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Abstract: Pyridazine and thiazole derivatives have various biological activities such as antimicrobial,
analgesic, anticancer, anticonvulsant, antitubercular and other anticipated biological properties.
Chitosan can be used as heterogeneous phase transfer basic biocatalyst in heterocyclic syntheses.
Novel 1-thiazolyl-pyridazinedione derivatives were prepared via multicomponent synthesis under
microwave irradiation as ecofriendly energy source and using the eco-friendly naturally occurring
chitosan basic catalyst with high/efficient yields and short reaction time. All the prepared compounds
were fully characterized by spectroscopic methods, and their in vitro biological activities were
investigated. The obtained results were compared with those of standard antibacterial/antifungal
agents. DFT calculations and molecular docking studies were used to investigate the electronic
properties and molecular interactions with specific microbial receptors.

Keywords: thiazolyl-pyridazinedione; hydrazonoyl chlorides; microwave irradiation; antibiotic-
resistant bacteria; molecular docking

1. Introduction

In recent years, a substantial number of pyridazine derivatives containing different
moieties and/or substituents have demonstrated anti-inflammatory/analgesic, antipyretics,
antiplatelet, anticancer, antidiabetic, antihypertensive, antidepressant/anxiolytic, anticon-
vulsant, antifungal, antibacterial, antitubercular, anti-bronchial asthma, antiallergic and
other anticipated biological properties [1–8]. Moreover, thiazoles are considered an impor-
tant class of heterocyclic compounds, found in many potent biologically active molecules
such as sulfathiazole (an antimicrobial drug), Ritonavir (an antiretroviral drug), Abafungin
(an antifungal drug) and Tiazofurin (an antineoplastic drug).

Continuously over the years, it has been noticed that interesting biological activi-
ties [9,10] were associated with thiazole derivatives. Recently, thiazoles have had a wide
range of applications in drug development for the treatment of allergies, inflammation,
schizophrenia, bacterial diseases, hypnotics and more recently for the treatment of pain,
as fibrinogen receptor antagonists with antithrombotic activity and as new inhibitors of
bacterial DNA gyrase B [11–16].

Multi-component reactions (MCRs) are one-pot processes with at least three com-
ponents to form a single product, which incorporates most or even all of the starting
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materials [17–20]. The huge interest in such MCRs during the last years has been oriented
towards developing combinatorial chemistry procedures, because of their high efficiency
and convenience in comparison to multistage procedures. Additionally, the utility of MCRs
under microwave irradiation (MWI) in the synthesis of heterocyclic compounds enhanced
reaction rates and improved regioselectivity [21–24].

Chitosan, a biocompatible and biodegradable naturally occurring polysaccharide,
is a copolymer containing both glucosamine and N-acetylglucosamine units. It can be
used as a heterogeneous phase transfer basic biocatalyst in heterocyclic syntheses, such as
enantioselective syntheses of asymmetric products with chiral center(s) [25,26], Michael
addition reactions [27–29], as well as transition metal support for the preparation of hetero-
geneous catalysts [30]. The presence of amino groups is responsible for the basic nature of
chitosan. Keeping this in mind, in continuation of our previously reported works on the
synthesis of new biologically active agents [31–37], we present herein an efficient synthesis
of novel 1-thiazolyl-pyridazinedione derivatives as antimicrobial agents, which have not
been reported hitherto in a multicomponent synthesis under MWI as an ecofriendly energy
source and using the eco-friendly naturally occurring chitosan catalyst.

2. Results and Discussion
2.1. Synthesis

In continuation of our previous work to synthesize bioactive heterocyclic compounds
under mild conditions [38–43], we wish to report herein mild and efficient procedures
for the synthesis of some novel 1-thiazolyl-pyridazinedione derivatives via the three-
component reaction of maleic anhydride 1, thiosemicarbazide 2 and the appropriate 2-oxo-
N-arylpropanehydrazonoyl chlorides 3a–f in ethanol in the presence of chitosan under
MWI at 500 W and 150 ◦C for 4–8 min. as monitored by TLC (Scheme 1).

