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of non-calcified solid pulmonary nodules/
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Abstract 

Background: Cumulative CT radiation damage was positively correlated with increased tumor risks. Although it has 
recently been known that non-radiation MRI is alternative for pulmonary imaging. There is little known about the 
value of MRI T1-mapping in the diagnosis of pulmonary nodules. This article aimed to investigate the value of native 
T1-mapping-based radiomics features in differential diagnosis of pulmonary lesions.

Methods: 73 patients underwent 3 T-MRI examination in this prospective study. The 99 pulmonary lesions on native 
T1-mapping images were segmented twice by one radiologist at indicated time points utilizing the in-house semi-
automated software, followed by extraction of radiomics features. The inter-class correlation coefficient (ICC) was used 
for analyzing intra-observer’s agreement. Dimensionality reduction and feature selection were performed via univari-
ate analysis, and least absolute shrinkage and selection operator (LASSO) analysis. Then, the binary logical regression 
(LR), support vector machine (SVM) and decision tree classifiers with the input of optimal features were selected for 
differentiating malignant from benign lesions. The receiver operative characteristics (ROC) curve, area under the curve 
(AUC), sensitivity, specificity and accuracy were calculated. Z-test was used to compare differences among AUCs.

Results: 107 features were obtained, of them, 19.5% (n = 21) had relatively good reliability (ICC ≥ 0.6). The 
remained 5 features (3 GLCM, 1 GLSZM and 1 shape features) by dimensionality reduction were useful. The AUC of 
LR was 0.82(95%CI: 0.67–0.98), with sensitivity, specificity and accuracy of 70%, 85% and 80%. The AUC of SVM was 
0.82(95%CI: 0.67–0.98), with sensitivity, specificity and accuracy of 70, 85 and 80%. The AUC of decision tree was 
0.69(95%CI: 0.49–0.87), with sensitivity, specificity and accuracy of 50, 85 and 73.3%.

Conclusions: The LR and SVM models using native T1-mapping-based radiomics features can differentiate pulmo-
nary malignant from benign lesions, especially for  uncertain nodules requiring long-term follow-ups.
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Introduction
Lung cancer is the leading cause of cancer death in 
men aged ≥ 40  years and women aged ≥ 60  years, caus-
ing far more deaths than breast cancer, prostate cancer, 
etc. Although tobacco control and improved treatment 
methods have reduced the mortality rate of lung cancer, 
it is estimated that 69,410 men (about 22%) and 62,470 
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women (about 22%) in the United States would still die 
of lung cancer in 2021, ranking the first among cancer 
deaths, according to the latest report [1].

Approximately 3.6–24.2% of screening LDCT scans 
were classified as indeterminate or positive [2], while 
the majority (84–95%) of the positive scans were proven 
false-positive [3, 4]. In addition, indeterminate results 
require at least one follow-up examination after few 
months, especially for nodules with size of  4–8  mm, 
which need serial recurrent CT scans at interval of 3, 
6 and 9  months [5]. Cumulative radiation dose from 
repeated CT scans should be taken in account, either 
physical damage or psychological stress [6, 7], in particu-
lar, an extreme threat to children, the pregnant women, 
and those with low immunity. Magnetic resonance imag-
ing (MRI), safer to those special people, is an alternative 
tool for chest lesions, with advantages of non-radiation, 
multi-parameters and functional measurements. Diffu-
sion-weighted imaging (DWI), intra-voxel incoherent 
motion imaging (IVIM) and dynamic contrast enhanced 
MRI (DCE-MRI) are useful for differential diagno-
sis of pulmonary nodules [8–12]. When differentiating 
malignancy from benign nodules, the pooled sensitivity 
and specificity using DWI reached 80–88 and 89–93%, 
respectively [13, 14]. However, those MRI scans are lim-
ited by unsatisfactory repeat-ability caused by measure-
ment bias and frequently motion artifacts, especially for 
nodules less than 20 mm [15, 16].

