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Abstract: Breast cancer is a complex and multi-drug resistant (MDR) disease, which could result in
the failure of many chemotherapeutic clinical agents. Discovering effective molecules from natural
products or by derivatization from known compounds is the interest of many research studies. The
first objective of the present study is to investigate the cytotoxic combinatorial, chemosensitizing, and
apoptotic effects of an isatin derived compound (5,5-diphenylimidazolidine-2,4-dione conjugated
with 5-substituted isatin, named HAA2021 in the present study) against breast cancer cells (MCF7)
and breast cancer cells resistant to doxorubicin (MCF7/ADR) when combined with doxorubicin.
The second objective is to investigate the binding mode of HAA2021 withP-glycoprotein (P-gp) and
heat shock protein 90 (Hsp90), and to determine whether their co-inhibition by HAA2021 contribute
to the increase of the chemosensitization of MCF7/ADR cells to doxorubicin. The combination
of HAA2021, at non-toxic doses, with doxorubicin synergistically inhibited the proliferation while
inducing significant apoptosis in MCF7 cells. Moreover, HAA2021 increased the chemosensitization
of MCF7/ADR cells to doxorubicin, resulting in increased cytotoxicity/selectivity and apoptosis-
inducing efficiency compared with the effect of doxorubicin or HAA2021 alone against MCF7/ADR
cells. Molecular modeling showed that two molecules of HAA2021 bind to P-gp at the same time,
causing P-gp inhibitory effect of the MDR efflux pump, and accumulation of Rhodamine-123 (Rho123)
in MCF7/ADR cells. Furthermore, HAA2021 stably interacted with Hsp90α more efficiently compared
with 17-N-allylamino-17-demethoxygeldanamycin (17-AAG), which was confirmed with the surface
plasmon resonance (SPR) and molecular modeling studies. Additionally, HAA2021 showed multi-
target effects via the inhibition of Hsp90 and nuclear factor kappa B (NF-κB) proteins in MCF7
and MCF7/ADR cells. Results of real time-PCR also confirmed the synergistic co-inhibition of P-
gp/Hsp90α genes in MCF7/ADR cells. Further pharmacokinetic and in vivo studies are warranted
for HAA2021 to confirm its anticancer capabilities.
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1. Introduction

Although multi-target drugs have less possibilities of causing drug-drug interactions
as well as more patient compliance and more predictable pharmacokinetics compared with
drug-combinations, their benefits versus drawbacks are still controversial regarding clinical
anticancer therapy, which is mainly due to their possible off-target side effects. Yet, their
benefits outweigh the drawbacks when they are the best or the only option for complex,
multifactor or multi-drug resistance (MDR) diseases [1], such as breast cancer.

Resistance to apoptosis is one of the most important hallmarks of cancer, and the
deregulation of apoptosis causes the dramatic failure of breast cancer chemotherapy. One
of the main reasons is the breast cancer MDR [2], which arises from numerous mechanisms,
such as enhanced drug efflux, increased DNA repair capacity, and genetic factors in various
cell biological processes [3,4]. The most widely studied proteins involved in MDR are the
membrane transporters, including the main member of the ATP-binding cassette (ABC)
transporter family: P-glycoprotein (P-gp) [5–7], which is associated with cancer growth
and proliferation in the downstream pathways [8]. The combination of therapeutic agents
with effective chemosensitizers, including doxorubicin, is one of the solutions to the cancer
MDR [9]. Another important reason for perturbation of apoptosis is the upregulation of
Hsp90, which is a molecular chaperone that stabilizes many signalling proteins. Therefore,
as an example of relevant pro-apoptotic pathways, the inhibition of Hsp90 blocks the
activation of nuclear factor kappa B (NF-κB), and inhibits the VEGFR2 pathway, all leading
to apoptotic events of the cancer cell machinery [10,11]. As a result, the discovery of
multi-target drugs could lead to the upregulation of apoptosis and other related clickable
therapeutic pathways.

The search for new anticancer agents requires huge screening programs on medicinal
and non-medicinal plants [12], as well as the investigation on marine algae and living
organisms, such as sponges and corals [13]. To overcome this problematic searching strat-
egy, which is both expensive and time consuming, a few lead molecules can be chemically
modified in order to improve their activity and selectivity or to reduce their toxicity [14].
One of these important modifiable drug classes are the isatins, which are natural com-
pounds isolated from many plants including Couroupita guianesis [15]. They were the
subject of extensive molecular modifications to improve their anticancer activity [16–21].
The isatin (indole-2,3-dione) is an endogenous oxidized indole building block, able to
form many heterocyclic molecules, and it is expressed in various mammalian tissues and
body fluids. Compounds containing isatin exhibit a broad spectrum of potential pharma-
cological actions, including anti-inflammatory, anti-microbial, antiviral, and anticancer
properties [22–24].

Previous anticancer research indicated that isatins could be used, not only for their
cytotoxic effects (such as inducing apoptosis by activation of caspase 3/7), but also for their
ability to reverse MDR protein activity [3,4,18,25]. Novel isatin derivatives of podophyllo-
toxin have previously shown a significant anticancer activity against several cancer MDR
cell lines, such as K562/ADR cells [19]. In another study, the anticancer mechanisms of
action for indole-2,3-diones were associated with their affinity for tyrosine kinase receptors
(RTKs) and their tendency to inhibit extracellular signal-regulated kinases (ERK), vascu-
lar endothelium growth factors and receptors (EGFR and VEGFR2), heat shock proteins,
and P-gp expression. Additionally, melosine isolated from Melodinus cochinchinensis, and
bengacarboline, isolated from Ascidian didemnum, both caused significant inhibition of
MCF7 cells [15]. Therefore, the development of isatin-derived anticancer drugs has be-
come an active research area in the pharmaceutical industry. Accordingly, many drugs
containing indole moiety have been approved by the US Food and Drug Administration
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(FDA) for clinical use as anticancer agents, including sunitinib, osimertinib, alictinib, and
panobinostat [7,15,26].

One of our collaborating research groups in King Saud University, Saudi Arabia, pre-
viously synthesized 15 new heterocyclic isatin derivatives by hybridizing
5,5-diphenylimidazolidine-2,4-dione conjugated with 5-substituted isatin [27]. Those com-
pounds have been tested for their cytotoxic activity in HeLa, A549, and MDA-MB-231
cells. Compound No. 16 (Figure 1) was the most potent candidate against the cell lines,
and showed selective inhibitory activity for EGFR and VEGFR2 (IC50 = 6.17 and 0.09 µM,
respectively) [27]. The mechanism responsible for the anti-VEGFR2 activity was assessed
in that study by molecular docking simulation for compound 16 and sunitinib, to predict
the protein–ligand interactions with the active VEGFR2 site. The findings showed that
both compound 16 and sunitinib bind to the same active site on VEGFR2, suggesting
that compound 16 could inhibit the same kinase target. Subsequently, compound 16 in-
duced caspase-dependent apoptosis and reactive oxygen species (ROS) production in HeLa
cells [27].
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Figure 1. Molecular structure of the isatin derivative: Compound 16 [27], named HAA2021 in the
present study.