Scheme 1. Synthesis of arylazothiazole derivatives 5a–f.

The structure of 5a–f was confirmed by their spectral data (IR, MS and 1H-NMR),
elemental analyses and alternative synthetic routes. For example, the 1H NMR spectra of
compounds 5a–f exhibited singlet signals at δ ~2.56 ppm (CH3) and one D2O exchangeable
peaks at δ ~10.71 ppm corresponding to NH-phenyl, in addition to the expected signals for
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the aromatic protons and the two doublet signals of the CH=CH protons. The IR spectra of
product 6 revealed in each case three absorption bands in the regions υ ~1654, 1668 and
3435 cm−1 due to the two carbonyl groups and NH group. The mass spectra of products
5a–f revealed a molecular ion peak for each one, which is consistent with their respective
molecular weights.

In the light of the foregoing results, the mechanism outlined in (Scheme 1) seems to
be the most plausible pathway for the formation of compounds 5a–f from the reaction of
the 1 + 2 + 3. The reaction involves initial formation of thiohydrazonate intermediate 4 via
S-alkylation, with removal of HCl, which underwent dehydrative cyclization to afford the
final product 5.

Compound 5a was alternatively synthesized by reacting carbothioamide 6 (prepared
separately via condensation of maleic anhydride 1 and thiosemicarbazide 2) with 2-oxo-N-
phenylpropanehydrazonoyl chloride (3a) in ethanol containing catalytic amount of chitosan
under MWI (Scheme 1). The obtained product was found to be identical with 5a in all
respects (TLC, mp. and IR spectrum), which affords further evidence to all structures 5a–f.

In an identical way, when the three-component reaction of maleic anhydride 1,
thiosemicarbazide 2 and the appropriate ethyl (N-arylhydrazono)-chloroacetates 7a–e
under the same reaction condition, it yielded in each case a single product, namely, 1-(4-
oxo-5-(2-arylhydrazono)-4,5-dihydrothiazol-2-yl)-1,2-dihydropyridazine-3,6-diones 9a–e
(Scheme 2).

Scheme 2. Synthesis of arylhydrazothiazolone derivatives 9a–e.

The structure of compounds 9a–e was proved based on spectral data, elemental
analyses and chemical transformations. The spectroscopic information confirmed the
reaction product 9 via intermediate 8 with elimination of EtOH molecule (Scheme 2).

Coupling of thiazolone 11 (prepared separately from reaction of carbothioamide
derivative 6 with ethyl bromoacetate 10 in ethanol/chitosan under reflux) with PhN2Cl in
pyridine yielded a product was found to be identical to 9a in all regards (mp., TLC and IR
spectrum), providing an additional evidence to all 9a–e structures.

From literature reports [44–47] we found that compounds bearing more than one
thiazole ring unit also exhibit good biological activities. For example, Myxothiazol is an
inhibitor of the mitochondrial cytochrome bc1 complex and Bleomycin is an anticancer
agent, containing 2,4′-bis thiazole system. From the above findings, we thought it is
useful to synthesize a heterocyclic ring system carrying bis-thiazole moiety associated with
pyridazine ring. This aim was achieved via the reaction of bis-hydrazonoyl chlorides 12a
and 12b with two moles of maleimide 1 and two moles of thiosemicarbazide 2 under MWI
in presence of chitosan to afford the respective bis-thiazoles 13 and 14 in a good yield
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(Scheme 3). The structure of compounds 13 and 14 was proven based on spectral data and
elemental analyses (Experimental part).

Scheme 3. Synthesis of bis-thiazole derivatives 13 and 14.

2.2. XTT Assay Results

The minimum inhibitory concentration (MIC) of the tested compounds on cell
metabolism/viability of S. aureus, P. aeruginosa and C. albicans was determined using
XTT assay compared to the standard counterparts (vancomycin and amphotericin B).

