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China is set to actively reduce its methane emissions in the coming decade. A compre-
hensive evaluation of the current situation can provide a reference point for tracking the
country’s future progress. Here, using satellite and surface observations, we quantify
China’s methane emissions during 2010–2017. Including newly available data from a
surface network across China greatly improves our ability to constrain emissions at sub-
national and sectoral levels. Our results show that recent changes in China’s methane
emissions are linked to energy, agricultural, and environmental policies. We find con-
trasting methane emission trends in different regions attributed to coal mining, reflect-
ing region-dependent responses to China’s energy policy of closing small coal mines
(decreases in Southwest) and consolidating large coal mines (increases in North). Coor-
dinated production of coalbed methane and coal in southern Shanxi effectively
decreases methane emissions, despite increased coal production there. We also detect
unexpected increases from rice cultivation over East and Central China, which is contrib-
uted by enhanced rates of crop-residue application, a factor not accounted for in current
inventories. Our work identifies policy drivers of recent changes in China’s methane
emissions, providing input to formulating methane policy toward its climate goal.
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Methane is the second-most-important anthropogenic greenhouse gas, responsible for
1.2 W m�2 radiative forcing since industrialization through its direct and indirect radi-
ative effects (1). Sustained growth in global atmospheric methane concentration in the
last decade, after a period of stabilization in the early 2000s, has posed additional chal-
lenges to meeting the Paris Agreement goals besides increasing CO2 concentrations
(2, 3), underscoring the urgency of controlling anthropogenic methane emissions.
Methane is emitted from a wide range of human activities, including the production

of fossil energy (oil, gas, and coal) and food (livestock, rice cultivation, and freshwater
aquaculture) and the treatment of municipal waste (landfill and wastewater) (4). China
is the largest anthropogenic methane–emitting country in the world, accounting
for ∼15% of the global total (5). Compared with other major national economies (e.g.,
the United States, Russia, and India), China’s mix of anthropogenic methane sources
includes greater contributions from coal mining and rice cultivation, though livestock
and municipal waste are also substantial.
Studies disagree on the magnitude of recent trends in China’s methane emissions

and their sectoral attributions. While some bottom-up studies indicate a zero-
to-negative trend in the last decade after rapid increases in the 2000s because coal produc-
tion peaked around 2012 (6), inversion-based studies generally infer positive trends but
with varied magnitudes and sectoral attributions (7–10) (SI Appendix, Table S1). For
example, based on an inversion of satellite observations, Miller et al. (8) estimated that
China’s anthropogenic methane emissions increased by 1.1 Tg a�2 between 2010 and
2015 and attributed the increase almost entirely to the coal sector. This result contrasts
with a reduction in coal production during the period and implies an increase in
the emission factor (methane emissions per unit mass of coal produced) in response to
China’s energy policy. Using the same satellite data but a different prior coal emission dis-
tribution, Sheng et al. (9) found a positive but much weaker trend (0.4 Tg a�2) and sug-
gested that the sustained increase was instead due to emissions from abandoned coal
mines and freshwater aquaculture.
Here, we report China’s methane emissions during 2010–2017 inferred from a

high-resolution inverse analysis of satellite and surface observations (SI Appendix, Fig.
S1) and interpret the inferred trends with bottom-up information and modeling to
understand underlying drivers. In addition to satellite and surface data that have been
assimilated in previous inversions (7–19), we include in our analysis newly available
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high-quality surface methane measurements from a network of
seven sites distributed across major source regions of China main-
tained by the China Meteorological Administration (CMA) (20)
(see SI Appendix, Text S1). Inclusion of additional surface data
improves our ability to constrain regional methane emissions and
characterize their potential interactions with recent energy (e.g.,
transition from coal to gas), agricultural, and environmental (e.g.,
straw open-burning ban) policies in China.

Results

China Methane Emissions during 2010–2017. Fig. 1 A and B
show the spatial distribution of ensemble mean posterior meth-
ane emissions and their 2010–2017 trends inferred from the
inversion of satellite and surface observations. The inversion opti-
mizes methane emissions on spatial groups of varied sizes, with a
best resolution of 0.5° × 0.625° (roughly 50 km × 70 km) (SI
Appendix, Fig. S2; see Materials and Methods). Fig. 1 C and D
aggregates these results over major regions (northeast, north, east,
central, and southwest) and over the whole of China and com-
pare with prior estimates. SI Appendix, Table S2 presents results
by province. Our ensemble average posterior estimate for total
methane emissions from China is 54 Tg a�1 (Fig. 1C), which is
within the range of bottom-up inventories used as prior informa-
tion for our inversions (52–64 Tg a�1). Subtracting minor con-
tributions from natural sources, our best estimate for the national
total anthropogenic emissions is 50 Tg a�1, close to the official
report to the United Nations Framework Convention on Cli-
mate Change (54 Tg a�1 for 2014) and is within the range of
previous satellite-based inversions (43–59 Tg a�1) (8–12, 15–17)
(SI Appendix, Table S1).
We estimate a linear trend of 0.73 Tg a�2 (ensemble range

0.56–0.85 Tg a�2) for methane emissions from China during
2010–2017. Positive emission trends in China, ranging from 0.1
to 1.7 Tg a�2, were reported in previous inversions for overlap-
ping periods but using only Greenhouse Gases Observing Satel-
lite (GOSAT) observations (8–14) (SI Appendix, Table S1).
Moreover, our inversion resolves divergent 2010–2017 emission

trends at the regional level: positive in major source regions,
including Northeast (0.23 Tg a�2), North (0.18 Tg a�2), East
(0.17 Tg a�2), and Central China (0.12 Tg a�2), but negative in
Southwest China (�0.09 Tg a�2) (Fig. 1D).