Radiomics features, for instance, first-order features 
and texture features, extracted from medical imaging 
are able to present the inherent heterogeneity of lesions, 
like coarseness, which are useful in the differential diag-
nosis of suspicious pulmonary nodules [17–21]. The 
4-radiomic features of short axis, contour, concavity, 
and texture had an validation test AUROC of 0.8 (accu-
racy = 74.3%, sensitivity = 66.7%, specificity = 75.6%) in 
predicting malignancy in primary nodules [22]. The accu-
racy using the 4 signatures, including Laws_LSL_min, 
Laws_SLL_energy, Laws_SSL_skewness and Laws_EEL_
uniformity, in benign or malignant classification was 84%, 
with the sensitivity of 92.9% and the specificity of 72.7% 
[23]. However, the majority of researches on pulmonary 
nodules radiomics features are mainly rely on CT and 
PET/CT modalities, and there are few reports on MRI. 
Additionally, sequences for instance, DWI, with obvi-
ous deformation and local drift, are unfavorable for the 
stability and repeat-ability of radiomics features. Native 
T1-mapping, obtained in one breath-holding scan, can 
quantify the T1-value of pixels or tissue, compared to 
conventional T1-weight imaging, which could be a can-
didate for differentiating malignant from benign lesions.

Our previous trial [24] confirmed that native T1-map-
ping was comparable to CT for evaluating nodules 

morphology. Moreover, the native T1-value is potentially 
useful in discriminating malignancy or tuberculosis from 
non-tuberculosis benign lesions. However, the value of 
radiomics signatures based on native T1-mapping imag-
ing in differential diagnosis of pulmonary lesions are still 
not well established.

In summary, we assume that radiomics features based 
on native T1-mapping were capable of distinguishing the 
malignancy from benign lesions. Thus, this prospective 
study intended to uncover the underlying radiomics sig-
natures of native T1-mapping and further investigated 
the value of native T1-mapping in aiding to differentiate 
malignant from benign lesions.

Materials and methods
Patients
93 patients with suspicious pulmonary nodules/masses 
underwent 3  T-MRI examinations between December 
2018 and January 2020 in Shanghai Public Health Clini-
cal Center. The exclusion criteria included: (1) calcified 
or ground-glass nodules, (2) no pathological evidence, 
(3) in-definite lesions, (4) lung cancer after anti-tumor 
therapy, (5) obvious artifacts in lesions because of poor 
breath-hold. Finally, 73 patients (54 male and 19 female, 
mean age, (53 ± 16) years old) with 99 non-calcified solid 
pulmonary nodules or masses were collected. The details 
of the recruited patients were listed in the Table  1 and 
Fig. 1. The nodules and masses consist of squamous cell 
carcinoma (n = 11), adenocarcinoma (n = 12), neuroen-
docrine carcinoma (n = 3), non-small cell lung cancer 
(n = 1), diffuse large B cell lymphoma (n = 1), metas-
tasis from liver, breast and esophagus (n = 4), tuber-
culosis granuloma (n = 42), fungal infections (n = 10), 

Table 1 the details of the enrolled patients

COPD chronic obstructive pulmonary diseases. AIDS acquired immunodeficiency 
syndrome
* n means the number of individuals

Malignant group Benign group

Gender (F,M,n) 7, 24 12, 30

Age (mean ± SD) 62 ± 11 46 ± 18

Fever (n) 2 12

Cough (n) 12 16

Hemoptysis (n) 3 4

Chest pain (n) 7 7

Diabetes (n) 7 5

COPD (n) 0 1

Hypertension (n) 13 11

AIDS (n) 9 5

Weight loss (n) 1 2

Smoking (n) 9 3
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pneumonia (n = 7), fibrosis granuloma (n = 3) and vas-
cular granuloma (n = 5). The average size of nodules was 
(2.0 ± 1.1)cm (range from 0.6 to 6.8 cm). This prospective 
study was approved by the ethical review board of Shang-
hai Public Health Clinical Center (2019-S021-02).

MRI scan
All patients underwent MRI examination using 3  T 
whole-body MR scanner (MAGNETOM Skyra, Siemens 
Healthcare, Erlangen, Germany) with an 18-element 

body wrap coil. All parameters were listed as follows: 
axial T1-weighted StarVIBE: TR/TE = 2.79/1.39  ms, 
thickness: 2  mm, field of view (FOV): 380  mm. axial 
T1-weight Dixon: TR/TE1/TE2  =  3.97/1.29/2.52  ms, 
thickness  =  3  mm, FOV  =  380  mm.  T2-weighted 
fBLADE TSE: TR/TE = 1870/69  ms, thickness: 3  mm, 
FOV: 380  mm. T1-mapping was performed after shim-
ming the magnetic field sequence of B1-mapping. 
T1-mapping: TR/TE = 5.01/2.3  ms, thickness: 4  mm, 
FOV: 380 mm. All patients underwent respiratory train-
ing before MRI examination.