The results presented in Table 1 depict that most of the investigated compounds have
higher activities towards bacterial strains than fungal ones. Compound 9d has a low MIC
and acts against all resistant bacterial (P. aeruginosa and S. aureus, MIC: 0.42 and 1.84 g/mL,
respectively) and fungal (Candida albicans, MIC: 2.17 g/mL) strains, indicating that it has
a significant antibacterial and antifungal activity. Compounds 5a, 5b, 5c, 5e, 5f, 9b, 9c,
and 13, on the other hand, show no effect on the azole-resistant C. albicans ATCC10231
fungus. The majority of the studied molecules demonstrate different degrees of activ-
ity towards the resistant S. aureus (MRSA) TCC-BAA-1720. Compounds 5d, 9b, and 14
appeared to be the most effective. Compound 5d was more effective than the reference
drug vancomycin against the sensitive Pseudomonas aeruginosa ATCC 10145 and resistant
Pseudomonas aeruginosa ATCC BAA-2108. Compounds 5c, 5d, 9b, 9c and 13 showed no
activity against the resistant Pseudomonas aeruginosa ATCC BAA-2108. In addition, com-
pound 14 shows a good antimicrobial activity against S. aureus and P. aeruginosa (MIC:
1.13 and 1.49 µg/mL, respectively). In order to correlate the in silico results with those of
the experimental antibacterial testing, SAP and FabI receptors were chosen for docking
with the tested compounds.
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Table 1. MIC of the synthesized compounds against sensitive and resistant microorganisms.

Sample

Minimum Inhibitory Concentration (µg/mL)

Gram Positive Bacteria Gram Negative Bacteria Fungus

Sensitive
Staphylococcus
aureus ATCC

25923

Methicillin-
Resistant

Staphylococcus
aureus (MRSA)

ATCC-BAA-1720

Sensitive
Pseudomonas

aeruginosa
ATCC10145

Penicillins and
Cephalosporins-

Resistant
Pseudomonas

aeruginosa
ATCC BAA-2108

Azole-Sensitive
Candida

albicans ATCC
18804

Azole-Resistant
Candida

albicans ATCC
10231

5a 1.91 3.82 18.23 1.55 NA a NA
5b 3.37 1.85 3.92 14.29 2.61 NA
5c 7.81 5.74 NA NA 62.5 NA
5d 0.15 0.49 NA NA 0.29 19.07
5e 1.82 2.91 5.07 62.5 25.48 NA
5f 31.25 15.13 3.04 1.79 22.93 NA
9a 1.90 5.30 3.97 14.81 3.93 13.91
9b 5.29 1.27 10.13 NA 11.53 NA
9c 0.43 3.13 NA NA NA NA
9d 0.71 0.42 0.93 1.84 0.65 2.17
9e 0.48 9.19 0.93 3.91 4.49 15.04
13 9.04 7.29 NA NA 250 NA
14 0.49 1.13 NA 1.49 0.18 3.18

Vancomycin 0.24 0.98 0.49 3.9 ND ND
Amphotericin B b ND ND ND ND 0.24 1.95

a NA, not active b ND, not determined.

2.3. Molecular Modeling

At the B3LYP/6-311G level of theory, the geometries of the synthesized molecules that
demonstrated the greatest biological activity in the XTT experiments (5d, 5e, 9c, and 9d)
were investigated (Figure 1). The findings revealed that the molecules under investigation
are nearly planar. The highest occupied molecular orbitals (HOMO) are noticed on the
substituted phenyl and thiazole rings in all of the investigated compounds, whereas the
lowest unoccupied molecular orbitals (LUMO) are found on the pyridazine-3,6-dione rings.
Molecular orbital analysis can give information about the reactivity and excitability of the
studied molecules. From HOMO/LUMO analysis, it can be concluded that molecules with
narrow energy gaps (e.g., 5d and 9c) may show better reactivity/excitability than those
having wide energy gaps (e.g., 5e and 9d).