Given this background, compound 16 is of particular interest to the present study and
is named HAA2021. The first objective of the present study is to investigate the cytotoxic
activity and selectivity of HAA2021 against six cells, including MCF7 and MCF7/ADR cells
and compare that activity with doxorubicin, followed by determination of the apoptotic
activity of HAA2021, doxorubicin and their combination in MCF7 and MCF7/ADR cells.
The second objective is to investigate the P-gp and Hsp90 binding with HAA2021, and to
determine whether the co-inhibition of P-gp and Hsp90 by HAA2021 contributes to the
increase of the chemosensization of MCF7/ADR cells to doxorubicin, thus reversing the
MDR of MCF7 cells and improving breast cancer chemotherapy.

2. Results
2.1. Synergistic Effects of Doxorubicin and HAA2021
2.1.1. Cytotoxicity and Selectivity of Doxorubicin and HAA2021 against Six Cell-Lines

Determination of the cytotoxicity of doxorubicin against MCF7, HL60, K652, and HT29
cells showed IC50 in the range of 0.03–0.30 µM, with relative selectivity against cancer cells
compared with the normal fibroblast MRC5 ranging from 1.66–16.66 (Table 1). However,
the cytotoxicity of doxorubicin against MCF7/ADR cells decreased to 13.99 µM with
selectivity index of only 0.03. The same table showed the cytotoxicity of HAA2021 against
the four cancer cells (IC50: 0.22–16.04 µM, Table 1). MCF7 cells were the most sensitive
to HAA2021 followed by HL60 cells. The relative selectivity of HAA2021 against cancer
cells compared with MRC5 ranged from 1.19–86.59. Moreover, HAA2021 was less cytotoxic
against MCF7/ADR cells compared with MCF7 cells and showed only 1.10 selectivity
index, but MCF7/ADR cells were less resistant to HAA2021 compared with doxorubicin.
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2.1.2. Increased Chemosensitivity of MCF7/ADR Cells to Doxorubicin following
Synergistic Combination with HAA2021

The cytotoxicity of HAA2021 in combination with different concentrations of doxoru-
bicin was tested against MCF7/ADR cells. There were four points when the IC50 of the
combination was less than the IC50 of doxorubicin or HAA2021 alone against MCF7/ADR
cells. Consequently, the combination index (CI) of the respective four combinations was less
than 1, showing a strong synergistic relationship between the two compounds (according
to CompuSyn software version 1.0, CI = 0.8–0.9: Slight synergism; CI = 0.6–0.8: Moderate
synergism; CI = 0.4–0.6: Synergism; CI = 0.2–0.4: Strong synergism). The least concentration
showing synergism was doxorubicin (1.00 µM) and HAA2021 (0.25 µM) (Table 2, Figure 2).
Therefore, HAA2021, at a non-toxic dose, increased the chemosensitivity of MCF7/ADR
cells to doxorubicin.

Table 1. Cytotoxic activity (MTT 72 h, IC50 ± sd µM) of doxorubicin and HAA2021 against five cell
lines and one normal fibroblast.

Cell Line Doxorubicin HAA2021

IC50 SI a IC50 SI b

MCF7 0.05 ± 0.00 10.00 0.22 ± 0.05 86.59
MCF7/ADR 13.99 ± 2.10 0.03 17.21 ± 2.33 1.10

HL60 0.30 ± 0.04 1.66 2.36 ± 0.69 8.07
K562 0.03 ± 0.00 16.66 16.04 ± 4.45 1.19
HT29 0.04 ± 0.00 12.50 5.06 ± 1.61 3.76
MRC5 0.50 ± 0.09 - 19.05 ± 1.03 -

SI: Selectivity index = IC50 value of doxorubicin a or HAA2021
b against normal MRC5 cells/ IC50 value of

doxorubicin or HAA2021 against either of the other cells. (-): Not applicable.

Table 2. IC50 (µM) and combination index of MCF7/ADR cells treated (72 h) with different concen-
trations of doxorubicin and HAA2021.

Drug (µM)
IC50 CI a R b

Doxorubicin HAA2021

- 0–50 17.21 ± 2.33 - -
0–50 - 13.99 ± 2.10 - -
0.25 0.25 15.09 ± 1.03 >100 0.97
0.50 0.25 14.34 ± 3.00 4.555 0.91
1.00 0.25 6.04 ± 1.01 0.014 0.97

0.25 0.50 14.64 ± 2.60 >100 0.89
0.50 0.50 5.54 ± 0.87 0.692 0.93
1.00 0.50 1.01 ± 0.12 0.003 0.90

0.25 1.00 14.09 ± 2.87 90.244 0.95
0.50 1.00 13.02 ± 1.99 3.670 0.93
1.00 1.00 0.89 ± 0.07 0.001 0.94

a CI: Combination index (Fa = 0.5); b, r: The linear correlation coefficient of the ME-plot, which signifies the
conformity of the data with the mass-action law (an indication of how good the data are).

2.1.3. Synergistic Apoptotic Effect of Doxorubicin and HAA2021 in MCF7 and
MCF7/ADR Cells

The annexin V/FITC apoptosis assay was used to investigate the apoptotic effect of
doxorubicin and HAA2021 and their combination in MCF7 and MCF7/ADR cells. The
concentrations used were derived from Table 2, i.e., doxorubicin (1 µM) and HAA2021
(0.25 µM). The cells were exposed to the drug for 72 h, since at that time-point there is
more possibility of drug resistance compared with the earlier time-points. Doxorubicin
caused a significant induction of apoptosis in MCF7 cells, but it lost 6.5-fold of that activity
against MCF7/ADR cells with the same dose/time of treatment (Figure 3B,F). Despite the
fact that HAA2021 showed less effect on MCF7 and MCF7/ADR cells, respectively, it lost
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only 4.5-fold activity against MCF7/ADR cells compared with doxorubicin (Figure 3C,G).
Interestingly, the combination of doxorubicin and HAA2021 caused more induction of
apoptosis in MCF7 and MCF7/ADR cells compared with the effect of each compound
alone, and the decrease of apoptosis in MCF7/ADR cells compared with MCF7 cells was
down to less than 3-fold (Figure 3D,H). This result agrees with the previous cytotoxicity
results, showing that HAA2021 increased the chemosensitivity and apoptosis inducing
ability of MCF7/ADR cells to doxorubicin.
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Figure 2. Non-constant drug ratio logarithmic combination index plot of doxorubicin and HAA2021

calculated using CompuSyn software. X-axis: Fraction affected (Fa: 0.5), y-axis: Log of combination
index (CI). The six points in the legend corresponds with the CI values in Table 2. Green triangles:
Combination of doxorubicin and 0.25 µM of HAA2021. Red rectangles: Combination of doxorubicin
and 0.50 µM of HAA2021. Blue circles: Combination of doxorubicin and 1.00 µM of HAA2021. Plots
are results of absorbance generated in three independent experiments (n = 3). CI > 1.1: Antagonism;
CI = 0.9–1.1: Additive; CI = 0.8–0.9: Slight synergism; CI = 0.6–0.8: Moderate synergism; CI = 0.4–0.6:
Synergism; CI = 0.2–0.4: Strong synergism. Plots were generated using CompuSyn software.