Nodule segmentation
The region of interest (ROI) was segmented across all of 
the two-dimensional T1-mapping sections of the lesions 
with an in-house semi-automatic hand-annotation tool 
in axial view using open-source software (Multi-labe, 
version 1.1; Shanghai Key laboratory of Magnetic Reso-
nance, East China Normal University, China), as shown 
in the Fig.  2. The radiologist was blinded to pathologi-
cal diagnosis but was provided with clinical informa-
tion such as age, and was also given the option to vary 
the window and level setting within this software to effi-
ciently annotate the nodule. Manually and semi-auto-
matic methods were optional for nodules annotation. The 
nodules or masses were annotated by the same radiolo-
gist again after 6  months for evaluating intra-observer’s 
agreement.

Patients with pulmonary 
lesions (n=93) Excluded cases (n=20)

Segmentation and 
feature extraction

Intra-observer’s agreement 
and normalization

Dimensionality reduction, feature 
optimization and modeling, etc.

a. calcified or ground-glass nodules,
b. no pathological evidence,
c. in-definite lesions,
d. lung cancer after anti-tumor therapy,
e. obvious artifacts in lesions.

99 lesions
(N=69, P=30)

Training set
(n=69,P/N=23/46)

Validation set
(n=30,P/N=10/20)

Fig. 1 The work-flow of the patient inclusion and data analysis

Fig. 2 The upper row (a–d) showed an adenocarcinoma in the upper lobe of the right lung (a T1WI opp-phase, b T2WI, c native T1-mapping, d the 
ROI). The below row (e–h) showed a nodule with penicillium marneffei infection in the middle lobe of the right lung (e T1WI opp-phase, f T2WI, g 
native T1-mapping, h the ROI)
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Feature extraction and grouping
A total of 107 radiomics features were extracted from 
the annotated mask with an open-source platform PyRa-
diomics (https:// pyrad iomics. readt hedocs. io/ en/ lates 
t/) [25], which enables the processing and extraction of 
radiomic features from medical image data and is imple-
mented in Python. The acquired images features com-
prised the first-order statistics (18 features), grey-level 
co-occurrence matrix (GLCM, 24 features), grey-level 
run-length matrix (GLRLM, 16 features), grey-level size-
zone matrix (GLSZM, 16 features), grey-level depend-
ence matrix (GLDM, 14 features), neighboring gray-tone 
difference matrix (NGTDM, 5 features) and shape (14 
features). A total of 107 feature values were normalized 
(mean of 0 and a standard deviation of 1), as shown in 
Fig.  3. This study had 99 pulmonary nodules/masses 
of 67 benign lesions and 32 malignancy. Among them, 
69 samples (positive/negative = 23/46) were randomly 
selected for training set and 30 samples (positive/nega-
tive = 10/20) for the validation set based on a ratio of 7:3.

Dimensionality reduction and radiomics feature selection
In order to avoid the over-fitting, a three-step dimen-
sionality reduction was conducted in turns. Firstly, ICC 
was used for intra-observer’s agreement of radiomics fea-
tures. ICC-value greater than 0.60 was considered a good 
agreement [26]. Secondly, t-test and wilcox-test were 
used for univariate analysis. P-value less than 0.05 was 
considered as statistical significance. Then, LASSO anal-
ysis was used for dimensionality and feature selection. 
tenfold cross-validation was used to reduce the over-fit-
ting and enhance the robustness of model performance.

Radiomics signature and models
Three classical machine methods, binary LR, SVM and 
decision tree were used to select optimal features and 
develop the model for that differential diagnosis. Multi-
variable binary logistic regression with backward step-
wise selection was used to build a linear classifier. Then, 
the SVM with a Gaussian kernel was used to build a non-
linear classifier. Optimizing the parameters of the SVM 
kernel function were realized by tenfold cross-validation, 
which was capable of selecting the best performing sig-
nature. The decision tree is a simple linear classifier with 
a sequence of questions. tenfold cross-validation and 
reduction of branches were applied to avoid over-fitting.

Statistical analysis
All statistical analysis were conducted using R software 
(version, 4.0.3, http://r- proje ct. org). The Shapiro–Wilk 
test was used to assess the normality of distributions, 
and the homogeneity of variance was tested using Bart-
lett’s test. The assessment of the optimal radiomics signa-
ture and diagnostic performance mainly relied on ROC. 
Accuracy, sensitivity, and specificity, were also calculated 
at the maximum of Youden’s index. Each radiomics sig-
nature was also assessed according to all of the metrics 
for the validation cohort. Z-test was used for compari-
sons of diagnostic performance of inter-models. P-value 
less than 0.5 was considered as statistical significance.

