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ABSTRACT The SAR11 clade of Alphaproteobacteria is the most abundant group of
planktonic cells in the near-surface epipelagic waters of the ocean, but the mecha-
nisms underlying its exceptional success have not been fully elucidated. Here, we
applied a metagenomic approach to explore microdiversity patterns by measuring
the accumulation of synonymous and nonsynonymous mutations as well as homolo-
gous recombination in populations of SAR11 from different aquatic habitats (marine
epipelagic, bathypelagic, and surface freshwater). The patterns of mutation accumu-
lation and recombination were compared to those of other groups of representative
marine microbes with multiple ecological strategies that share the same marine hab-
itat, namely, Cyanobacteria (Prochlorococcus and Synechococcus), Archaea (“Candida-
tus Nitrosopelagicus” and Marine Group II Thalassoarchaea), and some heterotrophic
marine bacteria (Alteromonas and Erythrobacter). SAR11 populations showed wide-
spread recombination among distantly related members, preventing divergence
leading to a genetically stable population. Moreover, their high intrapopulation se-
quence diversity with an enrichment in synonymous replacements supports the idea
of a very ancient divergence and the coexistence of multiple different clones. How-
ever, other microbes analyzed seem to follow different evolutionary dynamics where
processes of diversification driven by geographic and ecological instability produce a
higher number of nonsynonymous replacements and lower intrapopulation se-
quence diversity. Together, these data shed light on some of the evolutionary and
ecological processes that lead to the large genomic diversity in SAR11. Further-
more, this approach can be applied to other similar microbes that are difficult to
culture in the laboratory, but abundant in nature, to investigate the underlying
dynamics of their genomic evolution.

IMPORTANCE As the most abundant bacteria in oceans, the Pelagibacterales order
(here SAR11) plays an important role in the global carbon cycle, but the study of the
evolutionary forces driving its evolution has lagged considerably due to the inherent
difficulty of obtaining pure cultures. Multiple evolutionary models have been pro-
posed to explain the diversification of distinct lineages within a population; how-
ever, the identification of many of these patterns in natural populations remains
mostly enigmatic. We have used a metagenomic approach to explore microdiversity
patterns in their natural habitats. Comparison with a collection of bacterial and ar-
chaeal groups from the same environments shows that SAR11 populations have a
different evolutionary regime, where multiple genotypes coexist within the same
population and remain stable over time. Widespread homologous recombination
could be one of the main driving factors of this homogenization.
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The open ocean is one of the largest and most biologically productive microbial
habitats in the biosphere, and marine microbial communities have an essential role

in global biogeochemical cycling (1). The development of culture-free approaches such
as metagenomics has significantly advanced our knowledge of the geographical dis-
tribution (2, 3), seasonal dynamics (4–6), and vertical distribution throughout the water
column (7, 8) of these communities. In addition, we are now starting to understand the
real complexity of microbial populations within natural environments. Thus, recent
advances in single-cell sequencing have offered a new view of the microbial genomic
diversity in unprecedented detail (9). The reconstruction of genomes from uncultivated
microbes using metagenomes, referred to as metagenome-assembled genomes (MAGs) or
single-amplified genomes (SAGs), obtained by sequencing individual cells has im-
proved our understanding of the microbial diversity, evolution, and ecology of these
microbes (10, 11). These complementary approaches (metagenomics and single-cell
sequencing) have shown that, in nature, microbes live in populations made up of
complex consortia of different clonal lineages (12–14). The vast diversity of the genetic
pool found within single populations has been one major discovery brought up by such
technologies (15, 16).

Mapping metagenomic reads against reference genomes has been applied to
capture the heterogeneity at the genomic level within natural populations (17, 18).
These reads are derived from strains closely related to the strain of the reference
genome that are concurrent within a sample. For most marine microbes, the minimum
alignment identity threshold of the vast majority of reads assigned to the core genome
is located at above 95% identity, delimiting what has been termed “sequence-discrete”
populations (19–21). However, these threshold values, which have also been used for
the delimitation of species (22), should be taken with caution (23). For example, an
exception to this rule is the populations of the SAR11 clade. For them, the threshold
goes down to ca. 92% (24) or even lower (ca. 87%) based on a more recent study (25).
These variations can be analyzed at single-nucleotide resolution (i.e., microdiversity)
(26). In addition, intrapopulation microdiversity has also been proposed as a measure
of evolutionary success. High diversity corresponds to populations with high temporal
persistence and therefore greater adaptive success in their environment (17, 27). In
contrast, less diversity is associated with populations that have undergone a recent
clonal sweep (18, 27).

