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Abstract: As the electrification of vehicle powertrains takes prominence to meet stringent emission
norms, parts of internal combustion engines like cylinder heads are subjected to an increased number
of thermal load cycles. The cost-effective design of such structures subjected to cyclic thermo-
mechanical loads relies on the development of accurate material models capable of describing the
continuum deformation behaviour of the material. This study investigates the effect of temperature
on the evolution of flow stress under cyclic loading in A356-T7 + 0.5% Cu cast aluminium alloy
commonly used in modern internal combustion engine cylinder heads. The material exhibits peak
stress and flow stress asymmetry with the stress response and flow stress of the material under
compressive loading higher than under tension. This peak and flow stress asymmetry decrease
with an increase in temperature. To compare this stress asymmetry against conventional steel, cyclic
strain-controlled fatigue tests are run on fully pearlitic R260 railway steel material. To study the effect
of mean strain on the cyclic mean stress evolution and fatigue behaviour of the alloy, tests with tensile
and compressive mean strains of +0.2% and −0.2% are compared against fully reversed (Rε = −1)
strain-controlled tests. The material exhibits greater stress asymmetry between the peak tensile and
peak compressive stresses for the strain-controlled tests with a compressive mean strain than the
tests with an identical magnitude tensile mean strain. The material exhibits mean stress relaxation
at all temperatures. Reduced durability of the material is observed for the tests with tensile mean
strains at lower test temperatures of up to 150 ◦C. The tensile mean strains at elevated temperatures
do not exhibit such a detrimental effect on the endurance limit of the material.

Keywords: aluminium; steel; mechanical behaviour; fatigue; stress asymmetry; isotropic hardening

1. Introduction

Cast aluminium and cast iron have been the principal choice of material for casting
internal combustion engine (ICE) cylinder heads. In recent years, aluminium has become
the preferred material owing to its high thermal conductivity, higher specific strength
and stiffness and ability to be cast to complex three-dimensional geometries and close
tolerances [1,2]. Pure aluminium is soft, and hence, various alloying elements are added
to modify and enhance the final properties of the alloy to suit the various applications.
The aluminium–silicon alloy system is widely preferred for casting cylinder heads owing
to their reduced production costs, better castability, suitable corrosion and mechanical
properties, to list a few benefits. Magnesium, zinc, copper, manganese and iron are often
added in varying amounts to the aluminium–silicon alloy, and all of them play different
roles in tailoring the properties of the alloy system. The mould-sticking behaviour of the
molten alloy is often improved with iron but at the cost of reduced material ductility. This
is often counteracted with additions of manganese. The alloys designated A319, A356
and A357 are some of the more commonly used for casting cylinder heads of light-duty
engines [3]. The A356 family of alloys have taken prominence in recent years owing to
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the precipitate strengthening effects of Mg2Si in the alloy, offering better creep strength
at higher operating temperatures [4]. With an increase in cylinder pressures and specific
power, alloys with higher copper content like A356 + 0.5% Cu are increasingly used in
cylinder heads [5–8].

Hot components of an internal combustion engine (ICE) like cylinder heads, exhaust
manifolds, etc., are subjected to cyclic thermal loads during their lifecycle. The components
can experience severe temperature transients, say, from−30 ◦C during a cold start in winter
months to operating temperatures of more than 230 ◦C in hot parts of the power train sys-
tems [8–10]. Such start–operate–stop thermal cycles induce low cycle thermo-mechanical
fatigue failures in sections that are particularly susceptible to cracking, such as the valve
bridge areas in cylinder heads [11–13]. Current trends in the automotive landscape rely
on hybrid powertrains using downsized engines with high specific power. The internal
combustion engines, part of hybrid powertrains, have increased demands on material
durability owing to such start–operate–stop thermal cycles, coupled with an associated
rapid approach to peak power compared to traditional combustion engine powertrains.
This increased number of thermal load cycles increases the susceptibility of premature
thermo-mechanical cracks in vulnerable sections of the cylinder head. Designing cylinder
heads with predictable durability is a vital step of the powertrain development process
to meet the service life targets [11,14]. To numerically predict the thermo-mechanical
fatigue life of such thermally loaded components, engineers rely on numerical models
that can model the cyclic load–response of the material and a suitable fatigue criterion
to estimate the life of the structure [9,15,16]. Metallic materials, when subjected to cyclic
loads, often exhibit a change in the yield strength, the so-called isotropic hardening, which
is a function of temperature, strain rate, etc., for a given material [17,18]. For structural
materials subjected to cyclic thermal loads like cylinder heads, a good understanding of
the evolution of yield surface at various temperatures is imperative for the development of
suitable material models in the computer-aided design (CAD) development process.

