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Abstract
1.	 Ecologists are increasingly interested in plant–pollinator networks that synthe-

size in a single object the species and the interactions linking them within their 
ecological context. Numerous indices have been developed to describe the struc-
tural properties and resilience of these networks, but currently, these indices are 
calculated for a network resolved to the species level, thus preventing the full 
exploitation of numerous datasets with a lower taxonomic resolution. Here, we 
used datasets from the literature to study whether taxonomic resolution has an 
impact on the properties of plant–pollinator networks.

2.	 For a set of 41 plant–pollinator networks from the literature, we calculated nine 
network index values at three different taxonomic resolutions: species, genus, 
and family. We used nine common indices assessing the structural properties or 
resilience of networks: nestedness (estimated using the nestedness index based 
on overlap and decreasing fill [NODF], weighted NODF, discrepancy [BR], and 
spectral radius [SR]), connectance, modularity, robustness to species loss, motifs 
frequencies, and normalized degree.

3.	 We observed that modifying the taxonomic resolution of these networks significantly 
changes the absolute values of the indices that describe their properties, except for 
the spectral radius and robustness. After the standardization of indices measuring 
nestedness with the Z-score, three indices—NODF, BR, and SR for binary matrices—
are not significantly different at different taxonomic resolutions. Finally, the relative 
values of all indices are strongly conserved at different taxonomic resolutions.

4.	 We conclude that it is possible to meaningfully estimate the properties of plant–
pollinator interaction networks with a taxonomic resolution lower than the spe-
cies level. We would advise using either the SR or robustness on untransformed 
data, or the NODF, discrepancy, or SR (for weighted networks only) on Z-scores. 
Additionally, connectance and modularity can be compared between low taxo-
nomic resolution networks using the rank instead of the absolute values.
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1  | INTRODUC TION

The study of species interactions has always been central in ecology. 
Such interactions have historically been examined by focusing on two 
interacting species, but in recent years, the marked increase in the 
amount of biological information available and the development of 
novel approaches and tools have placed a new focus on the study of 
interaction networks (Proulx, Promislow, & Phillips, 2005). Ecological 
networks may provide important insights that cannot be gained when 
species are studied in isolation. They currently play a central role in key 
aspects of ecological theory such as the long-standing question of the 
relationship between complexity and stability in ecosystems (Montoya, 
Pimm, & Solé, 2006; Thébault & Fontaine, 2010) or the interplay be-
tween interspecific competition and ecological niche (Bastolla et al., 
2009). Ecological networks are also powerful tools for applied ecology, 
as they can be used to monitor the impact of biological perturbations on 
an ecosystem or the efficiency of restoration programs (Kaiser-Bunbury 
& Blüthgen, 2015; Kaiser-Bunbury et al., 2017; Memmott, 2009).

Most studies on ecological networks have focused on three main 
categories of networks defined according to the type of species and 
their interactions: food webs, parasitoid host interaction networks, 
and more recently, mutualist interaction networks (Ings et al., 2009). 
In this paper, we concentrate on the case of the mutualistic networks 
linking plants and pollinators, which have attracted particular atten-
tion in recent years. Indeed, pollinators have an essential ecological 
function, namely the pollination function, which is threatened in many 
parts of the world by the sharp decline in pollinators on account of the 
many threats that they face (Goulson, Nicholls, Botías, & Rotheray, 
2015). Such a decline in pollinator populations may harm both wild 
biodiversity and agricultural productivity (Garibaldi et al., 2013).

The use of a network makes it possible to synthesize in a single 
object the species and interactions linking them and thus constitute 
the community of species (Delmas et al., 2019). It thus becomes 
possible to use the many methods developed to study ecological 
networks to describe their structure and properties using different 
indices (Lau, Borrett, Baiser, Gotelli, & Ellison, 2017). One structural 
characteristic that has received particular attention in the study 
of plant–pollinator networks is nestedness (Bascompte, Jordano, 
Melián, & Olesen, 2003; Table 1). A nested network is character-
ized by the extent to which interactions of less-connected species 
form subsets of the interactions of more-connected species. Other 
frequently examined structural characteristics of mutualistic net-
works are connectance, the proportion of realized interactions 
among all possible ones, and modularity, that is, the extent to which 
linked interactions between pollinators and plants are organized 
into delimited modules, as well as motifs, which are subnetworks 
representing the interactions between a given number of taxa 
(Milo et al., 2002). These properties have been associated with the 
ecosystem's resilience to perturbations (Soares, Ferreira, & Lopes, 
2017). It has, for example, been shown that high levels of connec-
tance, modularity, and nestedness promote both the structural and 
dynamic stability of mutualist interaction networks (Vanbergen, 
Woodcock, Heard, & Chapman, 2017).