Despite being the most abundant and successful marine microorganisms in the
surface ocean (28), the study of SAR11 population structures and dynamics has lagged
considerably due to the difficulty of culturing and isolating these organisms and the
paradoxical difficulty of obtaining MAGs for this group, as demonstrated by several
marine metagenomic studies around the world (8, 29, 30). Single-cell genomics over-
came some of these limitations of metagenomic assembly and promoted the increase
in the number of individual genomes sequenced of the SAR11 clade, thus disentangling
part of the elusive genetic diversity among members of this taxon (24, 31–36). Although
the delimitation of populations within this clade is a controversial issue, in a recent
study, an improved phylogenomic classification (enriched by single-cell genomes)
based on whole-genome comparisons, together with a fine ecogenomic characteriza-
tion of SAR11 at a global scale, allowed discerning novel operational taxonomic units,
which were called genomospecies (33). Genomes within these genomospecies showed
remarkable agreement between their phylogenomic classification and patterns of
metagenomic distribution across different metagenomes, displaying a minimum pair-
wise average nucleotide identity (ANI) value within genomospecies of ca. 80% (33). In
that study, these genomospecies were used to define SAR11 populations (i.e., cells
belonging to the same genomospecies). A total of 20 genomospecies were differenti-
ated within nine phylogenomic subclades. Subclade Ia.3 was particularly well repre-
sented, with the largest number of genomes (47, including 6 pure cultures), and due to
the high read recruitment to these genomes in the available metagenomic data sets,
they could be split into 6 well-defined genomospecies with different spatiotemporal
abundance patterns (33).
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Recently, a complementary metagenomic approach using single amino acid variants
has been used to investigate evolutionary processes that maintain genetic diversity
within subclade Ia.3/V through a single isolate genome, HIMB83 (25). Results showed
patterns of amino acid diversity driven by large-scale ocean circulation. Other studies
using genome comparison and phylogenomic approaches have estimated that while
marine SAR11 isolates showed recombination rates that were among the highest
reported in bacteria (37, 38), freshwater SAR11 isolates had much lower values (34).
Here, we have used a metagenomic approach to investigate the patterns of sequence
microdiversity and try to understand the evolutionary forces driving the evolution
within and among these six subclade Ia.3 genomospecies (here, the term “population”
is applied to groups of individual cells belonging to the same genomospecies and
sharing the same habitat, i.e., potentially exchanging DNA). In addition, in order to
compare the pictures provided by these epipelagic dwellers, we included genomospe-
cies Ib.1/III and Ib.2/I, which belong to subclade Ib (also epipelagic), the deep-ocean
bathytype (subclade Ic) (32), and the freshwater lineage LD12 (subclade IIIb) (39). We
have also analyzed the evolutionary dynamics of groups of microbes that cohabit the
water column with SAR11, such as Cyanobacteria (Prochlorococcus and Synechococcus),
Archaea (“Candidatus Nitrosopelagicus” and Marine Group II Thalassoarchaea), and
some heterotrophic marine bacteria (Alteromonas and Erythrobacter). Our results sug-
gest a different process of bacterial diversification in SAR11 populations in comparison
to the other microbes analyzed, which is in agreement with a metastable model (40),
that is, one in which frequent recombination keeps the population relatively stable
while maintaining high intrapopulation diversity of mostly synonymous replacements.

RESULTS
Microdiversity within the Ia.3 subclade. First, we studied microevolution among

six genomospecies within the Ia.3 subclade using metagenomic read mapping to
measure the ratio of nonsynonymous to synonymous polymorphisms (pN/pS ratio) (26).
Figure S1 shows the phylogenomic tree of all SAR11 genomes available, based on
concatenated shared genes, with the relative positions of all genospecies as well as
different subclasses defined so far (33). In order to avoid possible coverage biases, we
analyzed the effect on the pN/pS ratio using a range from 100,000 to 1 million reads per
genome, providing a range from ca. 10� to 100� coverage. We used as references
three SAR11 genomospecies in three metagenomes. Table S1 shows that although the
average percentage of polymorphic sites (PPS) per gene increased with coverage,
pN/pS values remained constant, indicating that the effect of coverage on this param-
eter is negligible. Given the enormous diversity and the uneven recruitment coverage
within SAR11 populations, mapped reads were subsampled to 1 million reads per
genome and sample. This way, the number of reads was always the same, regardless
of the depth coverage of the genome in the sample.