Our joint inversion of satellite and surface data infers a
smaller national total emission but a larger 2010–2017 emis-
sion trend compared with that using only satellite data (total
emission: 59 Tg a�1; trend: 0.16 Tg a�2), driven mainly by dif-
ferences in Northeast and East China (SI Appendix, Figs. S3
and S4). These differences reflect additional information gained
from surface observations that improves our capability to con-
strain methane emissions (SI Appendix, Figs. S3–S5; also see SI
Appendix, Text S2). These surface observations are most valu-
able for Northeast and East China, where satellite observations
are sparse because of frequent cloud and snow conditions.
Inclusion of surface measurements in the inversion doubles the
degrees of freedom for signals (a measure of observational con-
straints) for the interannual variabilities of methane emissions
from Northeast and East China (SI Appendix, Fig. S3), lending
more confidence in inferred regional emission trends. Further
analysis shows that the improved constraints are mainly pro-
vided by Longfengshan (LFS) in Heilongjiang for northeast
and Lin’an (LAN) in Zhejiang and Jinsha (JSA) in Hubei for
east (SI Appendix, Figs. S6 and S7).

To interpret inferred methane emissions and emission trends,
we attribute the inversion results to emission sectors based on
their prior fractions in individual grid cells (see Materials and
Methods). The ensemble ranges (uncertainties) of sectoral emis-
sions (Fig. 2) are notably larger than the total emissions (Fig. 1 C
and D) at national and regional levels, reflecting additional uncer-
tainty from sector attribution. Nevertheless, a few consistent sec-
toral patterns (i.e., coal and rice) emerge from the ensemble (Figs.
3 and 4), providing insights into underlying drivers for recent
changes in China’s methane emissions. In the following sections,
we will focus on interpreting 2010–2017 emission trends for coal
mining and rice cultivation, two of the most important sectors
(accounting for about half of total anthropogenic emissions; Fig.
2A) in China.
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Fig. 1. Methane emissions from China inferred by an inversion of satellite and surface observations. Ensemble-averaged posterior estimates are shown for
the spatial distribution of 2010–2017 mean methane emissions (A) and 2010–2017 linear trends (B). Nationally and regionally aggregated prior and posterior
estimates are also shown for 2010–2017 mean methane emissions (C) and 2010–2017 emission trends (D). Five key methane-emitting regions in C and D are
defined spatially in A. Error bars in C and D represent the ranges of the inversion ensemble.
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Spatially Contrasting Trends in Coal Mine Emissions. Fig. 3A
maps the 2010–2017 methane emission trends attributed to
the coal sector over China, which shows contrasting patterns
across China and even within a smaller geographical region. In
North China, which accounts for about 70% of the country’s
coal production, we find positive trends (0.14 Tg a�2) over
Shaanxi, Inner Mongolia, and northern Shanxi and negative
trends (�0.05 Tg a�2) over Henan and southern Shanxi (Fig.
3B). These inferred trends in methane emissions are largely
consistent with recent changes in local coal production and
reflect China’s energy policy of “consolidation to large coal
mines” and “phase out of small coal mines”. For example,
despite leveling off or even decline at the national level, produc-
tion in coal-rich provinces (i.e., Shaanxi, Inner Mongolia, and
Shanxi), where most of large coal mines are operated, maintains
a steady growth during 2010–2017 (Fig. 3D) (21). In contrast,
coal production in neighboring Henan province has decreased
during the period (Fig. 3D) (21), which agrees with observed
decreases in methane emissions there.
An exception is in southern Shanxi, where decreasing meth-

ane emissions are accompanied by increasing local coal produc-
tion during 2010–2017 (Fig. 3 B and D) (22). The area in
southern Shanxi with pronounced negative-emission trends
coincides with the Qinshui Basin (which encompasses cities
of Jincheng, Yangquan, and Changzhi) (Fig. 3B), the largest
coalbed methane (CBM)-producing basin in China (>60% of

national production) (Fig. 3E) (22). We suggest that the
decrease in methane emissions over the basin is associated with
extraction of CBM. The strategy of “extracting coalbed meth-
ane before coal mining” adopted in CBM production may lead
to sizeable reduction in methane emissions during the coal-
mining phase (23). Our inversion results provide observation-
based evidence that this strategy practiced in southern Shanxi
has been effective in increasing energy supply (both coal and
CBM) while at the same time reducing methane emissions.

The inversion also infers a negative emission trend over South-
west China (�0.1 Tg a�2) attributed to coal emissions. This
decrease in methane emissions is concurrent with a decrease in
coal production in this region (Fig. 3C), driven by China’s policy
of preferentially closing small coal mines with low production out-
put, which are commonly found in Southwest China. Compared
with other regions, these coal mines in southwest also have rela-
tively high methane emission factors (methane emissions per unit
coal production) (6, 24) (SI Appendix, Fig. S8). Therefore, their
termination, though driven by energy policy, is also effective from
the perspective of methane emission reduction.