Mercer et al. [19], while studying the cyclic deformation behaviour of different alu-
minium alloys, observed a strong peak stress asymmetry in dispersion strengthened
IN-905XL, IN9052 alloys and in the precipitation strengthened AA7075-T6 alloy. The
peak stresses observed under compression was higher than in tension for a fully reversed
strain-controlled cyclic loading. Ma et al. [20] observed a similar compression-tension peak
stress asymmetry in poly crystalline copper and ascribed this difference to differential
constraints in tension and compression induced by inhomogeneous deformations between
the different phases in the material. Several studies have been reported on the peak stress
asymmetry observed in various aluminium alloys under cyclic loading [21–23].

Ahlström et al. [18,24] studied the effect of temperature on the cyclic yield strength
evolution at various temperatures in R7T railway wheel steel and observed that temper-
ature has a dramatic influence on both the magnitude and cyclic evolution of the yield
strength. They observed about 70% reduction in the cyclic yield strength levels at 600 ◦C
when compared to the room temperature values.

Azadi [25] studied the effect of mean strain on the fatigue behaviour of A356 and A357
aluminium alloys and observed no significant effect of the mean strains on the number of
cycles to failure using strain-controlled tests with high temperature isothermal or out of
phase thermo-mechanical load cycles in A356 alloys. The strain ratios and mean strains,
however, were reported to affect the number of cycles to failure of the A357 alloy, with a
reduction in the fatigue life observed with an increase in tensile mean strains. In studies
under stress-controlled loading by Houria et al. [26] examining the effect of mean stress on
the multiaxial fatigue behaviour of A356-T6 alloys, the authors observed that tensile mean
stress had a detrimental effect on the number of cycles to failure. This observation was
more pronounced under tension than under torsion or combined tension-torsion loading
conditions. The mode of load-control, namely, stress or strain control, seems to have a
pronounced impact on the determination of the number of cycles to failure of the material.
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Very few studies have been reported on the effect of temperature on stress and cyclic
yield strength asymmetry in aluminium alloys. Similarly, there is a dearth of relevant litera-
ture studying the effects of mean strains on the stress response and fatigue behaviour of the
new generation of A356 alloys with added copper. To further highlight the differences in the
cyclic stress development and yield strength asymmetry, cyclic strain-controlled tests with
equivalent loads are run on R260 pearlitic steel commonly used in the railway industry.

2. Materials and Methods
2.1. Sample Extraction and Sample Preparation

The samples for testing have been extracted from gravity die cast cylinder heads of
Volvo Cars’ inline 4 cylinder, VEP-4 series of petrol engines. The samples are extracted
so that the test volume of the material lies within the valve bridge volumetric area of the
cylinder heads, as illustrated in Figure 1. This valve bridge section is susceptible to thermo-
mechanical fatigue crack initiations [16,27,28] and is the area of interest in this study. The
extracted material is then machined in accordance with the recommendations from the
ASTM E606/E606M standard for strain-controlled fatigue tests [29], and the geometry of
the specimens used for testing in this study is presented in Figure 2. The machined samples
were subsequently ground and polished sequentially to obtain a mirror surface finish. This
helps mitigate the influence of surface irregularities in the fatigue life determination of
metallic materials.

Figure 1. Illustration of test specimen extraction from the highly loaded valve bridge areas of a
cylinder head.

Figure 2. Geometry of the test specimens manufactured in accordance with the ASTM E606/E606M
test standard. All the presented dimensions are in mm.
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2.2. Material
2.2.1. Chemical Composition and Microstructure

The chemical composition of the tested alloy can be ascribed to the broader group of
the A356 family of cast aluminium alloys. The average measured the chemical composition
of the tested A356-T7 + 0.5% Cu alloy, indicating the major alloying elements, is summarised
in Table 1. The chemical composition measurements were made using a modified ASTM
E1251 test method employing optical emission spectrometry [30,31].

Table 1. Chemical composition of the tested A356-T7 + 0.5% Cu aluminium alloy used to cast the
cylinder heads in wt.%.

Si Cu Mg Ti Fe Mn B Others Al

6.8 0.53 0.35 0.12 0.10 0.07 0.0012 <0.05 Bal

A scanning electron microscopic image of the A356-T7 + 0.5% Cu alloy taken using a
Zeiss LEO 1550 Scanning Electric Microscope equipped with a Centaurus back scattered
electron detector is presented in Figure 3. The image shows the presence of the major
α-aluminium matrix with the silicon particles formed from eutectic solidification and the
secondary phase precipitates. The phases are all distinguished by varying shades of grey
and are labelled with some representative regions indicated by the arrows.

Figure 3. A scanning electron microscopic (SEM) image showing the different phases present in the
tested A356-T7 + 0.5% Cu aluminium alloy.