All analyses were performed with the three most complete genomes of each
genomospecies in three different metagenomic samples (Table 1 and Table S2) (only
reads with �98% identity to the reference were taken into consideration). The average
PPS per gene was always higher than 16%, reaching in some cases up to 40% (Table S2).
Despite this broad variation in PPS, pN/pS values for most Ia.3 genomospecies were
always close to a median of 0.06 (Table 1 and Table S2). Together, the high PPS and low
pN/pS values suggest strong purifying selection. Along similar lines, the percentage of
proteins with a pN/pS ratio of �1 was very low (0.5 to 1% of the total). Most of them
were hypothetical, regardless of the genome or sample. The Mediterranean Sea geno-
mospecies Ia.3/VII, which showed the highest recruitment values of any Ia.3 genom-
ospecies at any station (33), had only a slightly higher pN/pS ratio (0.09).

Given that within the Ia.3 subclade, there are broad genomic diversities (the
minimum pairwise ANI value within each genomospecies was ca. 80%) (33) and
distribution patterns across metagenomes, the similarity in these evolutionary param-
eters (PPS and pN/pS ratio) was remarkable. Therefore, we wondered if similar patterns
were to be found in other SAR11 subclades. Genomospecies Ib.1/III and Ib.2/I, selected
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on the grounds of their high abundance values (33, 41), which are also surface oceanic
SAR11 genomes, showed similar PPS and pN/pS values. However, we observed mark-
edly higher median pN/pS values in the bathypelagic subclade Ic (32) and the fresh-
water clade LD12 (subclade IIIb) (39) (pN/pS ratio of ca. 0.16) as well as a decrease in the
median PPS in the freshwater subclade IIIb (Fig. 1A, Table 1, and Table S2). Unfortu-
nately, since only one representative (SAG AAA028-C07) of subclade IIIb displayed

TABLE 1 Rates of evolutionary dynamics, abundances, and recombination for SAR11 genomospecies and other marine microbes

Genomospeciesa or microbe Groupb

% polymorphic
sitesc pN pS

pN/pS
ratio

Abundance
(RPKG)d

�/�
ratio

Recombination
coverage

Median
ANIr (%)e

Ia.3/I A 26.30 0.25 4.05 0.06 17.92 20.42 0.61 92.00
Ia.3/IV A 31.27 0.31 4.98 0.07 22.20 16.81 0.65 91.86
Ia.3/V A 39.40 0.39 6.95 0.06 64.99 21.00 0.75 94.38
Ia.3/VI A 34.94 0.37 6.27 0.06 29.10 24.95 0.74 93.00
Ia.3/VII A 27.16 0.39 4.38 0.09 323.95 21.97 0.67 96.67
Ia.3/VIII A 37.35 0.44 6.63 0.07 25.21 22.64 0.68 92.55
Ib.1/III A 33.17 0.45 8.45 0.06 42.54 21.10 0.75 95.05
Ib.2/I A 45.35 0.87 14.61 0.07 25.81 21.01 0.73 93.33
Ic.1 (bathytype) A 32.37 0.84 5.53 0.15 11.81 13.58 0.74 93.00
IIIb (freshwater-LD12) A 16.26 0.48 1.27 0.16 80.32 12.21 0.46 93.07
Alteromonas macleodii AD45 B 8.47 0.19 0.43 0.27 54.67 3.90 0.44 97.33
Erythrobacter citreus LAMA 915 B 4.34 0.13 0.25 0.29 11.83 4.78 0.38 98.00
“Ca. Nitrosopelagicus brevis” CN25 B 29.90 1.13 1.80 0.77 128.25 15.85 0.56 95.33
MG-II Thalassoarchaea B 12.33 0.23 0.31 0.39 36.11 20.12 0.39 98.67
Prochlorococcus marinus MED4 B 45.13 1.59 2.15 0.77 180.82 55.59 0.80 95.97
Synechococcus sp. CC9902 B 17.06 0.42 0.55 0.47 29.91 8.85 0.37 95.05
aValues are calculated based on the average from the three most complete genomes in three different metagenomic samples.
bA, SAR11 genomospecies; B, reference marine microbes.
cPercentage of polymorphic sites per gene.
dRPKG, reads per kilobase of genome and gigabase of metagenome.
eANIr, read-based average nucleotide identity.