The quantum mechanical descriptors of the picked molecules are summarized in
Table 2. The energy gaps between HOMO and LUMO were discovered to be in the range
of 2.87 to 3.06 eV, with 5d having the smallest energy gap.

Molecular docking was used to study the ligand-receptor interactions that may re-
sult in the obtained biological activities of the studied molecules. Thiazole derivatives
have been reported to exhibit strong antibacterial activity against Staphylococcus aureus
and Candida albicans. As a result, the studied candidate chemicals have strong antibac-
terial activity against these two pathogens. Furthermore, antibacterial activity against
Pseudomonas aeruginosa was established by the substances under investigation. Accord-
ingly, we chose the most appropriate receptors from the organisms mentioned above for
molecular docking investigations.

During disseminated/mucosal infections of Candida albicans, secreted aspartic pro-
teinase (SAP) plays a key function as a virulence factor. This receptor is assumed to be
involved in the fungus’ attachment and invasion, and so plays a role in its pathogenic-
ity. As a result, SAPs may be useful as pharmacological target receptors for candidiasis
treatment [48].

Staphylococcus aureus is a common Gram-positive bacterium that can cause wound
infections and staphylococcal scalded skin syndrome (a cutaneous reaction to a staphy-
lococcal exotoxin absorbed into the circulation) [49]. One of the essential components of
the FAS II system (a group of fatty acid synthases used by most of bacteria and plants to
catalyze fatty acid synthesis) is enoyl-[acyl-carrier-protein] reductase (FabI). Other bacteria,



Molecules 2021, 26, 4260 6 of 14

such as Pseudomonas aeruginosa, require this enzyme as well. In order to correlate the in
silico results with those obtained from the experimental antibacterial tests, SAP and FabI
were chosen for docking with the compounds of interest.
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Figure 1. Optimized molecular geometries and molecular orbitals of candidate molecules with the highest antimicro-
bial properties.

Table 2. Quantum chemical parameters of compounds 6d, 6e, 10c and 10d.

Parameter 5d 5e 9c 9d

Et (eV) −40.188 −49.578 −50.556 −63.062
ELUMO (eV) −3.13 −3.43 −3.65 −3.72
EHOMO (eV) −6.01 −6.47 −6.58 −6.77

∆E (eV) 2.87 3.03 2.93 3.06
Ionization energy (eV) 6.01 6.47 6.58 6.77
Electron affinity (eV) 3.13 3.43 3.65 3.72

Mulliken electronegativity 4.57 4.95 5.11 5.25
Softness 0.695 0.659 0.683 0.654

Hardness 1.437 1.517 1.464 1.529
Chemical potential (eV/mol) −4.57 −4.95 −5.11 −5.25

Electrophilicity index 7.27 8.07 8.93 9.00

Figures 2 and 3 depict the layouts of the receptors under investigation. and their
interactions with the studied ligands. Molecular docking revealed that compounds 5d,
9c, and 9d are the best ligands for SAP2 of Candida albicans, FabI of S. aureus, and FabI
of P. aeruginosa, respectively. The calculated docking scores were found to be −11.35,
−11.30 and −11.36 kcal/mol for SAP2 of C. albicans/5d, FabI of S. aureus/9c and FabI of
P. aeruginosa/9d, respectively.
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Figure 3. Ligand interaction diagrams for the best fitting ligand molecules showing the amino acid residues of the receptor
active site and their interaction with the ligands. (a) SAP2 of C. albicans/5d, (b) FabI of S. aureus/9c and (c) FabI of
P. aeruginosa/9d.