A large number of datasets on plants and their pollinators have 
been collected to date. However, given the large number of pollina-
tor species potentially present in a community, as well as the rela-
tive difficulty in identifying some of these pollinators at the species 
level, a significant portion of the collected datasets has a taxonomic 
resolution lower than the species level. For a given research effort, 
there is therefore a trade-off between the quantity of possible 
identifications and the taxonomic accuracy of these identifications, 
which makes it difficult to produce large or numerous sets of data 
identified down to the species level. An extreme point in this regard 
is the datasets provided by citizen science programs for pollinators 
(Toomey & Domroese, 2013) such as the Spipoll program in France 
(Deguines, Julliard, Flores, & Fontaine, 2012), which generally allow 
very large datasets to be collected, although their taxonomic ac-
curacy does not generally extend to the species level (Dickinson, 
Zuckerberg, & Bonter, 2010; Kremen, Ullman, & Thorp, 2011).

Currently, network analyses are performed on networks with 
varying levels of taxonomic precision, which makes comparisons 
between studies or even sites of the same studies potentially 
invalid, because we do not know how taxonomic resolution in-
fluences the indices of those networks, nor how they should be 
interpreted. If possible, it would, however, be interesting to use 
network analyses on such datasets in order to fully exploit the 
information contained therein and allow comparisons with other 
studies. Here, we sought to establish whether taxonomic resolu-
tion has an influence on the architecture and properties of a mutu-
alistic network estimated using several indices. We used a set of 41 
plant–pollinator networks from the literature and compared their 
index values at three different taxonomic resolutions: species, 
genus, and family. We showed that for a given network, changing 
the taxonomic resolution usually significantly changes the value of 
most indices. We also show that after the standardization (with the 
Z-score, using null models) of the indices measuring nestedness, 
these three indices are no longer differed significantly at different 
taxonomic resolutions. We also used another normalization mea-
sure for one nestedness index (NODF) called NODFc and show 
that this measure is robust to a lower taxonomic resolution (Song, 
Rohr, & Saavedra, 2017). Additionally, we showed that among the 
set of 41 networks, the relative value of a given network for a given 
index is well conserved across different taxonomic resolutions, 
particularly between the species and genus levels.

2  | MATERIAL S AND METHODS

2.1 | Overview

We used plant–pollinator networks from the literature (Vázquez, 
Goldberg, & Naik, 2003) determined to the level of species. For each 
species-level network, we deduced the equivalent network at the 
genus and family levels. We then calculated several indices com-
monly used to estimate mutualistic network properties for each of 
these networks and then compared their values across taxonomic 
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resolutions. Data manipulation and analysis were conducted with 
the R language (R version 3.2.3, 2015-12-10). The script used for 
those results is accessible here: https​://gitlab.com/Estel​leRen​aud/
taxon​omic_influ​ence_netwo​rk_prope​rties​

2.2 | Network indices

We selected frequently used indices that describe various prop-
erties of interaction networks, namely nestedness, connectance, 
modularity, motifs, and robustness. Given the particular importance 

of generalist pollinator species in maintaining plant–pollinator net-
works (Martín González, Dalsgaard, & Olesen, 2010), we also added 
one index calculated at the species level, that is, the normalized 
degree.

The characteristics of these indices are summarized in Table 1.
To estimate nestedness, no unique index has been established 

to date as consensual, which led us to use four indices: nestedness 
index based on overlap and decreasing fill (NODF; Almeida-Neto, 
Guimarães, Guimarães, Loyola, & Ulrich, 2008), spectral radius 
(SR; Staniczenko, Kopp, & Allesina, 2013), discrepancy (BR; Brualdi 
& Sanderson, 1999), and NODF for weighted matrices (WNODF; 

TA B L E  1   Commonly used network indices

Index Matrixa Nature of the index, per network Representation

Nestedness

NODF B Extent to which interactions of less-connected 
species form subsets of the interactions of 
more-connected species

BR B

SR B
W

WNODF W

Connectance B Proportion of realized interactions among all 
possible ones

Modularity W Extent to which interactions between pollinators 
and plants are organized into delimited modules

Robustness B Speed at which plant taxa disappear as pollinator 
taxa disappear

 