FIG 1 (A) Comparison of the ratio of nonsynonymous to synonymous substitutions (pN/pS ratio) (y axis) against the percentage of polymorphic
sites per gene (x axis). (B) Comparison of the ratio of synonymous (y axis) to nonsynonymous (x axis) rates. Linear regressions and R2 values are
indicated for the different groups: (i) surface oceanic SAR11, (ii) SAR11 bathytype, (iii) SAR11 freshwater, and (iv) reference marine microbes.
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coverage high enough to carry out the analyses in several metagenomes, we were
unable to obtain the averages for three genomes as we did for the other subclades.
Interestingly, the pN/pS ratios within these other genomospecies remained stable
regardless of the PPS values (Fig. 1A), as observed for the surface oceanic SAR11
genomes.

In order to put the PPS and pN/pS values of the SAR11 genomospecies into
perspective, we applied the same analysis to a collection of bacterial and archaeal
groups that share a similar pelagic marine habitat. Within this heterogeneous group, we
selected microbes with different population densities (abundances) and ecological
strategies, autotrophs and (photo)heterotrophs (8, 42), including copiotrophic bloom-
ers (large genomes) (Table 1 and Table S3). Here, we refer to this set as reference marine
microbes (RMM). In all cases, the pN/pS values were higher than those detected in
SAR11 (Fig. 1A, Table 1, and Table S3). The cyanobacterium Prochlorococcus marinus
MED4, representative of the high-light-adapted ecotype, and the thaumarchaeal ge-
nome of “Candidatus Nitrosopelagicus brevis” CN25 had similar average PPS values
within the range of those obtained for SAR11 genomospecies, but the pN/pS values
were more than 10 times higher (0.77) (Fig. 1A, Table 1, and Table S3). The two
copiotrophic heterotrophs Alteromonas macleodii and Erythrobacter citreus (16, 43) had
lower PPS and pN/pS ratio (ca. 0.28) values, although the pN/pS ratios were again higher
than those for SAR11 (Table 1). In the case of these opportunistic bacteria, they
probably have bloom and crash cycles (42, 44, 45) starting from a few cells and
generate more homogeneous populations with lower diversity (see below).

This analysis suggests that among SAR11 genomospecies, pN/pS values do not vary
across a broad range of PPS values (Fig. 1A), while among RMM genomes (Fig. 1A), we
observed a clear-cut positive relationship (R2, 0.82) between PPS and pN/pS values. To
analyze this phenomenon in depth, we evaluated the relative contributions of synon-
ymous and nonsynonymous mutations to the overall pN/pS ratio. These results showed
three distinct patterns with an almost linear correlation (R2, 0.88 to 0.99), where the
fraction of synonymous replacements (pS) seemed to be the differential factor (Fig. 1B).
Thus, in surface oceanic SAR11 genomospecies, we observed a higher proportion of
synonymous replacements, with values up to 10 times higher than for nonsynonymous
replacements (pS values of up to 20) (Fig. 1B, Table 1, and Table S2), while in RMM and
freshwater SAR11 genomes, none of them had values of pS of �3 (Fig. 1, Table 1, and
Table S3). This relationship was less pronounced for the SAR11 bathytype (Ic.1), which
displayed a trend resembling those observed for the surface SAR11 and RMM genomes
(Fig. 1B).

Given the uniqueness of these parameters in SAR11 epipelagic genomospecies, we
examined whether this phenomenon was a consequence of their high population
densities (28). For that reason, we calculated population densities by applying metag-
enomic fragment recruitment analysis, normalized by the number of reads per kilobase
of genome and gigabase of metagenome (RPKG). The results showed no correlation
between pS and RPKG values, neither among genomospecies nor among different
genomes within the same genomospecies (Fig. S2). For instance, the genomospecies
Ia.3/VII genomes, which had the highest recruitment values of all groups (average of
320 RPKG), had a pS value of �6, while genomospecies Ib.2/I, with much lower relative
abundance values (average of 26 RPKG), always had pS values of �10 (Fig. S2 and
Table 1). In contrast, for RMM, we found that an increase in the relative abundance was
associated with increasing ratios of both synonymous and nonsynonymous substitu-
tions (Table 1, Table S3, and Fig. S2).

Next, we sought to delve deeper into the intrapopulation sequence diversity within
each genomospecies using metagenomic reads to calculate the read-based average
nucleotide identity (ANIr). All but one of the SAR11 genomospecies were characterized
by ANIr values well below 95%, which is generally accepted as the species threshold
(46) (Fig. 2 and Table 1). Only the genomospecies Ia.3/VII, with a preferential Mediter-
ranean occurrence (33), had a median ANIr value of 96.7%. These data could reflect a
more recent divergence associated with a more modern habitat (the Mediterranean
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Messinian salinity crisis [47] happened only 6 million years ago). The acquisition of a set
of genes involved in phosphonate utilization in the flexible genome has been sug-
gested to be an essential part of the success of this genomospecies in the phosphate-
depleted Mediterranean Sea (33). Meanwhile, RMM genomes showed lower intrapo-
pulation sequence diversity, with ANIr values never below 95% (Fig. 2 and Table 1). In
agreement with their ecological strategy (bloomers), A. macleodii and E. citreus showed
ANIr values above 97%. As mentioned above, lower intrapopulation sequence diversity
values might indicate more recent clonal sweeps (18).