Results
ICCs of radiomics features
Results of the intra-observer’s agreement mani-
fested that 19.5% of all 107 features had a relatively 

Fig. 3 The radiomics features extracted from the native T1-mapping

https://pyradiomics.readthedocs.io/en/latest/)
https://pyradiomics.readthedocs.io/en/latest/)
http://r-project.org
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satisfactory agreement with ICCs of greater than 0.6 
(mean ICC = 0.41, range from 0 to 0.87) (Fig. 4; Table 2). 
Collected for further analysis.

Dimensionality reduction and radiomics feature selection
Univariate analysis results manifested that 21 features 
were preserved, which were further used for lasso-
analysis. 5 features were selected by Lasso-analysis, 

with best tuned regularization parameter λ of 0.062 
under the 1-SE criteria found by tenfold cross-vali-
dation. The remaining 5 features were glcm_MCC, 
glcm_DifferenceVariance, glcm_Imc1, glszm_GrayLev-
elNonUniformity and shape_MinorAxisLength, respec-
tively (Table 3).

Fig. 4 Evaluation of intra-observer’s agreement based on ICC-analysis. 21 of 107 radiomics presented relatively satisfactory agreement(above the 
red cut-off line)

Table 2 native T1-mapping radiomics feature with relatively good intra-agreement

Features

First-order RobustMeanAbsoluteDeviation

GLCM ClusterProminence, Correlation, DifferenceVariance, Idmn, Idn, Imc1, Imc2, MCC

GLDM SmallDependenceLowGrayLevelEmphasis

GLSZM GrayLevelNonUniformity, SizeZoneNonUniformity

NGTDM Contrast, Strength

Shape Maximum2DDiameterRow, Maximum2DDiameterSlice, MinorAxisLength, 
Sphericity, SurfaceArea,SurfaceVolumeRatio

Table 3 Performances of differential diagnosis in training and validation set

AUC (95%CI) Accuracy (%) Sensitivity (%) Specificity (%)

The primary cohort

 LR 0.91(0.84–0.98) 84.1% 73.9% 89.1%

 SVM 0.91(0.84–0.98) 84.1% 70.0% 91.3%

 Decision tree 0.93(0.86–0.99) 87.0% 73.9% 93.4%

The validation cohort

 LR 0.82(0.67–0.98) 80.0% 70.0% 85.0%

 SVM 0.82(0.67–0.98) 80.0% 70.0% 85.0%

 Decision tree 0.68(0.49–0.87) 73.3% 50.0% 85.0%
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Radiomics signatures and models
The LR model
In the training set, performance of LR reached an AUC of 
0.91(95%CI = 0.84–0.98). The sensitivity, specificity and 
accuracy were 73.9%, 89.1% and 84.1%, respectively. The 
F1 was 0.76. The AUC was up to 0.82(95%CI = 0.67–0.98) 
in the validation set. Moreover, the sensitivity, specificity 
and accuracy were 70.0, 85.0 and 80.0%, respectively. The 
F1 was 0.70.

The SVM model
In the primary cohort, the performance of SVM showed 
an AUC of 0.91(95%CI = 0.84–0.98), with tuned param-
eters of gamma = 0.1 and cost = 100. The sensitiv-
ity, specificity and accuracy were 70.0, 91.3 and 84.1%, 
respectively. The F1 was 0.74. In the validation set, the 
AUC was 0.82(95%CI = 0.67–0.98). The sensitivity, speci-
ficity and accuracy were 70.0, 85.0 and 80.0%, respec-
tively. The F1 was 0.70.

The tree‑decision model
In the primary cohort, the performance of tree-decision 
showed an AUC of 0.93(95%CI = 0.86–0.99). The sensi-
tivity, specificity and accuracy were 73.9, 93.4 and 87.0%, 
respectively. The F1 was 0.79. In the validation set, the 
AUC was 0.68(95%CI = 0.49–0.87). The sensitivity, speci-
ficity and accuracy were 50.0, 85.0 and 73.3%, respec-
tively. The F1 was 0.56 (Fig. 4; Table 1.).