Normalized degree B Connectance of each taxa (this is the only index 
calculated per taxa and not per network)

 

Motif frequency B Frequency of each of the 17 kinds of motifs that 
can link up to 5 taxa between them

Abbreviations: BR, discrepancy; NODF, nestedness index based on overlap and decreasing fill; SR_Bin, spectral radius calculated on binary (absence/
presence) matrices; SR_Qua, spectral radius calculated on weighted (abundance) matrices; WNODF, NODF calculated on weighted matrices.
aB and W indicate an index calculated on binary and weighted matrices, respectively. 

https://gitlab.com/EstelleRenaud/taxonomic_influence_network_properties
https://gitlab.com/EstelleRenaud/taxonomic_influence_network_properties
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Almeida-Neto & Ulrich, 2011). NODF and BR are indices for binary 
matrices, while WNODF is adapted to weighted matrices and SR can 
be used for both. The values for NODF, WNODF, BR, and SR were 
calculated using the Falcon package (Beckett, Boulton, & Williams, 
2014) for R. Furthermore, BR was calculated using the method pre-
sented in Brualdi and Sanderson (Brualdi & Sanderson, 1999): it is 
the minimal number of differences with a perfectly nested matrix 
with the same size, number of links, and column (or row) sums as the 
real network. The SR of a network is thus the largest of its matrix 
eigenvalues (Staniczenko et al., 2013).

We used five additional indices. Four of them—connectance, 
robustness, motifs, and normalized degree—are calculated on 
the presence/absence matrices, whereas modularity is calculated 
on frequency matrices. Network connectance was calculated 
as the sum of links divided by the number of cells in the matrix. 
Network modularity was measured according to the Beckett al-
gorithm DIRTLPAwb+ (Beckett, 2016), which aims to estimate the 
modularity of the network using three steps. The first uses label 
propagation to obtain a locally maximized modularity (bottom-up); 
the second agglomerates the modules found in the first step if it 
allows for an increased modularity; the third repeats these steps 
until modularity can no longer be increased. DIRTLPAwb+ then 
randomizes the initial labeling of nodules multiple times and re-
turns the result with the greatest modularity score. Modularity it-
self was then calculated as the modularity M proposed by Newman 
(Newman, 2006). Following Burgos et al. (2007), network robust-
ness was measured as the area under the attack tolerance curve, 
defined as the speed at which plant taxa disappear as pollinator 
taxa disappear. Basically, as pollinator taxa disappear, plants that 
rely exclusively on them (according to the network) also disappear, 
thus creating a curve in which the percentage of remaining plants 
depends on the percentage of remaining pollinators. This method 
assumes that preferences are static, that is, that plants that rely 
on one given pollinator taxon will not be able to switch to another 
pollinator if it disappears. Normalized degree is calculated for each 
taxon in a network as the sum of the links of that taxon scaled by 
its number of potential partners. Because the normalized degree 
index produces one value per taxon, for each matrix, we chose 
to characterize matrices by their quartile values in order to ac-
commodate differently skewed distributions of the normalized 
degrees between networks. The R package bipartite (Dormann, 
Gruber, & Fründ, 2008) was used to calculate the normalized de-
gree, robustness, modularity, and connectance of the network. 
Motifs were compared using the frequency of the 17 different 
motifs that involve up to five different taxa, which we calculated 
using the mcount function of the bmotif package (Simmons et al., 
2019). The frequency of each motif was calculated as the number 
of times a given motif occurs in the network, divided by the num-
ber of motifs of the same size (involving the same number of taxa) 
that occurs in the network.

Additionally, because most nestedness indices are known to be 
sensitive to the size (number of rows and columns) and fill (number 
of nonzeros) of the input matrix (Rodríguez-Gironés & Santamaría, 