2.2. Inhibition of P-gp by HA2021
2.2.1. Molecular Modeling of HA2021/P-gp

In order to evaluate the potential binding mode of HAA2021 within P-glycoprotein (P-
gp), molecular modeling studies were performed employing the robust docking procedure.
The cryo-EM structure of human P-gp in complex with the known inhibitor zosuquidar
was used for this study (PDB code 7A6F) [28]. In this case, the docking protocol identified
a reliable cluster of solutions (see Section 4.2.4 for details). Therefore, the docking pose
belonging to this cluster associated with the best estimated binding energy was selected as
a representative binding mode. Recent studies demonstrated that, while a single molecule
of P-gp substrates, such as vincristine, exclusively interacts with the central pocket of the
protein, two different molecules of inhibitors, such as zosuquidar, elacridar, and tariquidar
interact with the receptor at the same time, occupying also additional portions of the
binding site, which would justify their inhibitory effect [28]. For this reason, we envisioned
that two molecules of HAA2021 would bind to P-gp at the same time, as well. Therefore, the
predicted HAA2021-P-gp complex was used for a second docking study aimed at predicting
the binding disposition within the receptor of a second molecule of the ligand. Once again,
a reliable cluster of solutions was identified, and the corresponding best energy pose was
selected as the representative binding mode. As shown in Figure 4, the two molecules of
HAA2021 are disposed perpendicularly to each other and interact both with the surrounding
protein residues and with each other. A first ligand molecule (shown in green in Figure 4)
occupies a wide portion of the central pocket of the protein, forming an h-bond with Y310
and a second one with Y307. The diphenylidantoin core of the molecule shows extensive
hydrophobic interactions with the side chains of Q725, F728, F983, M986, and A987, while
the isatin moiety interacts with I340 and F343. The second molecule of HAA2021 (shown in
cyan in Figure 4) occupies the central pocket of the protein with the isatin-derived moiety,



Molecules 2022, 27, 90 6 of 24

which forms lipophilic interactions with F983 and M986, as well as an h-bond with the
carbonyl group of the isatin moiety of the first ligand molecule. Moreover, the central
portion of the ligand forms an additional h-bond with the side chain of Q990. Finally, the
diphenylidantoin core of the second inhibitor molecule extends into the vestibule of P-gp
binding site, forming a double π-π stacking with F303 and W323, as well as hydrophobic
interactions with I299, A302, M876, and Q990.
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Figure 3. Induction of apoptosis in MCF7 and MCF7/ADR cells treated (72 h) with (A,E) vehi-
cle control, (B,F) doxorubicin (1 µM), (C,G) HAA2021 (0.25 µM), and (D,H) doxorubicin/HAA2021

combination (1 and 0.25 µM, respectively). (I,J) Stacked histograms of the effect of doxorubicin
and HAA2021 on MCF7 and MCF7/ADR cells. Results were expressed as mean ± SD, n = 3 × 3
independent experiments. C1: Necrosis, C2: Late apoptosis, C3: Live cells, C4: Early apoptosis.

2.2.2. Concentration-Dependent Inhibition of P-gp in MCF7/ADR Cells by HAA2021 Using
Rho123 Efflux and Accumulation Assays

The rhodamine-123 (Rho123) efflux assay was performed to test the activity of HAA2021
against P-gp in MCF7/ADR cells. Rho123 is a fluorescent dye which is a known substrate
for P-gp. The effect of several concentrations of HAA2021 was compared with the effect of
verapamil as a positive control for P-gp inhibition. HAA2021 (125–1000 nM) showed signifi-
cant inhibitory effects on the efflux of Rho123 from MCF7/ADR cells in a concentration-
dependent manner, (1.05-, 1.68-, 1.83-, and 1.93-fold increase compared with verapamil,
Figure 5A). To further confirm the HAA2021 P-gp-modulatory effect, the Rho123 accumu-
lation assay was carried out with MCF7/ADR cells. After the efflux period, the Rho123
fluorescence was quantified by a spectrofluorometer. HAA2021 (125–1000 nM) significantly
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increased the intracellular fluorescence in a dose-dependent manner in MCF7/ADR cells
(150–290 FIU: fluorescence intensity unit) more than verapamil (98 FIU) (Figure 5B).
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Figure 5. The effect of different concentrations HAA2021 on the P-gp transporter protein in
MCF7/ADR cells. (A) The Rho123 efflux assay. Data expressed as mean ± SD of P-gp inhibitory
efficiency compared with verapamil as a positive control (100%) as represented as the dashed line to
show the decrease of efflux. (B) Accumulation assay. Rho123-FIU was used to compare the Rho123
fluorescence accumulation by HAA2021 with the untreated control (CT −ve), verapamil positive
control (CT +ve) in MCF7/ADR, to show the increase of doxorubicin accumulation. *** p < 0.001
indicated the significant difference of treated cells compared with verapamil.

2.3. Inhibition of Hsp90α by HA2021
2.3.1. Surface Plasmon Resonance Analyses of HA2021/Hsp90α

The interaction between HA2021 with Hsp90α (full length protein) was investigated
by a surface plasmon resonance-based (SPR) binding assay [29–33]. Radicicol and
17-N-allylamino-17-demethoxygeldanamycin (17-AAG) [34–36] were chosen as positive
controls. It was found that HA2021 interacted efficiently with the immobilized protein. As a
result of fitting the relative sensorgrams to a single-site bimolecular interaction model, the
thermodynamic parameters for the resulting complex formation were determined.

The analysis of the resulting sensorgram (Figure 6) clearly showed a significant reversible
interaction of HAA2021 and 17-AAG with the protein, as demonstrated by the concentration-
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dependent responses (ranging from 0.025 to 4 µM), and by the clearly discernible exponential
curves, during both the association and dissociation phases (Figure 6A,C). These data indi-
cate that compounds HAA2021 and 17-AAG have a similar binding mode towards Hsp90α,
whereas the radicicol sensorgram (Figure 6B) showed parallel curves in the dissociation
phase, thus indicating that the complexes formed by the interaction of the protein were ex-
tremely stable. The results are consistent with the SPR results obtained with the full-length
protein (Table 3). This approach allowed the measurement of 41.20 nM KD (equilibrium
dissociation constant) for the Hsp90α/HAA2021 complex compared with 1.20 nM KD
for the Hsp90α/radicicol complex. Interestingly, HAA2021 showed an affinity towards
the chaperone that was greater than determined for 17-AAG (KD = 360.00 nM) (Table 3,
Figure 6).
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Figure 6. Surface plasmon resonance sensorgram acquired for HAA2021 (A) interacting with Hsp90α
and for the positive controls radicicol (B) and 17-AAG (C). Each compound was injected onto the
Hsp90α modified sensor chip at six different concentrations in the range of 0.025–4.000 µM. X-axis:
time (s), y-axis: response units.