Homologous recombination. To discriminate between single nucleotide polymor-
phisms introduced by mutation and those introduced by genetic exchange (homolo-
gous recombination) (48), we computed the relative rate of recombination to mutation
(�/�) (48) using, as described above, the three most complete genomes in the three
metagenomic samples of maximum recruitment across the same SAR11 genomospe-
cies. Mean estimates of the �/� ratio were similar for all the genomospecies of the Ia.3
subclade, Ib.1/III, and Ib.2/I (ca. 20), with the only exception being genomospecies
Ia.3/IV, a genomospecies associated with the deep chlorophyll maximum (33), which
had a slightly lower ratio (ca. 16.8) (Fig. 3A and Table 1). Therefore, for all surface
genomospecies, recombination-driven nucleotide replacements were much more fre-
quent than nucleotide mutations. However, the �/� values for the freshwater subclade
IIIb and the marine bathytype Ic.1 were half of those observed for the surface oceanic
clade (Fig. 3A and Table 1). These results had been previously reported using single-cell
genomics, thus corroborating the reliability of both methods (34). A parameter that
might affect the recombination rate could be the cell density that can be estimated by
recruitment (RPKG). A lower population density could lead to a reduction in the
recombination rate as in the case of the deep-ocean SAR11 bathytype (Table 1). We also
measured the fraction of genomes in the samples that have undergone recombination
(“c” [recombination coverage]), which ranges from 0 to 1, taking 0 as the population
that has evolved without recombination (48). These data reveal that within Ia.3 geno-
mospecies, between 0.60 and 0.75 of the reference genomes had undergone recom-
bination (Fig. 3A). Similar values were obtained for the other marine SAR11 groups
analyzed. On the other hand, c dropped to 0.46 for the freshwater subclade IIIb (Fig. 3A
and Table 1). To double-check this high level of recombination detected for the Ia.3
genomospecies, we generated individual phylogenetic trees for 84 core genes and

FIG 2 Box plot indicating the average nucleotide identity based on metagenomic reads (ANIr) among SAR11 subclades and some
reference marine microbes. Boxes in red represent different genomospecies belonging to the Ia.3 subclade, while boxes in green
belong to the Ib subclade. Boxes in blue represent two different SAR11 ecotypes, one collected from bathypelagic waters
(subclade Ic) and the other from freshwater samples (subclade IIIb). The red dotted line indicates the species threshold (95%
identity). A maximum likelihood phylogenomic tree of the SAR11 genomospecies is shown on the left.

López-Pérez et al.

September/October 2020 Volume 5 Issue 5 e00605-20 msystems.asm.org 6

https://msystems.asm.org


compared them against the consensus tree generated by a concatenation of all genes
present in all genomes (232 genes). The results (Fig. 3B) supported the highly recombi-
nogenic nature of SAR11 populations (37) and the conclusion drawn from metag-
enomic data.

The opportunistic bloomers A. macleodii and E. citreus showed �/� values of ca. 4,
similar to those obtained using phylogenomic comparisons (49). Significantly, higher
�/� values were found for Synechococcus, within the range of those detected in
freshwater SAR11 genomospecies IIIb and bathytype Ic representatives (Fig. 3C and
Table 1). In addition, the two archaeal genomes analyzed (from the phyla Euryarchaeota
and Thaumarchaeota) showed �/� values comparable to those of SAR11 (ca. 20).
Finally, Prochlorococcus had �/� values close to three times those of SAR11 (ca. 60),
although the recombination coverage was similar (Fig. 3 and Table 1). The c values were
lower for all other microbes, ranging from 0.33 to 0.58 of the reference genome (Fig. 3C,
Table 1, and Table S3). We also compared these SAR11 parameters (�/� ratio and c)
with those obtained in some pathogenic microbes using the same methodology (48).
Mycobacterium abscessus and Pseudomonas aeruginosa (known to be highly recombi-
nogenic [50, 51]), with the highest recombination values (13 and 11, respectively), had
�/� values close to half of those detected in the surface oceanic SAR11 clades.