2006)—two properties that are modified when the taxonomic res-
olution is changed—we performed standardization with Z-scores 
for nestedness indices (Ulrich & Almeida-Neto, 2012). These are 
calculated as the difference between the observed index value 
and the value expected under a null model divided by the standard 
deviation under this null model. Z-scores were obtained by calcu-
lating 500 null models of each matrix and comparing the resulting 
mean value to that calculated for the matrix. As the null models 
take into account the size of the matrix, this minimizes the possible 
effect of size on the index values. We used the Falcon package to 
calculate the Z-scores. For the binary indices (BR, NODF, SR), we 
followed Bascompte et al. (2003) and used null models obtained 
from 500 iterations of the DD (degreeprobable–degreeprobable) 
model. This model is intermediate in terms of constraints on row 
and column totals (part of the class termed “PP,” proportional to 
both row totals and column totals; Strona, Ulrich, & Gotelli, 2018), 
with one extreme being the fixed–fixed model that is susceptible 
to type II errors (Gotelli, 2000) and the other the equiprobable–
equiprobable model that is susceptible to type I error (Wright, 
Patterson, Mikkelson, Cutler, & Atmar, 1997). This model has sta-
tistically determined elements following the degree distribution of 
the initial matrix as pij = 1/2*(dj/r + ki/c), where pij is the probability 
of assigning a 1 to the ith row and jth column, dj is the column 
degree of the jth column, ki is the row degree of the ith row, and 
r and c are the respective numbers of rows and columns. For the 
weighted indices (WNODF, SR), we used two kinds of null models, 
as no null model has been established as more suited to WNODF 
or SR yet: The first set of null matrices is obtained from 500 iter-
ations of the row and column total average model (introduced in 
the Falcon software) that averages two matrices: a matrix created 
conserving the row totals and redistributing a random portion of 
that total to each element of a given row, and a matrix follow-
ing the same principle with the column totals. The second kind 
is Patefield's historical r2dtable model, implemented with the 
null model function (option “r2dtable”) of the bipartite R package 
(Dormann et al., 2008). We also generated 500 matrices under 
that model.

Finally, because Z-scores for NODF have been criticized 
for their sensitivity to connectance and number of taxa (Song 
et al., 2017), we used the normalization proposed by Song et al. 
as NODFc  =  NODFn/(C*log(S)), where C is the connectance, S is 
the geometric mean of plants and pollinators in the network, and 
NODFn  =  NODF/max(NODF), where max(NODF) is the maxi-
mal NODF value that could be attained in a network with the 
same number of rows, columns, and links as the original net-
work. Max(NODF) was calculated using the maxnodf R package 
(Hoeppke, 2019).

2.3 | Pollination networks

We extracted all plant–pollinator interaction networks from the 
Interaction Web Database (Vázquez et al., 2003). All networks 
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were issued from previously published data (Table S1). We only kept 
matrices for which taxa determination was possible using the tax-
ize package; that is, valid taxonomic names resolved at the genus 
or species level. In some cases, we replaced old taxonomic names 
by a current valid synonym. We also only kept matrices that dealt 
with several families, which left us with a dataset of 41 matrices, 10 
of which were binary (presence/absence) matrices. The remaining 
31 were weighted according to the frequency of the visitation or a 
proxy of that frequency. The number of taxa in the matrices varied 
from seven to 135 for plants, and 12 to 144 for pollinators.

We then used the taxize package (Chamberlain & Szöcs, 2013; ver-
sion 0.9.0) from R to extract from the taxonomic information supplied 
by the authors the taxonomic affiliation from the superior ranks. Only 
the identification from the species, genus, family, and order ranks was 
retained, as these were the ranks most often known for all observa-
tions. The database GBIF (GBIF, 2018) was used as a reference.

We transformed each of the 41 previously described matrices 
into interaction matrices determined at the species level by keeping 
only the observations (within each network) for which both the plant 
and pollinator were determined to the species level. From these spe-
cies-level matrices, we deduced the genus-level and then the fami-
ly-level matrices.

2.4 | Statistical tests

To examine the influence of the taxonomic level on the structure of 
a given matrix, we compared the values of the indices for Species-
level matrices and Genus-level matrices, Genus-level matrices and 
Family-level matrices, and Species-level matrices and Family-level 
matrices, using a one-way analysis of variance. Post hoc tests were 
performed with a Bonferroni correction, using the built-in pairwise.t.
test R function, with the “paired” option. We also performed the 
same analyses after standardizing nestedness values using Z-scores.

To investigate whether an index was useful for comparing differ-
ent observed matrices, we performed a nonparametric correlation 
test (cor.test on R) to calculate both the value and significance of 
Spearman's rho for a given index in Species-level matrices, Genus-
level matrices, and Family-level matrices. This allowed us to test 
whether the relative ranks of this index's values were significantly 
correlated between one taxonomical level and another.

3  | RESULTS

For each of the species-, genus-, and family-determined matrices, 
we obtained a set of values per index for the species-determined 
matrices, and another set for genus- and family-determined matri-
ces. We compared these using a one-way analysis of variance. Most 
indices show a significant effect of taxonomic level on their value 
(Table 2 and Figure 1; results for normalized degrees and motifs fre-
quencies are presented in the Appendix A). Robustness and SR (both 
on binary and on weighted matrices) are the only indices without 

any significant influence of taxonomic level on their values. This in-
dicates that two matrices cannot be directly compared with most 
indices if they are not at the same level of taxonomic resolution. The 
same is true with family versus genus comparisons, and family versus 
species comparisons.