2.2.2. Manufacturing Process and Heat Treatment

The cylinder heads were produced using the gravity tilt casting method. The alloy
melt was maintained in the temperature range 690–710 ◦C. Titanium was added to refine
the grain size, while strontium was used in the melt for eutectic modification. To degas the
melt, a spinning 220 mm graphite rotor at 300 rpm was used by simultaneously pumping
in nitrogen into the melt. The die temperature was maintained between 200 and 240 ◦C.
The combustion chamber side of the cylinder head was water cooled to obtain a finer
dendritic spacing through faster directional solidification. The final heat treatment process
started with solutionising the cast at 530 ◦C for about 3 h. The cast was then quenched in
the air. The final artificial “T7” ageing process involved heating the cast to temperatures of
200–230 ◦C for up to 5 h to achieve high strength, ductility and microstructural stability.
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2.2.3. Railway Steel Used for Investigation

To highlight the differences in the yield strength evolution and the stress asymmetry
in aluminium alloys with that of steel, a R260 grade fully pearlitic rail steel was tested.
The measured chemical composition is summarised in Table 2, and the material and
microstructure of the alloy are further detailed in [32].

Table 2. Chemical composition of the tested virgin R260 pearlitic steel used in rail heads in wt.%.

C Si Mn P S Cr N Cu Fe & Others

0.77 0.32 1.02 0.014 0.013 0.04 0.006 0.047 Bal

2.3. Test Plan

1. To study the effect of mean strain and temperature on the mean stress relaxation and
number of cycles to failure of the A356-T7 + 0.5% Cu alloy, strain-controlled cyclic
loads were imposed with mean strains of +0.2%, 0% and −0.2% at room temperature,
150, 200 and 250 ◦C. All the above tests were run with a total strain amplitude of 0.4%
by applying the strain-controlled load in a triangular wave form and at a strain rate
of 1% s−1, obtained by setting the corresponding test frequency.

2. To develop the cyclic stress–strain curve of the tested aluminium alloy, an additional
completely reversed strain-controlled test was run with a total strain amplitude of
0.3% at an identical strain rate of 1% s−1.

3. To compare the yield stress and cyclic stress–strain asymmetry of the aluminium alloy
with that of general steel, R260 pearlitic steel specimens extracted from rail heads
were tested using completely reversed strain-controlled tests at room temperature
with total strain amplitudes of 0.3 and 0.4% and at identical test strain rates of 1% s−1.
A similar strain-controlled, triangular wave load application was used for testing the
steel specimens as well to maintain consistency and to enable comparison.

2.4. Test Equipment and Set-Up
2.4.1. Equipment Used

All the tests were conducted using an Instron 8501 uniaxial servo-hydraulic machine.
The servo-hydraulic machine was equipped with a 1 kHz data acquisition system to sample
the strain, axial force and displacement measurements. The high-temperature isothermal
tests were executed by using a convection-based Instron 3119-407 test chamber encap-
sulating the test set-up. Two K-type thermocouples located inside the high-temperature
chamber were used for feedback and temperature control. Two types of extensometers
were used for the experimental strain measurements depending on the temperature and
are detailed in Table 3. The temperatures of the test specimens were recorded using a
K-type thermocouple mounted on the specimen surface in the test volume in between
the extensometer blades, and the maximum variation of the measured temperature was
observed to be within the extensometer limits of error specified at ±2.5 ◦C.

Table 3. Summary of extensometers used for the uniaxial tests.

Extensometer Temperature

Instron 2620-603 axial clip-on dynamic extensometer (Instron, MA, USA) RT and 150 ◦C
Epsilon 3555-010M-020 high temperature 146 axial capacitive extensometer

(Epsilon Technology Corporation, Jackson, WY, USA). 200 and 250 ◦C

2.4.2. Thermal Stabilization

To eliminate the interference from thermal gradients in the test set-up on the test
measurements, the test set-up was heated to the target temperature and allowed to stabilize
for three hours. The tests were started once the thermal gradients and expansion of the test
set-up had stabilized.
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2.5. Analysis of Experimental Results

To study the isotropic hardening behaviour of the alloy, it is necessary to study the
evolution of the cyclic yield strength with accumulated plastic strain [33]. The definition
and determination of the terms ‘cyclic yield strength’ and ‘accumulated plastic strain’ are
described in the sections below.

2.5.1. Nomenclature

For brevity, each strain load reversal is named a ‘Segment’ and is illustrated in
Figure 4a. For example, for a completely reversed strain-controlled test with a total strain
amplitude of 0.4%, the initial loading to the maximum tensile strain from 0% to +0.4% is
named Segment 1, the subsequent load reversal from +0.4% to −0.4% is named Segment 2,
and so on.

Figure 4. Illustration of nomenclature used for the loading segments (segment contains data for each
strain load reversal): (a) segment nomenclature for the applied strain-controlled load; (b) illustration
of the corresponding stress response for each strain load segment.