Although the specific mechanisms of gene transfer in SAR11 populations are
unknown, it seems to be clear that these microbes exchange parts of their genome with
remarkable frequency. It has been suggested that SAR11 can take up DNA from the
environment due to the presence of DNA uptake and competence genes (52). Further-
more, we found a prophage inserted in a tRNA-Val in the SAG-MED28 genome (Fig. S3)
that clustered with several viral sequences recovered from a metagenomic sample from
the Mediterranean deep chlorophyll maximum (53). While this SAG is a member of
another subclade (IIa.B), this showed that transduction occurs among SAR11 clades as
proposed previously (54).

Environmentally persistent clones. Despite the remarkably high intrapopulation
diversity in SAR11, the increased genomic diversity in public data sets has led to the

FIG 3 (A) Box plot showing the ratio of recombination to mutation (�/�) (left y axis) (blue boxes) and the fraction of the sample diversity (c) that results from
recombination events (right y axis) (green boxes). (B) Phylogenomic tree of the Ia.3 subclade using 232 shared proteins in common and considering only the
three most complete genomes per genomospecies. The isolated genome of HIMB058, which belongs to a distant subclade, was used as an outgroup. Numbers
located in the three most ancient branches and in green or red indicate the number of proteins that, after an individual phylogenetic analysis, produced or
failed to rescue the same topology, respectively. Bootstrap values are indicated as black circles on the nodes. (C) Similar to panel A but with some reference
marine microbes.

The Evolutionary Success of SAR11

September/October 2020 Volume 5 Issue 5 e00605-20 msystems.asm.org 7

https://msystems.asm.org


discovery of two pairs of nearly identical genomes from different samples and years, i.e.,
evidence of environmentally persistent clones. Specifically, HTCC7217 and HTCC7211,
belonging to the genomospecies Ia.3/I, were isolated from the Bermuda-Atlantic Time
Series (BATS) site in 2006 (55). While these genomes had a divergence of 95% ANI, the
genomes from HTCC7217 and the single-amplified genome AG-414-C04, which were
retrieved from the same region but 4 years apart, presented an ANI of 99.8% (Fig. S4).
Along these lines, we found another single-amplified genome (SAG-MED25 [33]) that
was nearly identical to the other BATS isolate, HTCC7211 (99.8% ANI), in the Mediter-
ranean Sea, 9 years later (Fig. S4). The coverage of the single-amplified genome on the
pure-culture genomes was in both cases more than 70%. Furthermore, the gene
contents of the flexible regions found to be drastically different between HTCC7217
and HTCC7211, including the previously identified hypervariable region 2 (HVR2) (56),
were also conserved in these nearly identical genomes rescued much later (Fig. S4).
These results suggest that there are SAR11 lineages with high persistence and minimal
genomic variation within the available time frames (years apart).

DISCUSSION

Understanding the high genomic level of heterogeneity within marine prokaryotic
populations has been a challenge for microbiologists in recent years (57). In asexual
microorganisms, one of the possible scenarios proposed to explain such diversity is the
presence of several clonal subpopulations (or ecotypes) with different ecological
adaptations to discrete niches, which generates barriers and promotes the decrease of
recombination between them (58). Another possibility is that these subpopulations
occupy the same niche, and the overall diversity is provided, mainly, by high recom-
bination rates, preventing clonal sweeps in a “quasisexual” manner (59). Multiple
evolutionary models have been proposed to explain the diversification of distinct
lineages within a population (40, 60, 61); however, the identification of many of these
patterns in natural populations is something that has not been elucidated so far. Using
a metagenomics approach, we have studied the ecological and evolutionary processes
of natural populations of SAR11. Our results are in agreement with evolutionary
dynamics of some SAR11 representatives consistent with quasisexual evolution, as has
been described for cyanobacterial biofilms (59), where high recombination rates be-
tween closely and distantly related lineages promote the homogenization of the
populations, leading to a stable population that may remain unchanged (but with high
intrapopulation diversity) for extended periods (Fig. 4A and B). The cohesiveness of the
core genome driven by homologous recombination has also been explained by math-
ematical models (62). Recently, a similar evolutionary regime has been characterized
using a computational model and defined the concept of “metastable” populations
(40). In addition, we observed an accumulation of synonymous replacements that,
combined with the high intrapopulation sequence diversity, suggests an evolutionary
scenario in which nonsynonymous mutations probably have been purged over time
since purifying selection cannot act at short time scales (Fig. 4B). Therefore, this could
support the idea of a very ancient divergence of SAR11 populations. The presence of
high genomic diversity within each population (genomospecies) might be maintained
by negative density-dependent selection by viruses (kill the winner) as predicted by the
constant-diversity model (14). This is reflected in the linear recruitment plots, where the
threshold is located above 80% identity, and by the higher intrapopulation sequence
diversity (ANIr of �95%) showing less clonal populations (Fig. 4C). This high genomic
diversity of SAR11 genomospecies might provide the population with better flexibility
to adjust to environmental oscillations (25), such as a greater affinity for certain
micronutrients with patchy distributions near the nutrient-depleted surface. Within the
broad environmental niche (surface waters of oceans around the world), if there are no
barriers to gene flow, all SAR11 populations could be able to remain at a basal level of
abundance provided that their extinction is prevented and multiple beneficial muta-
tions spread throughout the population at the same time (“soft sweeps”) (60, 63).
Interestingly, the adaptation of SAR11 genomospecies to other environments in which
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their populations are less dense, such as the bathypelagic ocean, makes their genomic
diversification more similar to that of the RMM with higher, density-dependent pN/pS
ratios.