Overall, the spatially contrasting trends in coal-methane
emissions discussed above are consistent with bottom-up infor-
mation based on local-level production and emission-factor
data. A notable outlier is the northeast, where the inferred posi-
tive trend is inconsistent with rapidly declining coal production
(Figs. 2 B and 3 C). Gao et al. (25) suggest a substantial

A Regional sectoral attribution for methane emissions
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Fig. 2. Prior and posterior sectoral methane emissions aggregated nationally and regionally. (A) 2010–2017 mean methane emissions; (B) 2010–2017
methane emission trends. Bars show ensemble averages, and dots show results for individual members using varied prior inventories.
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increase in emissions from abandoned coal mines in the north-
east, but direct evidence is scarce for now. Aggregating nation-
ally, we find an emission trend of 0.12 Tg a�2 (ensemble range
�0.2–0.3 Tg a�2) from the coal sector during 2010–2017
(Fig. 2B). Despite a large uncertainty (ensemble range) due to
prior distributions, this estimate is substantially lower than a
previous estimate (1.0 Tg a�2) by Miller et al. (8) for an over-
lapping period of 2010–2015 and is more consistent with a
lack of coal trend by Sheng et al. (9). This result also indicates
a stable national coal-methane emission factor over the
2010–2017 period (SI Appendix, Fig. S8). Our analysis demon-
strates a complex response of coal-mine emissions to China’s
coal policy at regional levels.

Unexpected Increase in Rice-Cultivation Regions. Another pat-
tern revealed by our inversion is the positive methane emission
trends over East, Central, and Northeast China (Fig. 1B). The
inversion attributes a large fraction of these trends to rice culti-
vation (0.14 [0.11–0.19] Tg a�2 for China, with 0.03
[0.02–0.04] Tg a�2 from Northeast, 0.05 [0.03–0.07] Tg a�2

from East, and 0.06 [0.04–0.09] Tg a�2 from Central China;
brackets show ensemble ranges) (Figs. 2B and 4A). However,
they are not predicted by any of the bottom-up rice-emission
inventories used in our inversion ensemble (Fig. 2B). This is
because interannual trends in most of these bottom-up invento-
ries (E2–E4) are computed based primarily on annual rice culti-
vation areas (E1 specifies a zero-rice trend), which have
changed little or even declined in the last decade (SI Appendix,
Fig. S9), except for the northeast, where rice areas have
increased by 3% a�1 (26). Indeed, our own bottom-up calcula-
tion (SI Appendix, Text S3) also indicates that these observed

trends in East and Central China cannot be explained by small
changes in rice-cultivation areas (Fig. 4B).

Here, we examine two hypotheses. First, we consider that emis-
sions from freshwater aquaculture are not accounted for in our
prior bottom-up inventories, but its spatial distribution may well
overlap with that of rice paddies (9, 27). To examine this hypoth-
esis, we compute methane emissions from freshwater aquaculture
based on provincial data of freshwater aquaculture areas (including
pond, river, reservoir, and the rice–fish system, SI Appendix, Fig.
S9) (SI Appendix, Text S4) (28). Using reported emission factors
(27), we estimate a national emission of 3.0 Tg a�1 (48% of
which comes from East and Central China) and a positive but
small emission trend of 0.02 Tg a�2 (mainly from Central China)
(Fig. 4B). This calculation suggests that freshwater aquaculture,
though an important missing sector in current bottom-up inven-
tories, is unlikely to explain the inferred positive trends over rice-
cultivation regions (0.14 Tg a�2).

We then consider that, in addition to cultivation areas, meth-
ane emissions from rice paddies are also affected by manage-
ment practices, for instance, the amount of organic fertilizer
applied. These factors are assumed constant in our prior inven-
tories. During the last decade, many regions in China have seen
an increasing rate of straw-residue application (29, 30) (SI
Appendix, Fig. S10), which is promoted by China’s agricultural
policy to increase use of organic fertilizers to maintain soil
organic carbon and boost crop production (31). Meanwhile,
this increase in straw-residue application is also driven by
increasingly strict bans on crop-residue burning in recent years
for air-pollution control (32). However, its potential side effect,
enhanced methane emissions from rice paddies (33, 34),
remains unevaluated. We evaluate this effect by recomputing
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2010–2017 rice-methane emissions following Yan et al. (35)
but now accounting for regional changes in straw retaining frac-
tions (SI Appendix, Text S3). We find positive rice-emission
trends of 0.1 Tg a�2 in major rice-cultivation regions (0.015 Tg
a�2 for Northeast China, 0.06 Tg a�2 for Central China,
and 0.03 Tg a�2 for East China), which can explain appreciable
fractions of trends inferred by the inversion (0.14 Tg a�2)
(Fig. 4B). This result showcases the interactive impacts of
agricultural, environmental, and climate policies and under-
scores the demand for improved management and technology
for crop production, air pollution, and greenhouse-gas mitiga-
tion (36, 37).