To distinguish the evolution of yield strength with sequential load reversals going
towards the tensile and compressive maximum strains during a cycle, the loading towards
the tensile maximum strain is named ‘Tensile Loading’, and the loading towards the
compressive peak strain from the tensile peak strain is referred to as ‘Compressive Loading’
and is illustrated for the first three segments in Figure 4b.

2.5.2. Cyclic Yield Strength Determination

To estimate the yield strength of each loading segment, a small plastic strain offset
of 0.02% towards the centre of the hysteresis loop was used to identify the offset yield
strength and the methodology is illustrated in Figure 5. The choice of the tangent modulus
has a significant influence on the quantitative determination of the cyclic yield strength
evolution. The offset line had a slope equal to the linear elastic stiffness estimated for each
of the loading segments being evaluated. The linear stiffness of each loading segment was
approximated using a two-step iterative process.

Step 1—Use a smaller sample size of the initial elastic data to get a preliminary
approximation of the linear elastic stiffness and the offset yield strength of the loading
segment being evaluated.

1. Estimate a preliminary stiffness (EPrel) using either of the following steps depending
on the loading segment:

i. For the first 2 segments, data points from when the elastic loading/unloading
commences up to a stress response of 60 MPa are used for the preliminary
stiffness approximation. The choice of 60 MPa was dictated by the necessity
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to have a sufficient collection of sampling points while limiting the extrac-
tion of data points from just the elastic loading/unloading of the segment
stress–strain curve.

ii. For all the subsequent loading segments, by using the stress–strain data of
the current loading segment for the preliminary stiffness approximation with
the data sampled for the evaluation limited to half the yield strength of the
corresponding tensile/compressive loading of the prior cycle.

2. Estimate a preliminary yield strength using a plastic offset strain of 0.02% and the
estimated preliminary stiffness (EPrel). The stress range is identified from the initial
stress from where the elastic loading/unloading begins and the stress value at the
point of intersection of the offset line and the segment’s stress–strain curve. The
preliminary yield strength (σPrel) is estimated as half the stress range estimated.

Figure 5. Illustration of how the cyclic offset yield strength is determined for the individual loading
segments (image not drawn to scale).

Step 2—A revised sample size of the elastic region of the segment stress–strain data is
now sampled using the preliminary yield strength (σPrel) estimated in the previous step for
a final re-evaluation of the segment stiffness and the yield strength.

1. A revised sample size of the segment’s stress–strain data is used for the final linear
elastic stiffness (ESeg) evaluation, with the data limited to half the preliminary yield
strength evaluated in the previous step.

2. The final yield strength is determined using a plastic offset strain of 0.02% from the
elastic unloading/loading starting point using the re-evaluated segment linear elastic
stiffness (ESeg). Half the difference between the initial stress data point (σInit) and the
point of intersection of the new offset line (σFin) gives the final cyclic yield strength
estimation for the segment and is illustrated in Figure 5.

2.5.3. Calculation of Accumulated Plastic Strain

In cyclic loading, the evolution of the yield strength is often associated with the
accumulation of plastic strains in the material [34]. Once the yield strength of the material
is exceeded for each loading segment, the material accumulates plastic strains. In cyclic
loading, the accumulated plastic strain is a positive scalar that increases incrementally with
every plastic loading regardless of the loading direction in the material [35]. For every
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load reversal, the deformation proceeds from elastic unloading to elastic-plastic loading.
For each loading segment ‘n’, using a linear approximation for the elastic modulus, the
elastic component of the deformation is removed from the total deformation to obtain the
residual plastic strains. Such plastic strains are accumulated from the initial loading till the
specimen rupture under cyclic loading together with the concurrent evolution in the yield
strength. The data are cut off when a major crack has been established and when there
is a corresponding reduction in the tensile stresses. To avoid including the accumulation
of plastic strains after a major crack has been established at the end of the life, the cut-off
point is identified by observing when the peak tensile stress drops below 75% of the peak
stress developed at a stabilized-reference cycle, taken to be the 25th cycle in this case. The
mathematical formulations are summarised below:

εSegn_Plast= εSegn_Total −
σSegn

ESegn

(1)

where εSeg_Plast is the segment plastic strain, εSeg_Total is the segment total strain, σSeg is the
segment stress and ESeg is the segment linear elastic stiffness approximation determined
as described above. Once the plastic strains in the segment have been evaluated using
the expression above, the maximum plastic strain induced in the current loading segment,
εMax(Segn_Plast), is then extracted using the formulation below:

εMax(Segn_Plast)= Max(εSegn_Plast) (2)

The accumulated plastic strain after segment ‘n’ (εPlast_A f ter Segn ) is the sum of the
accumulated plastic strain after segment ‘n−1′ (εPlast_A f ter Segn−1 ) and the maximum plastic
strain in the loading segment ‘n’ as shown below:

εPlast_A f ter Segn = εPlast_A f ter Segn−1 +εMax(Segn_Plast) (3)

and with the accumulated plastic strain when the cyclic loading begins, i.e., before segment
1 is obviously zero. The evolution of plastic strain with the increase in deformation for
a sample segment is presented in Figure 6, and the corresponding stress response with
increasing plastic strains in the segment is presented in Figure 7.