We used the Z-score (with two kinds of null models for the 
weighted indices) to take into account the difference in the matrix 
fills and sizes caused by the change in taxonomic resolutions, as well 
as another normalization by the maximal NODF (noted as NODFc). 
We compared nestedness Z-scores and NODFc values from one tax-
onomic level to another using a one-way analysis of variance test. 
After this standardization, only the WNODF showed a significant 
effect of taxonomic level on its Z-score value (Figure 2 and Table 3), 
with a higher level of significance using the r2dtable null model than 
the RTCA. NODFc showed no influence of the taxonomic level on 
its values.

While most untransformed indices for species-, genus-, and 
family-determined matrices are significantly different, their values 
seem very strongly correlated among them. Using the Spearman's 
rho calculation, we observed that all tested index ranks showed a 
high positive correlation (Figure 3; for the results of the normalized 
degrees and motifs frequencies, see the Appendix A), indicating that 
the ranks of indices are well conserved at different taxonomic res-
olutions. All indices show a rank correlation superior to .8 between 
species and genus ranks, except for one motif frequency and certain 

TA B L E  2   Results of one-way analysis of variance comparing 
index values at three different taxonomic resolutions

Indices df F p-Value
Post hoc test 
results

Nestedness

NODF 2, 120 15.03 1.496e−05 All levels differ 
significantly

BR 2, 120 4.2035 .0172 All levels differ 
significantly

SR_Bin 2, 120 1.1573 .3178  

SR_Qua 2, 90 0.5765 .5639  

WNODF 2, 90 11.626 3.229e−05 All levels differ 
significantly

Connectance 2, 120 20.237 2.67e−08 All levels differ 
significantly

Modularity 2, 90 5.2213 .007155 All levels differ 
significantly

Robustness 2, 120 0.0831 .9204  

Note: NODF, BR, SR_Bin, robustness, and connectance are calculated 
on presence/absence networks. SR_Qua, WNODF, and modularity 
are calculated on abundance-based networks. The results for the 
normalized degree are presented in the Appendix A.
Abbreviations: BR, discrepancy; NODF, nestedness index based on 
overlap and decreasing fill; SR_Bin, spectral radius calculated on binary 
(absence/presence) matrices; SR_Qua, spectral radius calculated 
on weighted (abundance) matrices; WNODF, NODF calculated on 
weighted matrices.
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quartile values of the normalized degree. This strong correlation 
becomes weaker for most indices as the taxonomic levels increase, 
particularly for comparisons with family versus species. Among the 
indices, the strongest options seem to be modularity and SR for 
nestedness, as they show a strong correlation (superior to .8) be-
tween ranks at the species, genus, and family levels for all possible 
comparisons. On the contrary, motif frequencies seem to be less 
reliable, as they show lower values for correlation between ranks 
than other indices, especially at the family versus species level, with 
most correlations being bellow .6 and some even below .35 (see the 
Appendix A for the full values).

4  | DISCUSSION

Using plant–pollinator interaction networks from the literature, we 
showed that modifying the taxonomic resolution of these networks 
significantly changes the absolute values of the indices that describe 
their properties, except for two indices, namely the SR (both for 

binary and quantitative matrices) and robustness to species loss. If 
a standardization of the indices measuring nestedness is performed 
using the Z-score, then three indices—NODF, BR, and SR for both 
binary and weighted matrices—are not significantly different at dif-
ferent taxonomic resolutions. Finally, the ranks of all indices are 
strongly conserved at different taxonomic resolutions, particularly 
between the species and genus levels.

For nestedness, we observed for both NODF and BR that the 
absolute values of these indices, but not the associated Z-scores, 
are strongly modified by the change in taxonomic resolution. This 
result is in agreement with the work of Almeida-Neto et al. (2008) 
who showed that NODF and BR are markedly affected by the matrix 
fill, a parameter that is modified when the taxonomic resolution is 
changed. However, this effect is no longer present after standardiza-
tion using the Z-score. Nevertheless, we observed that the absolute 
values of the SR for both binary and quantitative matrices are not 
modified by the change in taxonomic resolution, in accordance with 
the results of Strona and Fattorini (2014), which show an absence of 
relationship between the SR values and the filling of the matrices. 