The in silico studies revealed that the of interaction of ligand 5d with SAP2 of
C. albicans occurs via the hydrogen-aryl interaction between the aryl group of the ligand
and the Asp 218 residue, and between the quinoid ring of the ligand and the Ile 119 amino
acid. Whereas ligand 9c interacts with FabI of S. aureus through hydrogen bonding with
Val D67 amino acid residue. In addition, compound 9d interacts with FabI of P. aeruginosa
by aryl interaction with Tyr D149 and via the formation of a hydrogen bond with Tyr D159.

By comparing the results of in vitro XTT assay with those of the molecular docking
study, it can be obviously noticed that there is an excellent agreement between them. For
instance, compound 5d, which shows the best docking score with SAP2 of C. albicans, is
active against both C. albicans and S. aureus as shown in Table 1. In addition, ligand 9c,
which demonstrated the best binding to Fab I of S. aureus, was found to be inactive against
all microorganisms but S. aureus, as indicated from the XTT assay; thus, confirming the
accuracy of the docking studies. Furthermore, compound 9d interestingly demonstrated a
better antimicrobial activity against P. aeruginosa (MIC = 0.24 µg/mL) than the standard
molecule, vancomycin (MIC = 0.49 µg/mL). This agrees with the activity predicted from
docking which revealed that ligand 10d has the best docking score (−11.36 kcal/mol)
amongst all the theoretically studied ligands.

3. Materials and Methods
3.1. General Experimental Procedures

Melting points were measured with an Electrothermal IA 9000 series digital melt-
ing point apparatus. IR spectra were recorded in potassium bromide discs on PyeUni-
camSP 3300 and Shimadzu FTIR 8101 PC infrared spectrophotometers. NMR spectra
were recorded on a Varian Mercury VX-300 NMR spectrometer operating at 300 MHz
(1HNMR) and run in deuterated dimethylsulfoxide (DMSO-d6). Chemical shifts were
related to that of the solvent. Mass spectra were recorded on a Shimadzu GCeMS-QP1000
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EX mass spectrometer at 70 eV. Elemental analyzes were measured by using a German
made ElementarVario LIII CHNS analyzer. Irradiation was done in an ultrasonicator,
(Electric supply: 230 v, A.C. 50 Hz, 1phase; Ultrasonic frequency: 36 KHz; Ultrasonic
power: 100 W). Maleic anhydride 1, thiosemicarbazide 2, chitosan, aniline and pyridine
were purchased from Sigma Aldrich Kingdom of Saudi Arabia and were used without
further purification. Hydrazonoyl halides 3a–f, 7a–e and bis-hydrazonoyl halides 12a,b
were prepared according to the reported methods [50,51].

3.2. Synthesis of Thiazole Derivatives 5a–f, and 9a–e

An equivalent amount of glacial acetic acid (0.5 mL) was added to a solution of maleic
anhydride 1 (0.98 g, 1 mmol), thiosemicarbazide 2 (0.92 g, 1 mmol) in ethanol (20 mL). The
reaction mixture was heated in microwave oven at 500 W and 150 ◦C for 2 min. Then,
the appropriate hydrazonoyl halides 3a–f or 7a–e and chitosan (0.1 g) were added, the
reaction mixture was further heated in microwave oven at 500 W and 150 ◦C until all the
starting material was consumed (4–8 min. as monitored by TLC). The hot solution was
filtered to remove chitosan and excess solvent was removed under reduced pressure. The
reaction mixture was triturated with methanol and the product separated was filtered,
washed with methanol, dried and recrystallized from EtOH or DMF to give products 5a–f
and 9a–e, respectively. The analytical and spectral data of the products 5a–f and 9a–e are
listed below.