Table 3. Thermodynamic constants (mean ± sd) measured by SPR for the interaction between the
tested compounds and immobilized Hsp90α.

Compound KD (nM) a

HAA2021 41.20 ± 2.10
Radicicol 1.80 ± 0.40
17-AAG 360.00 ± 21.90

a Results were given as the mean ± standard deviation.
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2.3.2. Molecular Modeling of HA2021/Hsp90α

With the aim of providing a possible model for the interaction between HAA2021 and
Hsp90α, docking studies followed by molecular dynamic (MD) simulation and relative
binding energy evaluations were performed. X-ray structures of Hsp90α show remarkable
plasticity, particularly in residues 104–111 located in α-helix3, that can adopt “loop-in” or
“loop-out” conformations. Furthermore, recent studies have revealed ligands occupying
an additional binding subpocket created by the rearrangement of residues 104–111 into
a continuous helical conformation [37]. On this basis, a representative structure of the
“loop-in”, “loop-out”, and “helical” conformations was considered. As a first step of
our analysis, HAA2021 was docked into the three protein conformations by applying a
robust AutoDock procedure that had previously shown good results in virtual screening
studies and in the prediction of ligand’s binding poses [38,39]. For each of the three protein
conformations, the 200 different docking results generated were clustered using a root-
mean-square deviation (RMSD) threshold of 2.0 Å. In total, 11 clusters of solutions were
thus identified and considered for further studies: Five clusters for the “helix”, four for
the “loop-in”, and two for the “loop-out” protein conformation (Section 4.2.4). For each
cluster, the docking pose associated with the best estimated binding energy was selected as
a representative binding mode.

Then, the stability of the 11 different binding modes was assessed by means of MD
simulations. The different complexes were subjected to a total of 12.5 ns of MD simulation
and the RMSD of the ligand’s position with respect to the original docking pose was
analyzed. Although in each complex the ligand showed at least some adjustment of its
binding pose, in the case of cluster 2 of the “loop-in” and cluster 1 and 2 of the “loop-out”
protein conformation, the ligand showed greater RMSD fluctuation (Figure 7), suggesting
that the ligand was endowed with a higher freedom of movement inside the binding site,
and thus maintained the binding disposition with a low stability. On the contrary, cluster 1
and 5 of the “Helix” and cluster 1 and 3 of the “loop-in” protein conformation showed the
higher stability with and average RMSD value smaller than 2.0 Å.
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To better assess the reliability of the different Hsp90/HAA2021 binding complexes, the
corresponding ligand-protein interaction energies were evaluated from the MD coordinates
extracted from the last 10 ns of simulation. The molecular mechanics-generalized born
surface area (MM-GBSA) and the molecular mechanics-Poisson Boltzmann surface area
(MM-PBSA) methods, reliably assessing the binding energy interaction, as shown in [40–42],
were used for the calculation (see Section 4.2.4 for details).

These approaches analyze the MD simulation snapshots and calculate the contribu-
tions of both gas-phase and solvation free energies for unbound ligand, unbound protein,
and bound complex. Then, the average contribution of each component is used to calculate
the ligand-protein interaction energy. As shown in Table 4, the analysis identified cluster
1 of the “loop-in” protein conformation as the most reliable binding mode, since it showed
the best binding energy according to both evaluation methods (∆GBSA = −47.0 kcal/mol;
∆PBSA = −37.8 kcal/mol) and exceeded by at least 10 kcal/mol the interaction energies
associated with the other poses.

Table 4. MM-GBSA and MM-PBSA results for the eleven different Hsp90-HAA2021 complexes.
∆GBSA and ∆PBSA are the sum of the van der Waals (VDW), electrostatic (ELE), as well as po-
lar (EGB/EPB) and non-polar (ESURF/ENPOLAR) solvation free energy. Data are expressed as
kcal·mol−1.

MM−GBSA Method

Hsp90−HAA2021 Complex VDW ELE EGB ESURF ∆GBSA

Hel. CL1 −51.9 −8.3 33.8 −6.7 −33.1
Hel. CL2 −47.2 −33.0 49.3 −6.0 −36.9
Hel. CL3 −45.4 −26.1 44.6 −6.2 −33.2
Hel. CL4 −50.3 −8.8 34.1 −6.2 −31.1
Hel. CL5 −45.4 −10.1 33.3 −5.8 −28.1

L.−in CL1 −51.4 −40.7 51.3 −6.2 −47.0
L.−in CL2 −40.1 −41.2 56.3 −5.5 −30.4
L.−in CL3 −45.4 −47.9 69.0 −6.2 −30.5
L.−in CL4 −40.5 −18.2 35.7 −5.2 −28.1

L.−out CL1 −34.6 −18.7 36.2 −4.4 −21.6
L.−out CL2 −41.1 −1.6 23.9 −5.2 −23.9

MM−PBSA method

Hsp90−HAA2021 Complex VDW ELE EPB ENPOLAR ∆PBSA

Hel. CL1 −51.9 −8.3 43.1 −5.1 −22.2
Hel. CL2 −47.2 −33.0 59.0 −4.8 −26.0
Hel. CL3 −45.4 −26.1 57.0 −4.9 −19.5
Hel. CL4 −50.3 −8.8 43.3 −4.8 −20.5
Hel. CL5 −45.4 −10.1 37.2 −4.8 −23.1

L.−in CL1 −51.4 −40.7 58.9 −4.6 −37.8
L.−in CL2 −40.1 −41.2 69.6 −4.4 −16.1
L.−in CL3 −45.4 −47.9 76.7 −4.4 −21.1
L.−in CL4 −40.5 −18.2 45.7 −4.0 −17.0

L.−out CL1 −34.6 −18.7 43.8 −3.9 −13.5
L.−out CL2 −41.1 −1.6 31.6 −4.1 −15.2

Figure 8 illustrates the minimized average structure of HAA2021 complexed with
Hsp90 (obtained from cluster 1 in the “loop-in” protein conformation) in the predicted
binding mode obtained from the last 10 ns of MD simulation. The two phenyl rings are
placed into a lipophilic cavity of the protein and show lipophilic interactions with I96, M98,
L107, F138, V150, T184, and V186. The imidazolindione-2,4-dione ring shows an h-bond
with the oxygen backbone of N51, whereas the 3-hydrazonioindolinone fragment shows
two h-bonds with the sidechain of N51 and one h-bond with the sidechain of E47. An
analysis of these four h-bonds suggests that these interactions are very stable as they were
maintained for more the 85% of the whole MD simulation.