F I G U R E  1   Untransformed index value distribution for species (S)-, genus (G)-, and family (F)-determined matrices. From left to right and 
top to bottom: NODF, BR, SR_Bin, Robustness, Connectance, WNODF, SR_Qua, Modularity. BR, discrepancy; NODF, nestedness index 
based on overlap and decreasing fill; SR_Bin, spectral radius calculated on binary (absence/presence) matrices; WNODF, NODF calculated 
on weighted matrices. 0.001 < *** < 0.01 < ** < 0.05; *Next to the index name reflects the result of the ANOVA test, on the graph itself 
reflects the results of the post hoc paired t test, with a Bonferroni correction



3254  |     RENAUD et al.

F I G U R E  2   Z-score distribution for nestedness indices for species-, genus-, and family-determined matrices. BR, discrepancy; NODF, 
nestedness index based on overlap and decreasing fill; NODFc, NODF normalized according to Song et al.'s method (see Materials and 
Methods); SR_Bin, spectral radius calculated on binary (absence/presence) matrices; SR_Qua, spectral radius calculated on weighted 
(abundance) matrices; WNODF, NODF calculated on weighted matrices. 0.001 < *** < 0.01 < ** < 0.05; *Next to the index name reflects 
the result of the ANOVA test, on the graph itself reflects the results of the post hoc paired t test, with a Bonferroni correction. (RTCA) and 
(r2dtable) specify the results obtained through two different null models

Indices df F p-Value Post hoc test results

Nestedness

NODF 2, 120 0.5698 .5672  

BR 2, 120 0.4745 .6233  

SR_Bin 2, 120 2.6813 .07258  

SR_Qua (RTCA) 2, 90 0.0729 .9297  

SR_Qua (r2dtable) 2, 90 0.3565 .7002  

WNODF (RTCA) 2, 90 3.0987 .04995 Genus and species 
do not differ 
significantly, while 
the two other 
comparisons are 
significantly different

WNODF (r2dtable) 2, 90 52.971 <2.2e−16 All levels differ 
significantly

NODFc 2, 104 0.9219 .4011  

Note: (RTCA) and (r2dtable) indicate which null model was used.

TA B L E  3   Results of one-way analysis 
of variance comparing Z-score values 
(as well as NODF normalized according 
to Song et al. (2017)) at three different 
taxonomic resolutions
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We also showed that the normalization method proposed by Song 
et al. (2017) offers an NODF index robust to taxonomic resolution, 
which is in line with their own conclusions that NODFc is indepen-
dent from network number of rows, columns, and number of links, 
making it remarkably relevant to compare networks across studies 
or spatial gradients. Our results are also in agreement with an as yet 
unpublished study by Hemprich-Bennett, Oliveira, Comber, Rossiter, 
and Clare, (2018) who also found that absolute measures of most of 
the metrics they tested (which includes NODF, robustness, connec-
tance, but not SR or BR) vary according to the taxonomical level of 
the networks (both observed networks and networks deduced from 
metabarcoding data).

The main objective of our study was to determine whether it is 
possible to meaningfully estimate indices describing the character-
istics of plant–pollinator interaction networks with a taxonomic res-
olution lower than the species. Our results suggest that it is indeed 
the case. To estimate nestedness, our results suggest that only the 
absolute values of SR indices are minimally impacted by changes in 
taxonomic resolution and should therefore probably be preferred 
when the objective is to compare nestedness levels for networks 
with a lower resolution than the species. Alternatively, it is possible 
to use NODF and BR after standardization using the Z-score. For 
the other properties of the networks that we examined, namely con-
nectance, modularity, normalized degree, and robustness to species 
loss, the absolute values of the indices cannot be directly compared 
at resolutions lower than the species level, but it is still possible to 
rank networks according to their values for these indices, because 
such ranks are well preserved when the level of taxonomic resolu-
tion changes. Motif frequencies do not present a unique pattern of 
sensitivity to taxonomic resolution. Indeed, some motif frequencies 
are significantly influenced by taxonomic resolution, while others 
are not. However, they all show a good preservation of the ranks 
between species and genus networks. We would advise not to use 
motif frequencies at a family level, though, as the correlation be-
tween ranks gets rather low (sometimes as low as 0.2).