In comparison with a study conducted by Delmont and collaborators (25), we have
identified far fewer nonsynonymous variables. This can be attributed to differences in
mapping stringencies, coverage cutoffs, algorithms identifying variants, and, finally, the
portions of the genomes being considered.

In contrast, the selected RMM (regardless of their ecological strategy) appear to
adjust more closely to the ecotype model (57, 64). A higher relative abundance (more
read recruitment) is positively correlated with higher PPS values, and these are corre-
lated with a higher pN/pS ratio (nonsynonymous mutations that have not yet been
purged) (Fig. 4B). This phenomenon could be driven by an earlier stage of ecological,
geographic, or behavioral processes of diversification (65). Unlike SAR11 evolution (soft
sweep), successive “hard” selective sweeps seem to dominate the evolution of these
other marine microbes, where part of the genomic diversity is purged from the
population by the rise of a few adaptive lineages (66). There is also the possibility that
higher growth rates (or sporadic growth rates in the case of bloomers) generate
mutation rates that selection cannot purge before the next crash of the population.
These demographic patterns would also lead to lower intrapopulation sequence diver-
sity (ANIr of �95%) (Fig. 4C). Overall, the results obtained in this study improve our
understanding of the evolutionary processes behind marine microbial populations and,
in particular, shed light on the extraordinary success of SAR11. Our evolutionary model

FIG 4 Evolutionary model for reference marine microbes (RMM) and SAR11 populations. RMM evolution is characterized by “hard” selective sweeps that reduce
genomic diversity, and only a single adaptive lineage arises from the population. However, SAR11 evolution is characterized by “soft” sweeps, where multiple
beneficial mutations contribute to an adaptive substitution, which are dispersed by the population, contributing to an increase in genetic diversity. (A) Relative
abundances of the populations (y axis) and evolution over time (x axis). (B) Dynamics of different evolutionary parameters over time, where each vertical dotted
line differentiates different diversification events in RMM, while in SAR11 populations, the same structure is maintained over time. (C) Recruitment plot showing
intrapopulation sequence diversity. The red dashed line indicates the species threshold (95%). Different colors indicate different populations.
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and metagenomic approaches are broadly applicable to examine ecological and evo-
lutionary patterns in natural populations in other environments.

MATERIALS AND METHODS
Genome retrieval from public data sets. Genomes belonging to the SAR11 clade (marine and

freshwater) were downloaded from the NCBI database and phylogenomically classified in previous
work (33). In addition, some representatives of well-known marine microbes were also downloaded
from the NCBI: Alteromonas macleodii AD45 (NCBI accession number GCF_000300185.1), Erythrobacter
citreus LAMA-915 (NCBI accession number GCA_001235865.1), Synechococcus sp. strain CC9902 (NCBI
accession number GCA_000012505.1), “Ca. Nitrosopelagicus brevis” CN25 (NCBI accession number GCA_
000812185.1), MG-II Thalassoarchaea (BioSample accession number SAMN02954236), and Prochlorococ-
cus marinus MED4 (NCBI accession number GCA_000011465.1). The general features of these genomes
are shown in Table S4 in the supplemental material. For each genome, coding DNA sequences were
predicted using Prodigal (67). tRNA and rRNA genes were predicted using tRNAscan-SE (68),
ssu-align (69), and meta-rna (70). To infer the function, predicted protein sequences were compared
against NCBI NR databases using DIAMOND (71) and against COG (72) and TIGFRAM (73) using
HMMscan (74).

