/CH4 and N2/CH4

ideal selectivity with respect to the polymer. The improvements were not expected, because the
pores of silicalite-1 are not able to discriminate the above gases on the basis of size. Methane is more
permeable than n-butane in Teflon AF2400 membranes, but the presence of silicalite-1 in Teflon AF2400
MMMs was able to revert the selectivity in favour of n-butane, probably because of the combined
effects of a larger interfacial FFV and of the butane-selective molecular sieve. Other things being equal,
large aspect ratio silicalite-1 increased the n-butane/CH4 selectivity even further.

The gas transport properties of Teflon AF1600 MMMs containing silicalite-1 crystals were strongly
dependent on the size of the filler. Small crystals added permeability (He, H2, CO2, O2, N2 and
CH4) to the polymer with less selectivity, whereas larger crystals induced a reduction of permeability
and an increase of the gas/CH4 selectivity. In order to clarify this puzzling situation, a change of
paradigm was introduced: instead of calculating the permeability of the filler from the performance of
the MMMs through the Maxwell model (Equation (5)), the permeability of the filler was obtained from
the gas solubility and diffusion, using this value to predict the performance of an ideal MMM through
Equation (5). The comparison of the predicted vs. the experimental permeability (CO2 and CH4) and
the evaluation of the experimental diffusion coefficients (time lag method) indicated the presence of
two different non-ideal effects in the Teflon AF1600/silicalite-1 MMMs: a polymer allowing larger gas
mobility, i.e., a larger polymer FFV, and a much less permeable filler, i.e., the presence of barriers to the
transport of mass at silicalite-1.

A new set of Hyflon AD60X MMMs were prepared with three different SAPO-34 crystals, of
different size and aspect ratio, both permeable and impermeable. All of the MMMs where characterized
by improvements in the ideal CO2/CH4 selectivity, but the permeability was strongly influenced by
the size and the shape of SAPO-34. The large aspect ratio crystals preferentially oriented parallel
to the plane of the membrane and induced a reduction of the polymer permeability. The filler with
modest aspect ratio, instead, determined an increase of the permeability, with the smaller SAPO-34
crystals resulting in the larger gain. The analysis of the transport properties of the MMMs subset
containing impermeable SAPO-34 clarified that Hyflon FFV had increased. As in the case of silicalite-1,
the permeability of SAPO-34 was obtained from independent solubility and diffusivity values and used
to predict the performance of the MMMs through Equation (5). The predicted MMMs permeability
was higher than the experimental results, evidencing the presence of barriers to the transport of mass
at SAPO-34. On the basis of the experimental evidences, the transport properties of the MMMs were
modelled through a new four phase approach, which explicitly considered the pristine two phases,
i.e., the unperturbed, bulk polymer and SAPO-34, and two interfacial phases, namely the perturbed,
high FFV polymer, and a superficial skin of the crystals, concentrating all of the additional resistance
to the transport of mass (the barrier). The four-phase macroscopic modelling, implemented both via an
extension of the Maxwell analytical method (4M Maxwell model) and by means of a FEM numerical
simulation, nicely reproduced the experimental results. The new four-phase approach lends itself to
interpret the transport data of those MMMs evidencing two simultaneous non-ideal behaviours.

The above pioneering works clearly show: the feasibility of PFP/molecular sieve MMMs and their
interesting properties for gas separation of technological relevance; the complexity and the competitive
character of the processes at work in MMMs; the adequacy of four-phase models for the description of
permeation in MMMs.

Funding: This work was supported by the MIUR project ComESto, ARS01_01259.

Conflicts of Interest: The authors declare no conflict of interest.



Membranes 2019, 9, 19 22 of 27

List of Symbols and Acronyms

4M four-phase Maxwell model
α permeability selectivity, -
αS solubility selectivity, -
αD diffusion selectivity, -
φ volume fraction, -
θ time-lag, s
AR aspect ratio, -
Barrer permeability unit, 10−10 cm3 (STP) cm cmHg−1·s−1·cm−2

BET Brunauer, Emmett and Teller method for the determination of the surface area
C concentration, mol m−3 or cm3(STP) cm−3

CHA framework type code of zeolite chabasite
Cytop® poly(perfluoro-4-vinyloxy-1-butene)
D diffusivity, m2/s
dk kinetic diameter, Å
FEM finite element numerical modelling
FFV fractional free volume, -
Hyflon® AD co-polymers of tetrafluoroethylene and perfluoro-4-methoxy-1,3-dioxole
J flux, mol/(m2·s) or cm3(STP)/(cm3·s)
l membrane thickness, µm
MD molecular dynamics
MFI framework type code of zeolite ZSM-5
MMM mixed matrix membrane
MOF metal organic framework
Nafion® copolymers of tetrafluoroethylene and sulfonic acid terminated perfluorovinyl ethers
NELF non-equilibrium lattice fluid
NMR nuclear magnetic resonance
p pressure, Pa
P permeability, Barrer or Nm3·m·m−2·Pa−1·s−1

PF permeability of the dispersed phase, Barrer or Nm3·m·m−2·Pa−1·s−1

PM permeability of the continuous phase, Barrer or Nm3·m·m−2·Pa−1·s−1

PMMM permeability of the MMM, Barrer or Nm3·m·m−2·Pa−1·s−1

PALS positron annihilation lifetime spectroscopy
PFG-NMR pulsed field gradient NMR
S solubility, mol·m−3·Pa−1 or cm3(STP)·cm−3·Pa−1

Tc critical temperature, K
Tg glass transition temperature, K
PFP perfluorinated polymer
PIM polymer of intrinsic microporosity
SAPO-34 silicon aluminium phosphate of chasbasite (CHA) structure topology.
SEM scanning electron microscopy
Silicalite-1 pure SiO2 zeolite of ZSM-5 (MFI) structure topology
Teflon® polytetrafluoroethylene
Teflon® AF co-polymer of tetrafluoroethylene and perfluoro-2,2-dimethyl-1,3-dioxole
STP standard temperature and pressure
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