Molecules 2022, 27, 90 11 of 24

By comparing the predicted binding mode of the ligand with the binding disposition
of radicicol (PDB code: 4EGK), it can be seen that the two phenyl rings of HAA2021 are
located within the same lipophilic cavity occupied by the cyclic core of Radicicol, which
presents h-bonds with K58, T184, and D93 (Figure 9). Although HAA2021 does not form any
h-bond within this cavity, it also interacts with an additional portion of the binding site and
is well anchored to the protein thanks to the four h-bonds described above, thus justifying
its high affinity towards the protein (KD 41.20 nM), albeit reduced with respect to radicicol
(KD 1.80 nM). To further demonstrate the reliability of the predicted binding mode of
HAA2021, the MD simulation of the corresponding Hsp90-HAA2021 complex was extended
to 200 ns. The results confirmed the strong stability of both the binding disposition of the
ligand, with an RMSD value below 2.0 Å (Figure 10), and its interactions with the protein
(Figure 11).
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2.3.3. HAA2021 Inhibits Hsp90α and NF-κB in MCF7 and MCF7/ADR Cells

Using the immunofluorescence staining method, the protein expression of NF-κB
(green) and Hsp90α (red) were detected in the untreated MCF7 and MCF7/ADR cells.
Both proteins showed strong staining intensities (Figure 12). Cells treated with 0.12 µM
of HAA2021 disclosed a marked decrease in the Hsp90α, but not the NF-κB, relative to the
untreated cells. In contrast, the protein expression of NF-κB declined significantly with
the 0.25 µM concentration compared with the non-treated cells and the cells treated with
0.12 µM of HAA2021, whereas the Hsp90α staining intensities were comparable between
the 0.25 and 0.12 µM treatments. On the other hand, the lowest significant immunostaining
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intensities for both proteins were observed with the 0.50 µM compared with all groups.
HAA2021 showed more inhibition of Hsp90α and NF-κB in MCF7 compared with the
MCF7/ADR cells.

 
 

 

 
Molecules 2021, 26, x. https://doi.org/10.3390/xxxxx www.mdpi.com/journal/molecules 

 
 

(A) 

 
(B) 

DA
PI

Hs
p9

0
Me

rg
ed

NF
κB

-p
50

HAA2021 (0.5µM)HAA2021 (0.25µM)Vehicle Control HAA2021 (0.12µM)

DA
PI

Hs
p9

0
Me

rg
ed

NF
κB

-p
50

HAA2021 (0.5µM)HAA2021 (0.25µM)Vehicle Control HAA2021 (0.12µM)

Figure 12. Cont.



Molecules 2022, 27, 90 14 of 24Molecules 2021, 26, x FOR PEER REVIEW 2 of 2 
 

 

 
(C) 

 
(D) 

Figure 12. Double localization of NF-κB (green) with Hsp90α (red) by immunofluorescence in the MCF7 (A) and 
MCF7/ADR cells (B) following treatments with different concentrations of HAA2021 for 72 h (40× objective; scale bar = 10 
µm). Arbitrary scores of the immunofluorescent stain intensity/MCF7 cells (C) and MCF7/ADR cells (D) (mean ± SD) 
for each protein are shown as graph bars (a = p < 0.05 compared with the control untreated cells; b = p < 0.05 compared 
with the 0.12 µM treatment; and c = p < 0.05 compared with the 0.25 µM treatment). 

Hsp90
NFκB-p50

0.50 µM0.12 µM 0.25 µMControl

70,000

60,000

50,000

40,000

30,000

20,000

10,000

0

St
ain

 In
te

sit
y /

 C
ell

 (A
rb

itr
ar

y U
ni

t)

a,b,c
a,b,c

a
a,b

a

Immunofluorescnce Arbitrary scores (mean ± SD) of NFκB-p50 and Hsp90
proteins following treatment with different concentrations of HAA 2021

Hsp90
NFκB-p50

0.50 µM0.12 µM 0.25 µMControl
0

10,000
20,000
30,000
40,000
50,000
60,000
70,000
80,000
90,000

100,000

St
ain

 In
te

sit
y /

 C
ell

 (A
rb

itr
ar

y U
ni

t)

a,b,c

a,b,c

a
a,ba

Immunofluorescnce Arbitrary scores (mean ± SD) of NFκB-p50 and Hsp90
proteins following treatment with different concentrations of HAA 2021

Figure 12. Double localization of NF-κB (green) with Hsp90α (red) by immunofluorescence in the
MCF7 (A) and MCF7/ADR cells (B) following treatments with different concentrations of HAA2021

for 72 h (40× objective; scale bar = 10 µm). Arbitrary scores of the immunofluorescent stain inten-
sity/MCF7 cells (C) and MCF7/ADR cells (D) (mean ± SD) for each protein are shown as graph
bars (a = p < 0.05 compared with the control untreated cells; b = p < 0.05 compared with the 0.12 µM
treatment; and c = p < 0.05 compared with the 0.25 µM treatment).

2.4. Synergistic Inhibition of P-gp/Hsp90α in MCF7/ADR Cells by Doxorubicin and HAA2021

Regarding the results of the present study, HAA2021 was proven to cause the inhibition
of P-gp and Hsp90 in MCF7/ADR cells. To confirm the simultaneous effect of HAA2021 on
these two proteins, the mRNA amount of P-gp and Hsp90 genes were assessed by real-time-
PCR following the treatment of MCF7/ADR cells with the vehicle control, doxorubicin
(1 µM), HAA2021 (0.25 µM), and their combination (doxorubicin 1 µM, HAA2021 0.25 µM,
respectively) for 72h. Doxorubicin alone caused no inhibition of P-gp, while HAA2021 when
combined with doxorubicin caused a significant inhibition of P-gp (Figure 13). However,
doxorubicin caused a significant inhibition of Hsp90 gene, and similarly HAA2021 and
its combination with doxorubicin caused the highly significant inhibition of Hsp90. The
combination of HAA2021 and doxorubicin caused a synergistic inhibition of P-gp and Hsp90
gene expression in MCF7/ADR cells.
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3. Discussion

Naturally occurring isatins and their derived compounds, both as multi-target or
combined-agents, have established anticancer activities supported by the approval of FDA
for many anticancer drugs, including sunitinib, osimertinib, alictinib, and panobinostat [15].