Discussion

Our inversion of atmospheric-methane observations infers an
increase of China’s methane emissions at a rate of 0.73 Tg a�2

during 2010–2017, indicating a slowdown from a higher rate
inferred for the pre-2010 period (1.1–1.2 Tg a�2) (17, 19),
though observational data were even sparser then. We show
that the 2010–2017 increase is attributable to multiple emission
sectors (Fig. 2B) instead of primarily to the coal sector, as sug-
gested previously (8). Our best estimate of the national emission
trend from coal mining is relatively small (0.12 Tg a�2), consis-
tent with a stabilization of China’s coal production during
2010–2017. We also find increases in methane emissions

attributable to rice cultivation (0.14 Tg a�2), which is inconsis-
tent with current bottom-up estimates but can be explained with
changes in agricultural practices. In addition to the coal and rice
sectors, which have been the focus of our discussion, other sectors
also contribute to the positive national emission trend. For exam-
ple, we find an increase of 0.12 Tg a�2 in livestock emissions
driven mainly by Northeast China. The inversion also attributes
a positive trend of 0.2 Tg a�2 to waste treatment (wastewater
and landfills), which is partly explained by the increasing volume
of wastewater and solid waste in China (6). However, it is possi-
ble that a rapid increase of natural-gas use in Chinese cities,
which spatially overlaps with waste treatment, is also a nonnegli-
gible contributor. Our inversion does not evaluate this source,
because it is not included in current bottom-up inventories due
to a lack of information. We suggest that further investigations
are necessary to assess their contributions to urban methane emis-
sions in China.

Based on our inversion results, we have evaluated the impact
of China’s policies on methane emissions from two major
methane-emitting sectors, coal mining and rice cultivation.
Our analysis reveals spatially contrasting coal-methane emission
trends at the regional level, reflecting complex region-
dependent responses to China’s energy policy that prioritizes
closing small coal mines (e.g., southwest) and consolidating
large coal mines (e.g., north). Our results also provide evidence
that coordinated production of CBM and coal (extracting
CBM before coal mining) (southern Shanxi), encouraged by
the current policy, is effective in reducing methane emissions
while maintaining energy supply. In addition, we detect
increasing methane emissions over rice-cultivation regions (e.g.,
East and Central China), unexpected from rice-cultivation area
and production data. Bottom-up calculations suggest that this
increase is likely a side effect from increasing rates in crop-
residue incorporation, a practice promoted by current policies
targeted at improving air quality and raising crop yields.
Although this effect is well known in field studies, our evalua-
tion shows that it can drive emission trends at regional and
national scales. Our findings demonstrate the interplay between
methane emissions and policy drivers on a subnational level,
providing information that can support the formulation of
China’s action plan on reducing methane emissions.

Materials and Methods

Methane Observations. We use surface methane observations from seven
sites operated by the CMA (20, 38) and six sites from the World Data Centre for
Greenhouse Gases (WDCGG) of World Meteorological Organization’s Global
Atmosphere Watch program. Locations of these sites are shown in SI Appendix,
Fig. S1. The CMA sites are distributed in different regions of China, while the
WDCGG sites are in regions neighboring mainland China. Methane mole frac-
tions are measured weekly with discrete flask air samples at five surface sites
(two CMA and three WDCGG) and hourly with continuous in situ observation at
the other eight sites (five CMA and three WDCGG). CMA measurements that are
influenced by very local emissions are filtered out following a protocol devel-
oped in Fang et al. (20). For hourly measurements, daily daytime averages are
used for our inversion. See SI Appendix, Text S1 and Table S3 for more informa-
tion on the surface measurements.

We also use satellite column methane data collected by the thermal and
near infrared sensor for carbon observation-Fourier transform spectrometer
(TANSO-FTS) instrument on board the GOSAT. The nadir-viewing instrument,
launched in 2009, measures methane in the 1.65-μm band from a sun-
synchronous orbit with a local overpass time around 13:00 (39). We use the Uni-
versity of Leicester version 9 CO2 proxy retrieval (40), which contains in total
∼400,000 successful retrievals over land within our inversion domain for
2010–2017 (SI Appendix, Fig. S1). Evaluation against ground-based network
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Fig. 4. 2010–2017 methane emission trends attributed to rice cultivation
in China. (A) Spatial distribution of rice methane emission trends inferred
by the inversion. (B) Bottom-up estimates of emission trends from freshwa-
ter aquaculture and rice cultivation. Rice emissions are estimated with and
without accounting for regional changes in straw retaining. Bottom-up
emission trends are compared with inversion inferred trends.
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showed that the retrieval has a single-observation precision of 13.7 parts per bil-
lion by volume (ppbv) and a regional bias of 4 ppbv (40).

SI Appendix, Text S5 describes the method to specify errors for these surface
and satellite observations, and SI Appendix, Table S4 summarizes error statistics
(variance and correlation scales) used in our inversion.