Figure 6. Evolution of segment plastic strain.
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Figure 7. Segment plastic strain vs. stress response.

3. Results
3.1. Yield Strength Evolution

The evolution of the average tensile and compressive cyclic yield strength with the
accumulation of plastic strain is presented in Figure 8. The material exhibits a non-linear
change in the size of the yield surface with the accumulation of plastic strains. For the
test at room temperature, the material exhibits an initial exponential increase in the size
of the yield surface. The isotropic hardening of the material takes place with further
cycling and accumulation of plastic strains but at a lower hardening rate. At 150 ◦C, the
material exhibits an initial steep isotropic hardening with the accumulation of plastic
strains. However, with subsequent cyclic loading, the material shows a marginal reduction
in the size of the yield surface at a constant rate with the accumulation of plastic strains. The
higher yield strength at 150 ◦C when compared to the estimated yield could be attributed
to the scatter in the mechanical properties often observed in A356 cast aluminium alloys
and that which has been reported more extensively in our previous work [36,37]. At the
higher tested temperatures of 200 and 250 ◦C, the material exhibits an exponential isotropic
softening behaviour with a steeper initial reduction of the size of the yield surface followed
by a constant slower reduction with the continued plastic cycling of the material.

3.2. Yield Strength Asymmetry

The evolution of the tensile and compressive yield strength of the A356-T7 + 0.5% Cu
at room temperature, 150, 200 and 250 ◦C is presented in Figure 9 for completely reversed
strain-controlled fatigue tests with a total strain amplitude of 0.4%. The yield strength
for the compressive loading is higher than that of the tensile loading for all the tested
temperatures. The difference in the yield strength between tension and compression is
about 10 MPa for the room temperature test and decreases with increase in temperature.
At the highest tested temperature of 250 ◦C, there is no discernible difference in the yield
strength between tensile and compressive loading.

The tensile and compressive yield stress evolution behaviour of a fully pearlitic R260
railway steel at room temperature for completely reversed, strain-controlled cyclic tests
with a total strain amplitude of 0.4% is presented in Figure 10 for comparison. A magnified
image of the yield stress under tension and compression is further presented in Figure 11.
As can be observed, the R260 railway steel exhibits no significant yield strength asymmetry
upon load reversal.
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Figure 8. (a) Effect of temperature on isotropic hardening, εAmp: 0.4%, Rε: −1; (b) magnified plot indicating the initially
exponential saturation behaviour of the cyclic yield strength evolution.

Figure 9. Effect of temperature on yield strength asymmetry, εAmp: 0.4%, Rε: −1.

Figure 10. Yield strength evolution in R260 pearlitic steel, εAmp: 0.4%, Rε: −1.
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Figure 11. A magnified image of the yield strength in R260 pearlitic steel under tensile and compres-
sive loading, εAmp: 0.4%, Rε: −1.

3.3. Peak Stress Asymmetry and Cyclic Behaviour
3.3.1. Peak Stress Levels

The tensile and compressive peak stress development at room temperature for fully
reversed, strain-controlled fatigue tests, with two different total strain amplitudes of 0.3
and 0.4% of the tested A356-T7 + 0.5% Cu cast aluminium alloy and the fully pearlitic R260
railway steel is presented in Figures 12 and 13. The peak compressive stress developed for
the aluminium alloy is higher than the peak tensile stress developed under strain-controlled
cyclic loading. For the pearlitic steel, however, we observe an opposite response, where the
peak tensile stresses developed are higher than the peak compressive stresses for both strain
amplitudes at room temperature. The peak tensile stress, however, drops rapidly after
about 80% of the life of the specimen and continues decreasing until fracture. This can be
attributed to the development of a major crack in the test volume, which has a deleterious
effect on the peak tensile stresses but not on the peak compressive stress response.

Figure 12. Evolution of tensile and compressive stress peaks, A356-T7 + 0.5% Cu cast aluminium alloy.
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Figure 13. Evolution of tensile and compressive stress peaks, R260 pearlitic steel.