Note, however, that whereas the taxonomic resolution lower 
than the species seems to allow us to characterize the properties 
of plant–pollinator interaction networks, it may make it more diffi-
cult to interpret these properties. One of the main objectives of the 
measurement of network properties is to make or test inferences 
about their underlying mechanisms. For example, Junker et al. (2013) 
showed that sets of plant traits such as phenology, floral reflec-
tance, and morphology can predict plant–pollinator interactions and 
thus network structure. Similarly, Klumpers, Stang, and Klinkhamer 
(2019) showed that size matching between the pollinator proboscis 
length and the nectar tube depth is important in shaping plant–pol-
linator interactions. Such conclusions would be more difficult to 
reach when working above the species level. In the future, working 
on these levels would require careful consideration: Can functional 
traits be extended to the whole genus in that particular case? If this 
is not possible, then working on these levels could thus deprive us of 
a significantly explanatory variable. This means that while genus- and 
family-level networks are usable and interpretable, they still entail a 
loss of information for future studies. For this reason, future studies 
need to consider the gain in network explicitness versus the loss of 
information before choosing to work at the genus or family level.

Our results support the relevance of citizen science for ecolog-
ical research. The major strengths of citizen science programs lie 
in their ability to conduct studies at large geographic scales and on 
private properties, which are usually impossible to perform with 
traditional field research (Dickinson et al., 2010), although these 
are often at the price of a lower taxonomical precision. Here, we 
showed that datasets with a taxonomic resolution lower than the 
species level can be used to estimate the properties of networks 
assembled at the same resolution, even if it is lower than the 

F I G U R E  3   Correlation strength for all taxonomic levels and all 
indices. All correlations are significant. BR, discrepancy; NODF, 
nestedness index based on overlap and decreasing fill; SR_Bin, 
spectral radius calculated on binary (absence/presence) matrices; 
SR_Qua, spectral radius calculated on weighted (abundance) 
matrices; VS, versus; WNODF, NODF calculated on weighted 
matrices
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species. However, plant–pollinator interaction data produced by 
citizen science are probably characterized by relatively low sam-
pling completeness, because detecting all the species interactions 
is extremely labor-intensive (Chacoff et al., 2012), which can have 
an effect on the estimated properties of the networks. For the 
indices that we studied, Rivera-Hutinel, Bustamante, Marín, and 
Medel (2012) showed that nestedness, modularity, and robust-
ness to species loss are little affected by sampling completeness, 
whereas connectance is very sensitive to low sampling. In con-
clusion, sets of plant–pollinator networks produced by citizen sci-
ence, frequently characterized by low taxonomic resolution and 
low sampling efforts, are probably best analyzed by calculating 
their nestedness with SR (or NODF and BR after standardization 
using the Z-score) and their robustness with species loss, and then 
ranking them according to their modularity.

Our work confirms that we can use protocols with only genus- or 
family-level data and still use network-level analyses of plant–pol-
linator interactions. An interesting complement would be to study 
the same question for other kinds of mutualistic networks such as 
ant–plant networks or even for other kinds of interaction networks 
such as food webs.
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APPENDIX A

TA B L E  A 1   Results of one-way analysis of variance comparing normalized degree (ND) values and motif frequencies at three different 
taxonomic resolutions

Indices df F p-Value Post hoc test result

Normalized degrees for pollinators—lower limit of 
1st quartile

2, 120 5.7164 .004252 All levels differ significantly

ND_high_2 2, 120 10.92 4.396e−05 All levels differ significantly

ND_high_3 2, 120 13.129 6.977e−06 All levels differ significantly

ND_high_4 2, 120 18.155 1.293e−07 All levels differ significantly

ND_high_5 2, 120 9.2779 .0001792 All levels differ significantly

ND_low_1 2, 120 20.594 2.046e−08 All levels differ significantly

ND_low_2 2, 120 15.191 1.316e−06 All levels differ significantly

ND_low_3 2, 120 11.922 1.893e−05 All levels differ significantly

ND_low_4 2, 120 18.947 7.06e−08 All levels differ significantly

ND_low_5 2, 120 13.857 3.85e−06 All levels differ significantly

Motif 1 2, 120 1 .3709  

Motif 2 2, 120 1.1355 .3247  

Motif 3 2, 120 1.1355 .3247  

Motif 4 2, 120 0.112 .8942  

Motif 5 2, 120 2.1753 .118  

Motif 6 2, 120 9.3845 .0001634 All levels differ significantly

Motif 7 2, 120 2.5995 .07849  

Motif 8 2, 120 0.1919 .8256  

Motif 9 2, 120 0.2043 .8155  

Motif 10 2, 120 1.7185 .1837  

Motif 11 2, 120 9.5841 .0001376 All levels differ significantly

Motif 12 2, 120 5.4115 .005621 All levels differ significantly

Motif 13 2, 120 0.0374 .9633  

Motif 14 2, 120 0.9314 .3968  

Motif 15 2, 120 3.4154 .03609 Species and genus do not differ 
significantly, while the two other 
comparisons are significantly 
different