Model Simulations. We use the nested version of the GEOS-Chem chemical
transport model (12.9.3) to describe the relationship between surface-methane
emissions and atmospheric-methane concentrations (41, 42). The model simula-
tion is conducted at 0.5° × 0.625° resolution in the East Asia domain
(15°–55°N, 60°–145°E) and is driven by Modern-Era Retrospective Analysis for
Research and Applications, version 2 (MERRA-2) reanalysis meteorological fields
from the NASA Global Modeling and Assimilation Office (43). To simulate atmo-
spheric methane, we use a set of methane emission inventories that provide spa-
tially resolved surface-methane fluxes for a variety of anthropogenic and natural
sources. We use 3-h dynamic boundary conditions (i.e., methane concentrations
at the lateral edges of the modeling domain) from a global 4° × 5° inversion of
satellite (GOSAT) (44) and in situ (GLOBALVIEWplus CH4 ObsPack) (45) observa-
tions by Lu et al. (12). The atmospheric oxidation of methane in our regional
simulation is computed using a monthly OH field from a full chemistry GEOS-
Chem simulation. We sample methane fields simulated by GEOS-Chem at the
location and time of satellite or surface observations. To compare with surface
observations, we compute simulated daily daytime averages following the exact
procedure applied to hourly surface observations. To compare with satellite
observations, we compute column-averaged methane mole fractions by account-
ing for the vertical sensitivity of the instrument and the prior vertical profile of
methane. We also correct the known GEOS-Chem model biases in the strato-
sphere following Zhang et al. (11), though these biases are small for midlati-
tude conditions.

Bottom-Up Emission Inventories. We compile a bottom-up emission inven-
tory (E1) to drive our methane simulations. For anthropogenic emissions, we use
the global inventory Emissions Database for Global Atmospheric Research
(EDGAR) v4.3.2 for 2012 (46), with its emissions from China’s coal production
replaced by a regional inventory with improved location information for coal
mines (24). For natural-methane emissions, we consider wetlands from WetCH-
ARTs (47), biomass burning from the Global Fire Emissions Database (GFED4s)
(48), geological seeps by Maasakkers et al. (7), and termites by Fung et al. (49).
These inventories yield a total methane emission of 62 Tg a�1 from China, with
58 Tg a�1 from anthropogenic sources and 4 Tg a�1 from natural sources (Fig.
2A). In our inversion, we use these emission inventories as prior estimates and
optimize them to best fit the observations.

To characterize the inversion sensitivity to prior choices, we use a suite of
alternative bottom-up estimates, including PKU-CH4 v2 (E2) (6), EDGAR v5.0
(E3) (50), and CEDS-2021–04-21 (E4) (51), as prior information for anthropo-
genic methane emissions (Fig. 2A and SI Appendix, Table S5). These inventories
differ in their spatial, temporal, and sectoral distributions. For instance, PKU-
CH4 v2 predicts pronounced decreases in coal emissions from many regions of
China, driven by coal-production data being used, as compared with other
inventories that find either close-to-zero or positive trends. Natural emissions
are not perturbed. We present averages and ranges of this inversion ensemble
in this study.

To explore factors driving inferred increases in methane emissions over rice-
cultivation regions, we conduct additional bottom-up emission modeling for
freshwater aquaculture and rice cultivation, based on annual province-level data
from statistical yearbooks (freshwater aquaculture areas from China Fishery Sta-
tistical Yearbook (28) and rice-cultivation areas from China Agriculture Yearbook
(26)).We take emission factors for freshwater aquaculture from Yuan et al. (27)
and those for rice cultivation (as a function of region, rice season, water regime,
and organic input) from Yan et al. (35). See SI Appendix, Texts S3 and S4 for
more information.

Observation-based Emission Estimations. We apply observations from sat-
ellite and surface networks (observation vector y) to optimize methane emissions
from East Asia for the period of 2010–2017. The optimized methane emission
flux (Êgys) at location g, year y, and season s is given by

Êgys = ag + bgy + cgs
� �

Eagys, [1]

where Eagys is the prior emission estimate. ag, bgy, and cgs represent unitless scal-
ing coefficients for the 2010–2017 averages, annual anomalies, and seasonal
anomalies, respectively. g represents index for 600 spatial groups (SI Appendix,
Fig. S2), aggregated from the original 0.5° × 0.625° model grid, in order to
preserve high resolution for regions with strong or concentrated emissions,
while reducing resolution (and hence computation) in regions with weak or
diffuse emissions (52). y represents the year between 2010 and 2017 (8 y), and
s represents a season in January/February/March, April/May/June, July/August/
September, or October/November/December (four seasons). We assemble
the scaling coefficients ag, bgy, and cgs in a state vector x containing, in total,
600 × (1 + 8 + 4) = 7,800 elements.

We then solve optimal posterior estimates (x̂ ) in the Bayesian framework
assuming normal errors:

x̂ = xa + KTS�1
O K + S�1

a

� ��1
KTS�1

O y � Kxað Þ: [2]

Here, the Jacobian matrix, K, describes the relationship between methane
concentrations and emissions (∂y/∂x) and is constructed explicitly from a series
of perturbed model simulations. xa is the prior estimate for x. Sa is the prior
error covariance matrix that represents error statistics for xa, and SO is the obser-
vation error covariance matrix that includes both the instrument error and the
forward model error. We take Sa as a diagonal matrix and specify 50% uncer-
tainty for emission fluxes. Detailed information on construction of SO is in SI
Appendix, Text S5.