3.3.2. Cyclic Stress–Strain Behaviour

To represent the stable cyclic stress–strain behaviour, the peak tensile and compressive
stress developed at half the life of the test bar (i.e., Nf/2) for the two fully reversed, strain-
controlled tests with total strain amplitudes of 0.3 and 0.4% at room temperature are used
to develop the cyclic stress–strain curve for the A356-T7 + 0.5% Cu aluminium alloy and
the fully pearlitic R260 railway steel. From Figures 12 and 13, we can observe that the peak
tensile and compressive stress response have stabilized at half the life of the component
(Nf/2) and can be used as a reasonable approximation for the development of the cyclic
stress–strain behaviour of the alloy. To represent the often-smooth elastic-plastic transition
of the cyclic stress–strain curves observed in most engineering metals, a Ramberg–Osgood
type framework is used to model the cyclic stress–strain development of the tested alloys.
Ramberg–Osgood Model for cyclic hardening:

εa =
σa

E
+

( σa

H′
) 1

n′ (4)

The cyclic strain hardening exponent n′ and the model parameter H′ are used to
capture the plastic hardening behaviour of the alloy. To obtain the model parameters, the
test data obtained at half the life of the specimens (Nf/2) for both compression and tension
are calibrated against the expression shown below:

σa = H′εn′
pa (5)

The offset yield strength σ0
′ for the cyclic stress–strain curve is estimated at a plastic

strain amplitude of 0.002 in the expression above.
The cyclic stress–strain curves obtained using the stress peaks at half the life of the

specimens (Nf/2) for the two materials at room temperature and for completely reversed
strain loads are presented in Figures 14 and 15, showing the differences between the
development of the tensile and compressive peak stresses in the tested A356-T7 + 0.5%
Cu and R260 pearlitic steel respectively. The different asymmetry in the tension and
compression peak stress development can be clearly observed for the two tested materials.
The tested A356 aluminium alloy exhibits a higher stress response under compression
as against the higher tensile stress response observed for the pearlitic R260 steel. The
model parameters for the tensile and compressive peak stress development for completely
reversed strain loading at room temperature for the two materials are summarized in
Table 4.
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Figure 14. Cyclic stress–strain curve, A356-T7 + 0.5% Cu, Rε = −1.

Figure 15. Cyclic stress–strain curve, R260 Pearlitic Steel, Rε = −1.

Table 4. Ramberg–Osgood model parameters for tensile and compressive stress response under cyclic loading.

Material Loading Offset Yield Strength σ
′
0 [MPa] H′ [MPa] Cyclic Strain Hardening Coefficient n′

A356-T7 + 0.5% Cu
Tension 233 443 0.1033

Compression 230 323 0.0542

R260
Tension 456 1205 0.1565

Compression 443 1035 0.1365

3.4. Effect of Mean Strain and Temperature on Cyclic Plasticity
3.4.1. Effect of Temperature and Mean Strain on Mean Stress Relaxation

The evolution of mean stress at room temperature, 150, 200 and 250 ◦C for strain-
controlled tests with total strain amplitudes of 0.4% and mean strains of +0.2%, 0% and
−0.2% is presented in Figure 16. The material develops non-zero mean stresses, indicating
the peak stress asymmetry between the tension and compression for all the tested mean
strain and temperature conditions. The stress asymmetry is greater at room temperature
than at higher temperatures for all the load conditions. The material exhibits mean stress
relaxation for the tests run with both the tensile and compressive mean strains of +0.2% and
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−0.2% for all the tested temperatures. The tests with 0% mean strain develop compressive
mean stress for all the tested temperatures that stabilizes within the initial few cycles
and remain stable with compressive mean stresses up until failure. The tests with a
compressive mean strain of −0.2% exhibit greater peak stress asymmetry, with the mean
stress values reaching values of around −50 MPa for room temperature and 150 ◦C. At
higher temperatures, however, this peak stress asymmetry is less pronounced, with the test
at the highest tested temperature of 250 ◦C exhibiting mean stress of only up to −20 MPa
in the first cycle. The peak stress asymmetry between the peak tensile and compressive
stresses, indicated by the mean stress development, is not as significantly affected by the
tensile mean strains of +0.2% at the tested temperatures. The tensile mean stress developed
for the room temperature test with a mean strain of +0.2%, for example, is about +12 MPa,
compared to the−50 MPa and greater stress asymmetry observed for the room temperature
tests run with a mean strain of −0.2%. Furthermore, as can be better seen in Figure 17,
the tests run with the tensile mean strain of +0.2% exhibit mean stress relaxation that
migrates towards compression after about 10 load cycles for the high-temperature tests at
150, 200 and 250 ◦C indicating the role of temperature and viscous effects in the material
on mean stress development and peak stress asymmetry.

Figure 16. Effect of temperature and mean strain on mean stress relaxation, εAmp: 0.4%.

Figure 17. Effect of temperature and mean strain on mean stress relaxation, εAmp: 0.4%.
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3.4.2. Interplay between Cyclic Hardening and Mean Stress Relaxation

The material, when subjected to cyclic strain-controlled tests with tensile and compres-
sive mean strains, exhibit simultaneous evolution of both material hardening/softening
together with mean stress relaxation. The cyclic evolution of stress amplitude and mean
stress normalized against the corresponding second cycle of each test data for the various
tested temperatures and mean strains is summarized in Figure 18. At room temperature,
the material shows cyclic hardening for all the tested mean strains while simultaneously
exhibiting mean stress relaxation for the tests with the tensile and compressive mean strains.
At all the other tests at elevated temperatures, the material exhibits cyclic softening with
higher temperatures resulting in higher rates of softening.