The cytotoxicities of HAA2021 and doxorubicin were tested in the present study against
six cells using the MTT assay. Then, HAA2021 and doxorubicin were combined to exam-
ine the possibility of chemosensitizing MCF7/ADR cells to doxorubicin, as the later IC50
against MCF7/ADR cells was only 13.99 µM compared with 0.05 µM against MCF7 cells.
Therefore, doxorubicin lost around 280-fold of its activity to MCF7/ADR cells. Interestingly,
HAA2021 has previously shown cytotoxicity against three cells, including MDA-MB-231
breast cancer cells [27]. In the present study, HAA2021 exhibited cytotoxicity against five
cancer cells, with the most significant effect against MCF7 breast cancer cells and the least
against MCF7/ADR breast cancer cells (IC50: 0.22 and 17.21 µM, respectively). However,
the MCF7/ADR cell line was less resistant to HAA2021 compared with doxorubicin, as
HAA2021 showed 1.10 selectivity compared with only 0.03 by doxorubicin for MCF7/ADR
cells. The CI of HAA2021 and doxorubicin against MCF7/ADR cells showed a synergistic
relationship (0.001–0.692) in four concentration points (according to CompuSyn software,
CI = 0.8–0.9: Slight synergism; CI = 0.6–0.8: Moderate synergism; CI = 0.4–0.6: Syner-
gism; CI = 0.2–0.4: Strong synergism). The least concentration showing synergism was
doxorubicin/HAA2021: 1 µM /0.25 µM. Therefore, HAA2021, at non-toxic doses, increased
the chemosensitivity of MCF7/ADR cells to doxorubicin. Additionally, in agreement with
that result, the combination of doxorubicin/HAA2021 (1 µM /0.25 µM) also caused the
synergistic induction of apoptosis in MCF7/ADR cells using the annexin V/FITC assay.

Next, we performed molecular modeling studies for prediction of the interaction mode
between HAA2021 and P-gp, which showed that two molecules of HAA2021 would bind
to P-gp at the same time, and are disposed perpendicularly to each other, thus interacting
with the surrounding protein residues and with each other. To confirm this relationship
with another cell-based assay, HAA2021 was found to cause a concentration-dependent
P-gp inhibitory effect on the MDR efflux pump compared with verapamil. Consequently,
HAA2021 increased the MCF7/ADR intracellular fluorescence and accumulation of Rho123
in a dose-dependent manner, as compared with verapamil again. Similarly, in a previous
study, the synthesized N-alkylated isatins were found to decrease the P-gp mediated efflux
in the MES-SA/Dx5 MDR cells, resulting in apoptosis [43].
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In the next step, we performed studies to investigate the possible interaction between
HAA2021 and Hsp90 [30,31,33,39]. First, the SPR technique was used, which showed that
HAA2021 interacted efficiently with the immobilized Hsp90α protein at 41.20 nM KD, which
was significantly better than the interaction between Hsp90 and 17-AAG (KD = 360.00 nM).
Second, we used a molecular docking model followed by molecular dynamic (MD) simula-
tion to study the interaction mode between HAA2021/Hsp90. The study showed that the
two phenyl rings of HAA2021 are placed into a lipophilic cavity of the protein and showed
hydrophobic interactions with I96, M98, L107, F138, V150, T184, and V186. Moreover,
the imidazolindione-2,4-dione ring showed an h-bond with the oxygen backbone of N51,
whereas the 3-hydrazonioindolinone fragment showed two h-bonds with the sidechain of
N51 and one h-bond with the sidechain of E47. This all suggest that the interactions are
very stable as they were maintained for more than 85% of the whole MD simulation. As a
conformational step for the Hsp90 inhibition activity, we used the cell-based immunoflu-
orescence staining, which was employed to detect the protein expression of Hsp90 and
NF-κB in MCF7 and MCF7/ADR cells following the treatment with HAA2021. The treated
cells showed significant decreases in the Hsp90 and NF-κB proteins relative to the untreated
cells, while proteins were more inhibited in MCF7 cells compared with MCF7/ADR cells. It
was previously documented that the inhibition of Hsp90 causes the deactivation of NF-κB
through many mechanisms, including the disassociation of the inhibitor of IκB kinase
(IKK) [44]. Finally, while doxorubicin alone did not show an inhibiting effect on P-gp at
1 µM, we confirmed that the combination of doxorubicin/HAA2021 (1 µM/0.25 µM, respec-
tively) synergistically co-inhibited the expression of P-gp/Hsp90α genes in MCF7/ADR
cells using RT-PCR assays.

According to the present study, combining HAA2021, at a non-toxic dose, with dox-
orubicin synergistically inhibited the proliferation while inducing significant apoptosis
in MCF7 cells. HAA2021 also increased the chemosensitization of MCF7/ADR cells to
doxorubicin, paving the way for better cytotoxicity/ selectivity and apoptosis-inducing
efficiency compared with the effect of each compound against MCF7/ADR cells. Exploring
the molecular modeling apoptotic pathways showed that two molecules of HAA2021 would
bind to P-gp at the same time, causing a concentration-dependent P-gp inhibitory effect on
the MDR efflux pump and the accumulated Rho123 in MCF7/ADR cells.

HAA2021 stably interacted with Hsp90α more efficiently compared with 17-AAG, as
confirmed with the SPR and molecular modeling studies. Additionally, HAA2021 showed
multi-target effects via the inhibition of Hsp90 and NF-κB proteins both in MCF7 and
MCF7/ADR cells. In a study, the NF-κB was found to be involved in the activation of
MDR expression in cancer cells [45]. Moreover, the inhibition of Hsp90 was documented to
contribute to the reversal of cancer MDR [46,47].

Many cancers can be considered in general as complex and multi-drug resistance
(MDR) diseases, which necessitate continuous discovery and derivatization of effective
molecules [12–14,16,17]. HAA2021, whether combined with doxorubicin or alone, has
proven in the present study to have apoptotic, chemosensitizing/MDR reversal activ-
ity in MCF7/ADR cells, in addition to its Hsp90/ NF-κB inhibitory activities in MCF7
cells (Figure 14). The molecular docking and molecular dynamic simulation studies per-
formed were supported by in vitro data in five cancer cells in the present study, including
doxorubicin-sensitive (MCF7) and -resistant (MCF7/ADR) cell lines. Many Hsp90 in-
hibitors are expelled off their target cells by members of the ABC transporters, especially
P-gp [48]. Proving that HAA2021, as an inhibitor of Hsp90, is not affected by the pumping
out of the cancer cell by the P-gp could be an interesting point for the development of this
compound. Further pharmacokinetic and in vivo studies for HAA2021 are warranted to
guarantee its anticancer capabilities.
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Figure 14. (A) HAA2021 inhibits the expression of Hsp90 and NF-kB in MCF7 cells leading to apopto-
sis. (B) The chemosensitizing effect of HAA2021 on MCF7/ADR cells to doxorubicin. The combination
of HAA2021/doxorubicin enhances the doxorubicin-resistance, downregulates the P-gp protein syn-
thesis and expression, and inhibits its efflux pump action, thus improving the accumulation of
doxorubicin, and potentiating its targets on MCF7/ADR cells leading to apoptosis.

4. Materials and Methods
4.1. Chemicals and Reagents

All of the chemicals and reagents were obtained from Merk and Sigma-Aldrich Co. (St.
Louis, MO, USA), unless another supplier is mentioned in the manuscript. HAA2021 was
kindly provided by collaborators from King Saud University, Saudi Arabia (Figure 1, [27]).