Estimates of sectoral emissions provide additional insight. We update sectoral
emission estimates, Ê

i
gys (i denotes an emission sector, which can be oil/gas,

coal, livestock, rice, landfills, and wastewater), based on the fraction of the sector
i in prior emissions at given location (g) and time (year y and season s):

Ê
i
gys =

Ea,igys
Eagys

Êgys: [3]

Eq. 3 implicates that, in addition to total fluxes Êgys, the uncertainty of sec-

toral emissions also arises from the Ea,igys
Eagys

term, which is inventory dependent and

unoptimized by the inversion. To capture this uncertainty, we form an ensemble
of inversions by using varied emission inventories as prior information (see SI
Appendix, Table S5). This is readily done by replacing the prior estimate xa in
Eq. 2, which incurs little additional computation once the Jacobian matrix K is
constructed.

Our inversion method gives a closed-form solution to the posterior error
covariance matrix (Ŝ), describing the error structure of x̂ , and the averaging ker-
nel matrix (A), describing the sensitivity of the solution to the true state (∂x̂ /∂x).
In addition to perturbing prior choices, we also analyze this information to
understand uncertainties of the inversion results (see SI Appendix, Text S6 for
more discussion). We also perform inversions with only GOSAT satellite observa-
tions to compare with our main inversions using both GOSAT and surface data,
to evaluate how inclusion of surface observations affects our inferences (see SI
Appendix, Text S2).

Data, Materials, and Software Availability. The data supporting the find-
ings of this study are available through a public repository [https://doi.org/10.
57760/sciencedb.02269,(53)].

ACKNOWLEDGMENTS. The study is supported by the National Key Research
and Development Program of China (2020YFA0607502) and the National Natu-
ral Science Foundation of China (42007198). H.B. and R.J.P. acknowledge sup-
port by the European Space Agency Climate Change Initiative, the Copernicus
C3S program, and the National Centre for Earth Observation funded by North
American Electric Reliability Corporation (NE/R016518/1). We thank the Japa-
nese Aerospace Exploration Agency, the National Institute for Environmental
Studies, and the Ministry of Environment for the GOSAT data. We thank high-
performance computing center of Westlake University for the facility support and
technical assistance. We acknowledge Korea Meteorological Administration,
Japan Meteorological Agency, Viet Nam Meteorological and Hydrological Admin-
istration, and Earth System Research Laboratory, National Oceanic and Atmo-
spheric Administration for providing surface measurements through WDCGG.

6 of 7 https://doi.org/10.1073/pnas.2202742119 pnas.org

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2202742119/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2202742119/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2202742119/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2202742119/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2202742119/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2202742119/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2202742119/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2202742119/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2202742119/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2202742119/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2202742119/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2202742119/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2202742119/-/DCSupplemental
https://doi.org/10.57760/sciencedb.02269
https://doi.org/10.57760/sciencedb.02269


Y.Z. thanks Minghao Zhuang (China Agriculture University) and Weixiang Wu
(Zhejiang University) for insightful discussions.

Author affiliations: aKey Laboratory of Coastal Environment and Resources of Zhejiang
Province, School of Engineering, Westlake University, Hangzhou, Zhejiang 310024,
China; bInstitute of Advanced Technology, Westlake Institute for Advanced Study,
Hangzhou, Zhejiang 310024, China; cZhejiang Carbon Neutral Innovation Institute,
Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China; dYangtze River
Delta R&D Centre, Monitoring & Assessment Center for GHGs & Carbon Neutrality,
China Meteorological Administration, Beijing 100081, China; eZhejiang University of
Science and Technology, Hangzhou, Zhejiang 310023, China; fZhejiang University,
Hangzhou, Zhejiang 310058, China; gNational Centre for Earth Observation, University
of Leicester, Leicester LE1 7RH, United Kingdom; hEarth Observation Science, School of
Physics and Astronomy, University of Leicester, Leicester LE1 7RH, United Kingdom;
iEmpa, Swiss Federal Laboratories for Materials Science and Technology, Duebendorf

8600, Switzerland; jCenter for Global Change Science, Massachusetts Institute of
Technology, Cambridge, MA 02139, USAkSchool of Atmospheric Sciences, Sun Yat-sen
University, Zhuhai, Guangdong 519082, China; lState Environmental Protection Key
Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control,
Tianjin Key Laboratory of Urban Transport Emission Research, College of
Environmental Science and Engineering, Nankai University, Tianjin 300350, China;
mChina Meteorological Administration-Nankai University Cooperative Laboratory for
Atmospheric Environment–Health Research, Tianjin 300350, China; and nSino-French
Institute for Earth System Science, College of Urban and Environmental Sciences,
Peking University, Beijing 100871, China

Author contributions: Y.Z. and S.F. designed research; Y.Z., S.F., Y.L., Y.C., R.L., and
K.J. performed research; Y.Z., S.F., J.C., Y.L., Y.C., R.J.P., H.B., M.S., J.-X.S., X.L., S.S., and
S.P. analyzed data; Y.Z. and S.F. wrote the paper; Y.Z., R.L., J.-X.S., and X.L.
developed inverse modeling methodology; S.F., J.C., Y.L., Y.C., and M.S. contributed
to the acquisition and interpretation of surface observations; R.J.P. and H.B.
contributed to the acquisition and interpretation of satellite observations; J.-X.S., S.S.,
and S.P. contributed to the acquisition and interpretation of bottom-up emission
inventory.

1. S. Szopa et al., “Climate change 2021: The physical science basis” in Contribution of Working
Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change,
V. Masson-Delmotte et al., Eds. (Cambridge University Press, 2021).