Figure 18. Interplay between cyclic hardening and mean stress relaxation for the cyclic strain-controlled tests with εAmp:
0.4% and at the temperatures: (a) room temperature; (b) 150 ◦C; (c) 200 ◦C; (d) 250 ◦C.

In the evolution of mean stress in strain-controlled cyclic tests with a tensile mean
strain, the material exhibits a continuous mean stress relaxation throughout life. The mean
stress observed at elevated temperatures changes from tensile mean stresses to zero-mean
stress (symmetric stress response) and proceeds to compressive mean stresses despite the
tests being run with a constant tensile mean strain throughout. At room temperature, the
tensile mean stress is retained up until failure despite a continuous mean stress relaxation.
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For the tests with a compressive mean strain, however, the compressive mean stress
response is retained throughout the life at all temperatures despite the mean stress relaxing
with progressive cyclic loads.

4. Discussion

Numerous research has shown the continuous variation of the elastic loading and
unloading stiffness [18,38] under cyclic loading of various metallic materials. The definition
of elastic modulus has a profound impact on the numerical assessment of the cyclic yield
strength of a material. The stiffness of each loading segment has been evaluated for
cyclic yield strength determination instead of approximating the elastic stiffness with a
constant for all the loading cycles, as the stiffness has been shown to vary with plastic
strain accumulation [39].

The continuous numerical gradient (using unit spacing) of the true stress–strain
response for a load segment of the tested A356-T7 + 0.5% Cu material at room temperature
for a completely reversed strain-controlled test with the total strain amplitude of 0.4% is
presented in Figure 19. The material exhibits a higher elastic stiffness than with subsequent
transition of the deformation to plastic loading. The stiffness of the material can be
approximated to a constant value in the elastic region for simplification despite a steady,
minor reduction in stiffness with increasing strain in the ‘elastic’ part of the deformation.

Figure 19. Evolution of stiffness with deformation.

While a second-order elastic stiffness has been shown to work quite well for modelling
the unloading stiffness in cyclically tested steel and aluminium [18,19,38,40,41], the dif-
ference observed in the yield strength determined for qualitative analysis is indiscernible
for the tested A356-T7 + 0.5% Cu alloy. Figure 20 presents the evolution of plastic strains
determined using a linear approximation of the elastic stress against the stress values of the
half-life cycles (Nf/2) at room temperature and 250 ◦C. The material exhibits no significant
deviation of the plastic strain slope upon load reversal under ‘elastic’ unloading–loading
sequence, and hence, a linear approximation of the cyclic elastic modulus is deemed an
appropriate approximation for the tested material at various temperatures.

A similar yield strength asymmetry is observed with higher yield strength under
compressive loading than in tensile loading even with the use of a constant elastic modulus,
say from the corresponding monotonic tensile test or from the first loading segment, for
the offset cyclic yield determination.
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Figure 20. Plots showing the evolution of plastic strains determined using a linear approximation of the cyclic elastic
modulus against the stress values at Nf/2 for the tests at (a) room temperature and (b) 250 ◦C.

4.1. Yield Strength Asymmetry

Ma et al. [20] argue that constraints connected with localized strain as one of the
primary factors in the tension–compression asymmetry often observed in alloys under
cyclic loading in uniaxial testing. The degree of constraint experienced by the softer phase in
the material is greater under compressive loading than in tension leading to the asymmetric
peak stress response in the material in fully reversed cyclic tests. While this study was
on single and poly crystalline copper, Mercer et al. [19] reported a similar phenomenon
in dispersion and precipitation strengthened aluminium alloys. They also observed that
changing the first loading from tension to compression did not affect the peak stress
asymmetry, with the stress peaks developed under compression still higher than those at
tension in cyclic loading. The tested A356-T7 + 0.5% Cu, being a precipitated strengthened
alloy system, shows a similar peak stress asymmetry. Further, such asymmetry is observed
even for the cyclic yield strength under tensile and compressive loading, as observed in
Figure 9.

This stress and strength asymmetry in the tested A356-T7 + 0.5% Cu alloy, however,
decreases with an increase in temperatures. Previous studies [37] have shown the tested
material exhibiting softening at temperatures above 150 ◦C. This softening of overaged
aluminium alloys strengthened by precipitation hardening is often attributed to the increase
in the size of the secondary precipitates making the Orowan looping easier [42]. In the
precipitation-hardened AA7075-T6 aluminium alloys investigated by Mercer et al. [19], the
heat treatment process had a significant influence on the stress asymmetry observed. They
argue that the asymmetry could be explained by the strain localization as a consequence of
the formation of quench bands and the shearing of precipitates with regions in the material
with coarser precipitates exhibiting higher strain localization.