4.2. Methods
4.2.1. Cells and Maintenance

Five cancer cell lines: MCF7, MCF7/ADR, HT29, HL60, and K562 were used in
the present study, in addition to the MRC5 normal fibroblast. All of the cells, except
MCF7/ADR, were obtained from the ATCC (Manassas, VA, USA). The five cancer cells
were maintained in RPMI-1640 media (10% FBS), while the MRC5 was maintained in Eagles
minimum essential medium (EMEM, 10% FBS), with all of the cells containing 1% antibiotic-
antimycotic. CO2 incubator conditions: 37 ◦C, 5% CO2, and 100% relative humidity [49].
MCF7/ADR cell line was sub-cultured in RPMI-1640 media containing gradually added
doxorubicin (up to 5 µg/mL) under the same above conditions. Doxorubicin was excluded
from subcultures 5 days prior to the experiments.

4.2.2. MTT Cytotoxicity, Selectivity, and Combination Assays

Following the previously reported methods [50,51], the cytotoxicity of HAA2021 was
evaluated by the MTT assay. The five cell lines and one normal fibroblast cell were sepa-
rately cultured in 96-well plates (3 × 103/ well), and incubated at 37 ◦C overnight. Final
HAA2021 concentrations: 0.00–50.00 µM in triplicates. The plates were incubated for 72 h,
followed by the addition of MTT to each well. Next, the plates were incubated for 3 h, the
supernatant was aspirated, the DMSO was added to each well, and the absorbance was
read on a multi-plate reader. The HAA2021 concentration causing 50% inhibition (IC50)
compared with the control cell growth (100%) was determined. The selectivity index (SI)
was calculated by dividing the IC50 of MRC-5 cells by the IC50 of either of the used cells. In
the combination study, the MCF7/ADR cells were treated with different concentrations
of doxorubicin and HAA2021 for 72 h. Next, the IC50 value of each point was used for the
calculation of the combination index (CI) using the CompuSyn software, as previously
described [52].
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4.2.3. Determination of Apoptosis by Flowcytometery

The annexin V/FITC double staining assay was used to test the possible apoptosis
inducibility of MCF7 and MCF7/ADR cells (1 × 106 cells/ 6-well plate) treated with the
vehicle control (0.00 µM), doxorubicin (1 µM), HAA2021 (0.25 µM) or their combination for
72 h. Annexin V and propidium iodide (Invitrogen, Waltham, MA, USA) were used ac-
cording to a previous report [53]. The samples were finally investigated by flowcytometery
using the Beckman coulter flow cytometer (BC, FC500).

4.2.4. Molecular Docking Calculations

The crystal structure of the “loop-in”, “loop-out”, and “helical” conformations of
Hsp90 protein (5J64, 1YET, and 2WI7 PDB codes, respectively) were taken from the Protein
Data Bank [54]. After adding hydrogen atoms, the proteins were minimized using the
Amber16 software and the ff14SB force field at 300 K. The complexes were placed in a
rectangular parallelepiped water-box, an explicit solvent model for water, TIP3P, was
used and the complex was solvated with a 20 Å water cap. Sodium ions were added as
counter ions to neutralize the system. Then, two steps of minimization were carried out.
In the first stage, we kept the protein fixed with a position restraint of 500 kcal/molÅ2

and we solely minimized the positions of the water molecules. In the second stage, we
minimized the entire system through 5000 steps of the steepest descent followed by the
conjugate gradient (CG) until a convergence of 0.05 kcal/Å·mol. The ligand was built using
Maestro and was minimized by means of Macromodel in a water environment using the
CG method until a convergence value of 0.05 kcal/Å·mol, using the MMFFs force field
and a distance-dependent dielectric constant of 1.0. The AutoDock 4.0 software [55] was
employed for molecular docking. The identification of the torsion angles in the ligands,
the addition of the solvent model, and the determination of protein and ligand atomic
charges was carried out using AutoDock tools. Kollmann charges were assigned to the
protein and Gasteiger charges to the ligand. A grid spacing of 0.375 Å and a distance-
dependent function of the dielectric constant were used for the energetic map calculations.
The compounds were subjected to a robust docking procedure by applying 200 runs of
AutoDock search, using the Lamarckian Genetic Algorithm with 10,000,000 steps of energy
evaluations [56]. The number of individuals in the initial population was set to 500 and
a maximum of 10,000,000 generations were simulated during each docking run. Cluster
analysis was performed on the results using an RMS tolerance of 2.0 Å. Only the binding
modes populated for more than 10% in the corresponding clusters of poses were considered,
for a total of 11 different clusters.

The docking studies aimed at evaluating the potential binding mode of HAA2021
within P-glycoprotein, were performed using the cryo-EM structure of human P-gp in
complex with the known inhibitor zosuquidar (PDB code 7A6F) [28] employing the same
robust docking procedure used for the docking studies within Hsp90α. In this case, one
of the generated clusters of solutions showed the highest population and the best binding
energy. Therefore, it was selected as the most reliable cluster of solution. The docking of
the second molecule of HAA2021 was performed in the P-gp-HAA2021 complex predicted
through the first docking study. The cluster of solution showing the highest population
and the best binding energy was again selected as the most reliable one.

Molecular Dynamic (MD) Simulations

All of the simulations were performed using AMBER, version 16 and were carried
out using the ff14SB force field at 300 K. General Amber force field (GAFF) parameters
were assigned to the ligand, while partial charges were calculated using the AM1-BCC
method with the Antechamber suite of AMBER 16. Using the TIP3P explicit solvent model,
a 20 Å water cap was generated around the complexes, which was thus placed at the
center of a rectangular parallelepiped box of explicit water molecules. Then, sodium ions
were added for the neutralization of the systems. Prior to MD simulations, two steps
of energy minimization were performed with the same procedure described above. The
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minimized structures of the complexes were used as the starting conformations for the MD
simulations, which were run using Particle Mesh Ewald (PME) electrostatics and periodic
boundary conditions. The time step of the simulations was 2.0 fs with a cutoff of 10 Å
for the non-bonded interaction, while SHAKE was employed to keep all of the bonds
involving the hydrogen atoms rigid. An initial MD step of 0.5 ns with constant-volume
periodic boundary conditions was performed and the temperature of the system was raised
from 0 to 300 K. Subsequently, a second step of constant pressure periodic boundary MD
was run for 12 ns, keeping the temperature of the system at the constant value of 300 K
with a Langevin thermostat. A harmonic potential of 10 kcal/mol·Å2 was applied on all
α carbons of the protein during both MD steps. The final structure of HAA2021-Hsp90
complex corresponded to the average of the last 10.0 ns of MD minimized by the CG
method until a convergence of 0.05 kcal/mol·Å2. The average structure was obtained using
the CPPTRAJ program [57] implemented in AMBER 16.