Discussion
In this present study, we developed diagnostic mod-
els based on native T1-mapping images to differenti-
ate malignant from benign lesions. According to our 
results, the SVM and LR classifiers both had satisfac-
tory AUC of 0.82, with sensitivity of 70%, specificity of 
85% and accuracy of 80%. The SVM classifier is a pow-
erful tool to analyze data with large number of predic-
tors and limited sample sizes, especially when handling 
binary outcomes [27]. This is consistence with previous 
studies [28]. In addition, prior analysis also showed that 
the LR model based on MRI-radiomics had best perfor-
mance compared to other classifiers like decision tree, 
k-nearest neighbor, and XGBoost, etc. [29, 30]. In order 
to minimize the risk of modeling over-fitting and bias, 
the LASSO and tenfold cross-validation were used for 
feature selection and models constructing. In general, 
our results also manifested that the SVM and LR classi-
fiers, superior to decision tree, are suitable for diagnostic 
models in indeterminate pulmonary lesions.

At present, the diagnostic work-up of lung cancer using 
imaging radiomics mainly rely on CT, PET-CT and MRI, 
of which, CT is the most used. Recently, Gillies, et al. had 
AUC of 0.80 and 0.85 in discrimination of lung cancer, 

using size and shape features, non-size based features 
respectively [31]. Garau et al. found that the handcrafted 
LDCT radiomics features model (LASSO + SVM) had 
a higher AUC than the LungRADS clinical model (0.86 
vs. 0.76) in the external validation, when identify malig-
nancy [32]. Radiomics features are also valuable in his-
topathological classification, prognostication, treatment 
response, and gene mutation, etc. In this study, the radi-
omics features extracted from native T1-mapping also 
had clinically significant AUC of 0.82 for malignancy 
identification. And MRI, being free of radiation dose, is 
a relatively ideal follow-up inspection tool, especially for 
women, pregnant women, and people with low immu-
nity. In clinical practice, it is little known about the radi-
omics features based on MRI modality, mainly T2WI and 
DWI sequences. Using RFE with SVM, the joint model of 
T1WI, T2WI, and ADC showed the highest performance 
with AUC of 0.88 in classification of pulmonary lesions 
[33]. Besides, radiomics signatures extracted from ADC, 
DWI, T2WI can be used for predicting EGFR mutation 
in patients with lung adenocarcinoma [28]. Compared 
to DWI or IVIM [33], native T1-mapping, obtained in a 
single breath-holding, had almost no artifacts, deforma-
tion and location shift, which is save-timing and more 
favorable to ensure stability and repeatability of radiom-
ics features. And as far as we know, our team was the first 
to investigate the value of native T1-mapping radiomics 
features in differentiating malignant from benign lesions.

Our study showed that the textures features includ-
ing glcm_MCC, glcm_DifferenceVariance, glcm_Imc1, 
and glszm_GrayLevelNonUniformity in malignancy 
were higher than benign lesions, which indicates more 
significant heterogeneity in malignant lesions. Addition-
ally, the MinorAxisLength in this study had statistically 
significance in malignancy identification, which could be 
explained that the lung cancer are usually larger in size 
than benign lesions. Interestingly, unlike previous report 
[33], the surface area to volume ratio (SAVR) of lesions 
was useless in present study. The SAVR presents the 
degree of a sphere-like shape. We assume that the thick-
ness of the scan sequence has a great influence on the 
morphology of the lesion. The thinner thickness is more 
helpful to the value of shape features. Another thing 
worth mentioning is that there were more benign lesions 
than malignancy in our samples, which is line with the 
clinical scenario.

Generally, there are several limitations to this study. 
Firstly, additional cases were needed for construct-
ing radiomics-based model, which is very important to 
strengthen the reliability and improve the diagnostic 
performance. Secondly, the segment of lesions was con-
ducted by one radiologist at a different point in time. The 
inter-observer’s agreement was absent. Most importantly, 



Page 7 of 8Yan et al. Cancer Cell Int          (2021) 21:539  

this is a single-center experiment and performed on one 
scanner. Multicenter validation and multi-scanners’ 
variations still need great effort. Moreover, the effect of 
image reconstruction and scanners on variability of MRI-
based radiomic features needed further investigation. In 
addition, native T1-mapping failed to identify the mass 
and secondary obstructive pneumonia. We assumed that 
post-contrast enhancement T1-mapping would produce 
better contrast between tumor and background.

Conclusion
Texture features based on native T1mapping are use-
ful for differentiating pulmonary malignant from benign 
lesions. The optimal SVM and LR model using 5 tex-
ture features acquired the AUC of 0.82, the sensitivity of 
70.0%, specificity of 85.0% and accuracy of 80.0%, respec-
tively, in the validation set. Native T1-mapping could be 
an compensatory tool for the management of pulmo-
nary nodules, especially for those who need long-time 
follow-ups.
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