2. E. G. Nisbet et al., Very strong atmospheric methane growth in the 4 years 2014–2017:
Implications for the Paris agreement. Global Biogeochem. Cycles 33, 318–342 (2019).

3. A. L. Ganesan et al., Advancing scientific understanding of the global methane budget in support
of the Paris agreement. Global Biogeochem. Cycles 33, 1475–1512 (2019).

4. S. Kirschke et al., Three decades of global methane sources and sinks. Nat. Geosci. 6, 813 (2013).
5. UNFCCC, Greenhouse Gas Inventory Data Interface (2021). https://di.unfccc.int/detailed_data_by_

party. Accessed 1 December 2021.
6. G. Liu et al., Recent slowdown of anthropogenic methane emissions in China driven by stabilized

coal production. Environ. Sci. Technol. Lett. 8, 739–746 (2021).
7. J. D. Maasakkers et al., Global distribution of methane emissions, emission trends, and OH

concentrations and trends inferred from an inversion of GOSAT satellite data for 2010–2015.
Atmos. Chem. Phys. 19, 7859–7881 (2019).

8. S. M. Miller et al., China’s coal mine methane regulations have not curbed growing emissions.
Nat. Commun. 10, 303 (2019).

9. J. Sheng et al., Sustained methane emissions from China after 2012 despite declining coal
production and rice-cultivated area. Environ. Res. Lett. 16, 104018 (2021).

10. M. Saunois et al., The global methane budget 2000–2017. Earth Syst. Sci. Data 12, 1561–1623
(2020).

11. Y. Zhang et al., Attribution of the accelerating increase in atmospheric methane during 2010–2018
by inverse analysis of GOSAT observations. Atmos. Chem. Phys. 21, 3643–3666 (2021).

12. X. Lu et al., Global methane budget and trend, 2010–2017: Complementarity of inverse analyses
using in situ (GLOBALVIEWplus CH4 ObsPack) and satellite (GOSAT) observations. Atmos. Chem.
Phys. 21, 4637–4657 (2021).

13. Y. Yin et al., Accelerating methane growth rate from 2010 to 2017: Leading contributions from the
tropics and East Asia. Atmos. Chem. Phys. 21, 12631–12647 (2021).

14. F. Wang et al., Interannual variability on methane emissions in monsoon Asia derived from GOSAT
and surface observations. Environ. Res. Lett. 16, 024040 (2021).

15. F. Wang et al., Methane emission estimates by the global high-resolution inverse model using
national inventories. Remote Sens. 11, 2489 (2019).

16. R. Janardanan et al., Country-scale analysis of methane emissions with a high-resolution inverse
model using GOSAT and surface observations. Remote Sens. 12, 375 (2020).

17. A. R. Stavert et al., Regional trends and drivers of the global methane budget. Glob. Change Biol.
28, 182–200 (2022).

18. P. Bergamaschi et al., Atmospheric CH4 in the first decade of the 21st century: Inverse modeling
analysis using SCIAMACHY satellite retrievals and NOAA surface measurements. J. Geophys.
Res. Atmospheres 118, 7350–7369 (2013).

19. R. L. Thompson et al., Methane emissions in East Asia for 2000–2011 estimated using an
atmospheric Bayesian inversion. J. Geophys. Res. D Atmospheres 120, 4352–4369 (2015).

20. S.-X. Fang, L.-X. Zhou, K. A. Masarie, L. Xu, C. W. Rella, Study of atmospheric CH4 mole fractions at
three WMO/GAW stations in China. J. Geophys. Res. D Atmospheres 118, 4874–4886 (2013).

21. National Bureau of Statistics of China, China Statistical Yearbook 2010-2018 (China Statistics Press,
Beijing, 2018).

22. Shanxi Provincial Bureau of Statistics, Survey Office of the National Bureau of Statistics in
Shanxi, Shanxi Statistical Yearbook 2010-2018 (China Statistics Press, Beijing, China, 2018).

23. S. Tao, S. Chen, Z. Pan, Current status, challenges, and policy suggestions for coalbed methane
industry development in China: A review. Energy Sci. Eng. 7, 1059–1074 (2019).

24. J. Sheng, S. Song, Y. Zhang, R. G. Prinn, G. Janssens-Maenhout, Bottom-up estimates of coal mine
methane emissions in China: A gridded inventory, emission factors, and trends. Environ. Sci.
Technol. Lett. 6, 473–478 (2019).

25. J. Gao, C. Guan, B. Zhang, K. Li, Decreasing methane emissions from China’s coal mining with
rebounded coal production. Environ. Res. Lett. 16, 124037 (2021).

26. Ministry of Agriculture and Rural Affairs of China, China Agriculture Yearbook 2010-2018
(China Agriculture Press, Beijing, 2018).

27. J. Yuan et al., Rapid growth in greenhouse gas emissions from the adoption of industrial-scale
aquaculture. Nat. Clim. Chang. 9, 318–322 (2019).

28. Fisheries Administration of the Ministry of Agriculture and Rural Affairs of China, China Fishery
Statistical Yearbook 2010-2018 (China Agriculture Press, Beijing, 2018).

29. Z. Shi et al., Utilization characteristics, technical model and development suggestion on crop straw
in China. J. Agric. Sci. Technol. 21, 8–16 (2019).