Metagenomic fragment recruitment. Several metagenomic data sets were used to recruit reads
against several SAR11 subclades (including the freshwater LD12 and the marine bathypelagic ecotypes)
and some reference marine microbes (see above). Briefly, raw reads from the Tara Oceans (3) and
GEOTRACES (31) expeditions and a metagenomic data set collected at different depths, years, and
seasons from the Mediterranean Sea (8, 75) were downloaded from the ENA and NCBI databases
(BioProject accession numbers PRJEB1787, PRJNA385854, PRJNA352798, and PRJNA257723). In addition,
we performed recruitment analyses of several freshwater metagenomes downloaded from the JGI
database (https://img.jgi.doe.gov/).

To avoid an overestimation of genome abundances (33) in the samples, the complete ribosomal
operon gene cluster was manually removed from each genome sequence prior to recruitment. Metag-
enomic reads were trimmed using Trimmomatic v0.36 (76). Only reads with a Phred score of �30, that
were �50 bp long, and that had no ambiguous bases (N’s) were kept. These high-quality trimmed
metagenomic reads were then aligned using BLASTN (77), using a cutoff of 98% nucleotide identity and
an alignment length of �50 nucleotides. They were used to compute the RPKG (reads recruited per
kilobase of genome and per gigabase of metagenome) values, which provide a normalized number
comparable across various metagenomes. Since different data sets with different read lengths (Illumina
HiSeq 2�100 bp and 2�150 bp) were used for recruitment, each metagenome was also normalized,
dividing the size of the database by its average read size.

Pairwise comparison between genomes and environmental metagenomic reads. The average
nucleotide identity (ANI) between a pair of genomes was calculated using JSpecies software with default
parameters (78). Meanwhile, the average nucleotide identity of metagenomic short reads (ANIr) was
calculated by recruiting high-quality trimmed metagenomic reads (see above) against reference ge-
nomes using BLASTN (77), with a cutoff of 80% nucleotide identity and an alignment length of �50
nucleotides.

Recombination rates among groups. High-quality trimmed metagenomic reads were aligned
against individual genomes using the Bowtie2 -sensitive-local mode (79). In more detail, for each SAR11
genomospecies, three genomes were used to align reads from three metagenomes. Conversely, for the
freshwater LD12 clade and the other marine representative genomes, only one genome was used to
align reads from three metagenomes. The resulting SAM files were converted and sorted into BAM files
using SAMtools (80) and used to carry out the analysis of the rates of recombination among groups. In
a first approach, we applied mcorr software (https://github.com/kussell-lab/mcorr) (48) to infer the
parameters of homologous recombination within in situ samples, that is, the rate of recombination to
mutation (�/�) and the fraction of the recombination coverage (c) that results from recombination
events. As described previously (48), a c value of 0 indicates clonal evolution, whereas if the value reaches
1, the microbe has recombined nearly its whole genome.

In another approach, we analyzed in more detail the high rate of recombination within the Ia.3
subclade (genomospecies I, IV, V, VI, VII, and VIII) (33) by phylogenetic analyses. To do that, encoded
proteins were clustered using cd-hit (81), with identity and alignment thresholds of 70% identity and
80% length, respectively. Only clusters with one protein per genome were considered. In the end, 84
shared proteins among genomes were selected and phylogenetically studied individually. Individual sets
of proteins were aligned with muscle (82), and a maximum likelihood phylogenetic tree was constructed
using iq-tree (83) with the following parameters: Jones-Taylor-Thornton model, five discrete rate gamma
categories, 1,000 ultrafast bootstrap approximations, and elimination of positions with �80% site
coverage. Next, the resulting topologies were compared to the phylogenomic tree obtained by using all
shared proteins reported previously (33).

Microdiversity. To estimate mutational frequencies, raw reads were mapped to assembled genomes
using Bowtie2 (79). Following read mapping, the generated bam files were downsampled to 1 million
reads per genome. This step was performed to avoid that differences in genome coverage affected the
subsequent results. Next, the subsampled BAM files were analyzed through Diversitools (http://
josephhughes.github.io/DiversiTools/) to obtain counts of synonymous and nonsynonymous mutations
in each protein, from each genome in each tested metagenome sample. We considered valid only those
codon mutations that were detected at least four times, in at least 0.1% of the mapped reads, with a
coverage equal to or above 5�. The frequencies of mutations that passed the above-mentioned criteria
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were used as the input to calculate pN/pS ratios and the percentage of polymorphic sites, as previously
described (84). We calculated the pN/pS ratio using a range from 100,000 to 1 million reads per genome
in order to analyze the coverage bias. Finally, 1 million reads per genome and sample were used for the
analysis to normalize the values.
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