Motif 16 2, 120 4.8719 .00924 Species and genus do not differ 
significantly, while the two other 
comparisons are significantly 
different

Motif 17 2, 120 3.4329 .0355 All levels differ significantly

Note: Results are compiled for pollinator (“high”) and plant (“low”) taxa, for each bound of the quartile values (1–5).
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TA B L E  A 2   Results of Spearman's rho correlation tests comparing the relative values of all networks between two taxonomic levels, for 
each index

Index

Species vs Genus Genus vs Family Species vs Family

Rho estimate p-Value Rho estimate p-Value Rho estimate p-Value

NODF .914 <2.2e−16 .751 1.611e−07 .617 2.62e−05

WNODF .926 1.541e−08 .6375 .0001612 .467 .008709

BR .959 <2.2e−16 .797 4.478e−10 .678 1.093e−06

SR Binary .962 <2.2e−16 .956 <2.2e−16 .903 <2.2e−16

SR Weighted .988 <2.2e−16 .960 <2.2e−16 .939 <2.2e−16

Connectance .968 <2.2e−16 .948 2.705e−12 .754 1.224e−08

Modularity .952 <2.2e−16 .900 1.343e−07 .863 3.964e−07

Robustness .921 <2.2e−16 .793 6.482e−10 .650 4.219e−06

ND_high_1 .994 <2.2e−16 .828 2.357e−11 .823 3.734e−11

ND_high_2 .904 5.834e−16 .819 6.084e−11 .681 9.452e−07

ND_high_3 .933 <2.2e−16 .776 2.533e−09 .712 1.786e−07

ND_high_4 .914 <2.2e−16 .824 3.773e−11 .724 8.565e−08

ND_high_5 .886 1.436e−14 .693 5.144e−07 .634 8.632e−06

ND_low_1 .923 <2.2e−06 .741 2.984e−08 .641 6.3e−06

ND_low_2 .890 6.742e−15 .762 7.313e−09 .726 7.695e−08

ND_low_3 .940 <2.2e−16 .779 1.947e−09 .666 2.013e−06

ND_low_4 .936 <2.2e−16 .853 1.453e−12 .721 1.039e−07

ND_low_5 .910 <2.2e−16 .734 4.871e−08 .605 2.791e−05

Motif 1 NA NA NA NA NA NA

Motif 2 .935 <2.2e−16 .641 6.319e−06 .575 8.341e−05

Motif 3 .935 <2.2e−16 .641 6.319e−06 .575 8.341e−05

Motif 4 .935 <2.2e−16 .756 1.356e−07 .685 1.742e−06

Motif 5 .859 <2.2e−16 .661 4.746e−06 .633 1.404e−05

Motif 6 .906 <2.2e−16 .702 3.201e−07 .558 .0001514

Motif 7 .930 <2.2e−16 .614 1.989e−05 .578 7.461e−05

Motif 8 .927 <2.2e−16 .793 6.482e−10 .735 4.315e−08

Motif 9 .937 <2.2e−16 .703 8.524e−07 .631 1.542e−05

Motif 10 .921 <2.2e−16 .402 .009617 .399 0.01027

Motif 11 .913 <2.2e−16 .418 .006511 .285 0.07137

Motif 12 .953 <2.2e−16 .708 2.208e−07 .608 2.464e−05

Motif 13 .900 <2.2e−16 .585 8.009e−05 .435 .004839

Motif 14 .788 3.833e−08 .617 1.742e−05 .519 .0005086

Motif 15 .807 6.773e−09 .742 2.875e−08 .508 .0006918

Motif 16 .815 8.911e−11 .830 2.023e−11 .644 5.625e−06

Motif 17 .933 <2.2e−16 .606 2.661e−05 .560 .0001424

Abbreviation: BR, discrepancy; ND, normalized degree compiled for pollinator (“high”) and plant (“low”) taxa, for each bound of the quartile values 

(1–5); NODF, nestedness index based on overlap and decreasing fill; SR_Bin, spectral radius calculated on binary (absence/presence) matrices; SR_

Qua, spectral radius calculated on weighted (abundance) matrices; WNODF, NODF calculated on weighted matrices.