The tested A356-T7 + 0.5% Cu shows decreasing asymmetry with an increase in the
applied plastic deformation, as can be observed in Figure 14. A similar observation has
been recorded for dispersion strengthened IN-9052 and IN-905XL aluminium alloys by
Mercer et al. [19].

The isotropic hardening of the material often is modelled with an exponential evolu-
tion law [17,36,43] without accounting for the yield strength asymmetry [16,44–46] often
observed in aluminium alloys [19,21]. On the basis of the evidence presented of such
behaviour at all temperatures, further research into a new model that accounts for such
asymmetry in aluminium alloys could potentially lead to better accuracy of the material



Materials 2021, 14, 7898 18 of 21

models in numerically predicting the continuum deformation behaviour of the aluminium
alloys under cyclic loading.

4.2. Comparison of the Number of Cycles to Failure

Figure 21 presents the effect of mean strain on the number of cycles to failure at various
temperatures for the tested A356-T7 + 0.5% Cu cast aluminium alloy. The material shows a
dramatic reduction in the number of cycles to failure recorded in the cyclic strain-controlled
tests with tensile mean strains at lower temperatures of RT and 150 ◦C. Similar results are
reported by Houria et al. [26] in peak aged A356-T6 cast aluminium alloy, where the authors
observe a reduction in the fatigue life of the material with the increase in mean stress under
tensile loading at room temperature. This effect was, however, less pronounced under
torsion and combined tension-torsion loadings.

Figure 21. Effect of temperature and mean strain on the number of cycles to failure in A356-T7 + 0.5% Cu cast aluminium alloy.

For the tested A356-T7 + 0.5% Cu alloy at the elevated temperatures of 200 and 250 ◦C
with tensile mean strains, however, such a reduction is not observed in the durability of
the material, with the alloy exhibiting a similar number of cycles to failure for the tests
with a zero and compressive mean strain. Similar observations are made by Azadi [25]
in his studies examining the effect of mean strain on the number of cycles to failure at
elevated temperatures on A356 cast aluminium alloy. The author shows the A356 material
exhibiting 2316 cycles to failure on average for tests at 200 ◦C with a total strain amplitude
of 0.4% for a completely reversed strain-controlled cyclic loading with a strain rate of
1% s−1. In the current study, for the identical loading scenario, the tested material failed
after a similar 1402 cycles. Azadi [25], however, did not observe any effect of mean strain
on the number of cycles to failure with, for example, the material exhibiting 2966 and 2991
cycles to failure for strain ratios of 0 and −12.3, respectively.

For a cast material like the tested A356-T7 + 0.5% Cu alloy that exhibits significant
scatter in the number of cycles to failure [36,37], further study is required with greater
sample size or with higher mean strains to draw a definitive conclusion on the effect of
mean strain on the number of cycles to failure in A356-T7 + 0.5% Cu aluminium alloys.

5. Conclusions

To study the effect of temperature on the yield strength evolution under cyclic loading,
samples of carefully extracted A356-T7 + 0.5% Cu cast aluminium alloy were tested under
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strain-controlled cyclic loading. The influence of tensile and compressive mean strains on
the mean stress relaxation and fatigue behaviour of the material was further explored by
cycling the material with a mean strain of +0.2% and−0.2%. The following conclusions
could be drawn from the observed mechanical behaviour of the alloy:

• The material exhibits a non-linear cyclic hardening behaviour at room temperature.
At 150 ◦C, the material hardens initially before quickly saturating and softening with
subsequent strain load cycles. At 200 and 250 ◦C, the material exhibits non-linear
isotropic softening.

• The material exhibits yield strength asymmetry, with higher yield strength under
compressive loading than under tension. This asymmetry decreases with an increase
in temperature.

• The material exhibits cyclic stress–strain asymmetry, with the peak stress response
under compression higher than in tension for a fully reversed strain-controlled cyclic
loading. This response is in contrast with the peak stress asymmetry observed in
R260 railway steels, where the peak stress response under tension is higher than in
compression for a fully reversed strain-controlled cyclic loading.

• The material exhibits mean stress relaxation for strain-controlled cyclic loading with
tensile and compressive mean strains at all temperatures. The mean stress developed
for tests with a compressive mean strain is higher than the corresponding tests with a
tensile mean strain at all temperatures.

• The tensile mean strain has a deleterious effect on the fatigue life of the tested A356-
T7 + 0.5% Cu aluminium alloy for lower temperatures up to 150 ◦C. At elevated
temperatures of 200 and 250 ◦C, however, the material shows a marginal increase
in the number of cycles to failure, but more tests are needed to distinguish between
the scatter in the number of cycles to failure often observed in cast materials and the
consequences of the tensile mean strains.
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