30. G. Zhang et al., Residue usage and farmers0 recognition and attitude toward residue retention in
China0s croplands. Nongye Huanjing Kexue Xuebao 36, 981–988 (2017).

31. C. Liu, M. Lu, J. Cui, B. Li, C. Fang, Effects of straw carbon input on carbon dynamics in agricultural
soils: A meta-analysis. Glob. Change Biol. 20, 1366–1381 (2014).

32. L. Huang et al., Assessment of the effects of straw burning bans in China: Emissions, air quality,
and health impacts. Sci. Total Environ. 789, 147935 (2021).

33. P. Hou et al., Methane emissions from rice fields under continuous straw return in the
middle-lower reaches of the Yangtze River. J. Environ. Sci. (China) 25, 1874–1881(2013).

34. Y. Jiang et al., Acclimation of methane emissions from rice paddy fields to straw addition. Sci. Adv.
5, eaau9038 (2019).

35. X. Yan, Z. Cai, T. Ohara, H. Akimoto, Methane emission from rice fields in mainland China: Amount
and seasonal and spatial distribution. J. Geophys. Res. D Atmospheres 108, 4505 (2003).

36. Y. Cao et al., Mitigating the global warming potential of rice paddy fields by straw and
straw-derived biochar amendments. Geoderma 396, 115081 (2021).

37. Q. Nan, C. Fang, L. Cheng, W. Hao, W. Wu, Elevation of NO3
--N from biochar amendment facilitates

mitigating paddy CH4 emission stably over seven years. Environ. Pollut. 295, 118707 (2022).
38. J. Wang et al., Large Chinese land carbon sink estimated from atmospheric carbon dioxide data.

Nature 586, 720–723 (2020).
39. A. Kuze, H. Suto, M. Nakajima, T. Hamazaki, Thermal and near infrared sensor for carbon

observation Fourier-transform spectrometer on the Greenhouse Gases Observing Satellite for
greenhouse gases monitoring. Appl. Opt. 48, 6716–6733 (2009).

40. R. J. Parker et al., A decade of GOSAT Proxy satellite CH4 observations. Earth Syst. Sci. Data 12,
3383–3412 (2020).

41. J. D. Maasakkers et al., 2010–2015 North American methane emissions, sectoral contributions,
and trends: A high-resolution inversion of GOSAT observations of atmospheric methane. Atmos.
Chem. Phys. 21, 4339–4356 (2021).

42. X. Lu et al., Methane emissions in the United States, Canada, and Mexico: evaluation of national
methane emission inventories and sectoral trends by inverse analysis of in situ (GLOBALVIEWplus
CH4 ObsPack) and satellite (GOSAT) atmospheric observations. Atmos. Chem. Phys. 2022,
395–418 (2022).

43. R. Gelaro et al., The modern-era retrospective analysis for research and applications, version 2
(MERRA-2). J. Clim. 30, 5419–5454 (2017).

44. R. J. Parker, H. Boesch, University of Leicester GOSAT Proxy XCH4 v9.0 (Centre for Environmental
Data Analysis, 2020).

45. A. G. Di Sarra et al., Multi-laboratory compilation of atmospheric carbon dioxide data for the period
1983–2020; obspack_ch4_1_GLOBALVIEWplus_v4.0_2021-10-14. NOAA Global Monitoring
Laboratory, https://doi.org/10.25925/20211001 Accessed 15 September 2022..

46. G. Janssens-Maenhout et al., EDGAR v4.3.2 Global Atlas of the three major Greenhouse Gas
Emissions for the period 1970-2012. Earth Syst. Sci. Data Discuss. 2017, 1–55 (2017).

47. A. A. Bloom et al., A global wetland methane emissions and uncertainty dataset for atmospheric
chemical transport models (WetCHARTs version 1.0). Geosci. Model Dev. 10, 2141–2156 (2017).

48. G. R. van der Werf et al., Global fire emissions estimates during 1997–2016. Earth Syst. Sci. Data 9,
697–720 (2017).

49. I. Fung et al., Three-dimensional model synthesis of the global methane cycle. J. Geophys. Res.
D Atmospheres 96, 13033–13065 (1991).

50. M. Crippa et al., Fossil CO2 and GHG Emissions of All World Countries - 2019 Report, EUR 29849
EN (Publications Office of the European Union, Luxembourg, 2019).

51. R. M. Hoesly et al., Historical (1750–2014) anthropogenic emissions of reactive gases and aerosols
from the Community Emissions Data System (CEDS). Geosci. Model Dev. 11, 369–408 (2018).

52. A. J. Turner, D. J. Jacob, Balancing aggregation and smoothing errors in inverse models.
Atmos. Chem. Phys. 15, 7039–7048 (2015).

53. Y. Zhang, S. Fang, 2010-2017 China’s methane emissions inferred from an inversion of satellite
and surface observations. ScienceDB. https://www.scidb.cn/en/
detail?dataSetId=04e7d3c5658d468e833496c713178f89. Deposited 17 August 2022.

PNAS 2022 Vol. 119 No. 41 e2202742119 https://doi.org/10.1073/pnas.2202742119 7 of 7

https://di.unfccc.int/detailed_data_by_party
https://di.unfccc.int/detailed_data_by_party
https://doi.org/10.25925/20211001