Binding Energy Evaluation

The evaluation of the binding energy associated with the different ligand-protein
complexes analyzed through MD simulations was carried out using AMBER 16, as already
reported [58]. The trajectories relative to the last 10 ns of each simulation were extracted
and used for the calculation, for a total of 100 snapshots (at time intervals of 100 ps). Van der
Waals, electrostatic, and internal interactions were calculated with the SANDER module
of AMBER 16, whereas polar energies were calculated using both the Generalized Born
and the Poisson−Boltzman methods with the MM-PBSA module of AMBER 16. Dielectric
constants of 1 and 80 were used to represent the gas and water phases, respectively, while
the MOLSURF program was employed to estimate the nonpolar energies. The entropic
term was considered as approximately constant in the comparison of the ligand−protein
energetic interactions.

4.2.5. Rhodamine123 Efflux Assay by Flowcytometery

Individual cell fluorescence measurements were carried out as previously described [59].
The efflux was induced by incubating MCF-7/ADR cells with a fluorescent marker at the in-
tensity of 1 × 104 cells. This intensity was utilized to compare different settings. Verapamil
was used as a positive control since it was shown to greatly limit the active efflux of fluores-
cent substrate indicators mediated by P-gp. To quantify and compare the effects of various
concentrations (125–1000 nM), the fluorescence intensity of treated cells was normalized by
calculating the relative fluorescence intensity (inhibitory efficiency) as a percentage of the
positive (verapamil = 100) and negative untreated controls. The investigation was carried
out using the Beckman coulter flow cytometer (BC, FC500).

4.2.6. Rhodamine123 Accumulation Assay by Spectrofluorometer

The settings for cell seeding and growth were identical to those used in the previously
reported accumulation experiments [60]. MCF-7/ADR cells in 96-well plates were washed
twice with PBS and then treated for 60 min at 37 ◦C with 1 g/mL Rho123 to load the
cells. Following x2 washes with PBS, cells were incubated in media containing several
concentrations of HAA2021 (125–1000 nM). After 120-min of incubation at 37 ◦C, cells were
washed twice with a cold PBS. SpectraMaxII spectrofluorometer was used to detect the
concentration-dependent effect of HAA2021 by measuring the fluorescence of Rho123 in
cells. Individual cells’ Rho123 fluorescence intensity units were measured and compared
with controls.

4.2.7. Surface Plasmon Resonance Analyses

To investigate the interaction between HA2021 and Hsp90α, the surface plasmon
resonance (SPR) analyses was performed using a Biacore 3000 optical biosensor equipped
with research-grade CM5 sensor chips (GE Healthcare, Chicago, IL, USA), according to
a previously detailed method [29]. Recombinant Hsp90 surfaces, a BSA surface, and an
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unmodified reference surface, were prepared. Proteins (100 µg/mL in 10 mM sodium
acetate, pH 5.0) were immobilized on individual sensor chip surfaces at a flow rate of
5 µL/min to produce densities of 8−12 kRU. Compound HAA2021, 17-N-allylamino-17-
demethoxygeldanamycin (17-AAG), and radicicol (two positive controls), were dissolved in
DMSO. The six-point concentration series (0.025−4.000 µM) were prepared. Bioevaluation
software 3.2. (GE Healthcare) was used to elaborate simple interactions, which were
adequately fit to a single-site bimolecular interaction model (A + B = AB), yielding a single
KD sensorgram.

4.2.8. Immunofluorescence Staining

Immunofluorescence staining was performed according to the previous methods [61,62].
Each of MCF7 or MCF7/ADR cells (2 × 103/chamber) in the 8-well chamber slides were
treated for 72 h with the different concentrations of HAA2021 (0.00–0.50 µM) followed by
washing and fixation for 15 min with 4% paraformaldehyde (Santa-Cruz Biotechnology
Inc., Dallas, TX, USA). Following a second wash, the cells were permeabilized with 0.25%
Triton X100 for 20 min, washed twice with PBS, followed by blocking with a normal
donkey serum for 30 min (Santa-Cruz Biotechnology Inc.). The dual protein expression of
nuclear factor kappa B (NF-κB) and heat shock protein-90α (Hsp90α) was performed in
duplicate wells. All of the primary antibodies were from Thermo Fisher Scientific (San Jose,
CA, USA). The primary mouse monoclonal IgG antibodies were used for the detection of
NF-κB (#MA5-15870), whilst Hsp90-α was detected by rabbit monoclonal IgG antibodies
(#sc-8396). Both primary antibodies were concurrently added to two wells/slide (1:150
concentration for both) followed by 3 h of incubation at room temperature. The wells were
washed, and the cells were then incubated for 60 min with a mixture of tagged highly
cross-adsorbed secondary donkey anti-rabbit (#A-31572; Alexa Fluor 555) and anti-mouse
(#A-21202; Alexa Fluor 488) IgG antibodies (Thermo Fisher Scientific: San Jose, CA, USA).
The cells were counterstained with 4′,6-diamidino-2-phenylindole (DAPI; #D3571; Thermo
Fisher Scientific). Then, the detachable plastic wells were removed, and the slides were
cover-slipped with a permanent fluorescence mounting medium (#S3023; Dako, Santa Clara,
CA, USA). All of the wells were observed with a Leica DMi8 microscope and digital images
were captured within the same session from 10 random non-overlapping fields/well using
a 40× objective. The IF staining intensities of each targeted protein were measured by
the digital image analysis using the Image J software version 1.8.0. and are expressed as
arbitrary units/cell numbers in analyzed images.

4.2.9. Quantitative Real Time-PCR

RT-PCR (Applied Biosystems 7500 Fast Real Time PCR System, Waltham, MA, USA)
was applied to quantify the gene expression of P-gp and Hsp90 in MCF7/ADR cells [63].
Briefly, MCF7/ADR cells (2 × 106 cells/well) were cultivated in 6-well plates for 72 h, then
cells were treated with vehicle control (0.00 µM), doxorubicin (1 µM), HAA2021 (0.25 µM)
or their combination. Total RNA was isolated according to the manufacturer’s instructions.
The RT-PCR experiment was conducted with a mixture of cDNA, 2X SYBR Green I Master
mix, PCR-grade water, forward and reversed human primers of selective genes, and
GAPDH as housekeeping gene (Applied-Biosystems, Thermo Fisher Scientific, Waltham,
MA, USA) (Table 5).
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Table 5. Sequence of GAPDH, P-gp, and Hsp90α primers.

Gene Sequence

GAPDH F: AGGTCGGTGTGAACGGATTTG
R: TGTAGACCATGTAGTTGAGGTCA

P-gp F: TGCTCAGACAGGATGTGAGTTG
R: AATTACAGCAAGCCTGGAACC

Hsp90α F: TTGGTTACTTCCCCGTGCTG
R: GCCTTTTGCCGTAGGGTTTC

4.2.10. Statistics and Drawing

Graphpad Prism was used to assess the multiple comparison tests. The one-way
analysis of variance (ANOVA) with Tukey’s post-hoc were used for the assessment of
statistical differences. Figure 14 was made in Biorender.com.
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