3.2.1. 1-(4-Methyl-5-(phenyldiazenyl)thiazol-2-yl)-1,2-dihydropyridazine-3,6-dione) (5a)

Red fine crystals; m.p. 184–186 ◦C (DMF). Anal. Calcd. for C14H11N5O2S (313.33): C,
53.67; H, 3.54; N, 22.35. Found C, 53.55; H, 3.35; N, 22.14%. MS m/z (%) 313 (M+, 12), 250
(7), 233 (18), 149 (23), 133 (30), 128 (41), 113 (60), 98 (39), 73 (100), 65 (41), 55 (91); 1H-NMR
(DMSO-d6): δ 2.56 (s, 3H, CH3), 6.24 (d, J = 12 Hz, 1H, CH=CH), 6.66 (d, J = 12 Hz, 1H,
CH=CH), 7.01–7.56 (m, 5H, Ar-H), 10.62 (br s, 1H, NH) ppm; 13C-NMR (DMSO-d6): δ 19.5
(CH3), 109.9, 114.1, 120.7, 128.6, 129.9, 131.5, 132.3, 139.3, 143.4 (Ar-C and C=N), 156.7, 159.4
(2C=O) ppm; IR (KBr): v 3435 (NH), 3049, 2926 (C-H), 1668, 1654 (2C=O) cm−1.

3.2.2. 1-(4-Methyl-5-(p-tolyldiazenyl)thiazol-2-yl)-1,2-dihydropyridazine-3,6-dione) (5b)

Dark red fine crystals; m.p. 171–173 ◦C (EtOH); Anal. Calcd. for C15H13N5O2S
(327.36): C, 55.04; H, 4.00; N, 21.39. Found C, 55.35; H, 3.70; N, 21.18%. MS m/z (%) 327
(M+, 5), 270 (14), 199 (16), 159 (77), 133 (9), 106 (76), 91 (100), 77 (43), 57 (33); 1H-NMR
(DMSO-d6): δ 2.36 (s, 3H, CH3), 2.56 (s, 3H, CH3), 6.23 (d, J = 12 Hz, 1H, CH=CH), 6.52 (d,
J = 12 Hz, 1H, CH=CH), 7.15–7.31 (m, 4H, Ar-H), 10.66 (br s, 1H, NH) ppm; IR (KBr): v
3429 (NH), 3027, 2921 (C-H), 1690, 1654 (2C=O) cm−1.

3.2.3. 1-(4-Methyl-5-(m-tolyldiazenyl)thiazol-2-yl)-1,2-dihydropyridazine-3,6-dione) (5c)

Dark red fine crystals; m.p. 185–187 ◦C. Anal. Calcd. for C15H13N5O2S (327.36): C,
55.04; H, 4.00; N, 21.39. Found C, 55.25; H, 3.79; N, 21.17%. MS m/z (%) 327 (M+, 8), 222 (48),
129 (21), 91 (58), 77 (36), 63 (100). 1H-NMR (DMSO-d6): δ 2.34 (s, 3H, CH3), 2.45 (s, 3H, CH3),
6.23 (d, J = 12 Hz, 1H, CH=CH), 6.48 (d, J = 12 Hz, 1H, CH=CH), 7.06–7.64 (m, 4H, Ar-H),
10.93 (br s, 1H, NH); IR (KBr): v 3433 (NH), 3011, 2923 (C-H), 1683, 1669 (2C=O) cm−1.

3.2.4. 1-(5-((4-Methoxyphenyl)diazenyl)-4-methylthiazol-2-yl)-1,2-dihydropyridazine-3,6-
dione (5d)

Dark red fine crystals; m.p. 170–172 ◦C (DMF). Anal. Calcd. for C15H13N5O3S (343.07):
C, 52.47; H, 3.82; N, 20.40. Found C, 52.48; H, 3.65; N, 20.23%. MS m/z (%) 343 (M+, 3), 313
(6), 199 (5), 129 (11), 108 (15), 97 (27), 73 (40), 57 (100). 1H-NMR (DMSO-d6): δ 2.66 (s, 3H,
CH3), 3.79 (s, 3H, OCH3), 6.23 (d, J = 12 Hz, 1H, CH=CH), 6.62 (d, J = 12 Hz, 1H, CH=CH),
7.03–7.86 (m, 4H, Ar-H), 10.87 (br s, 1H, NH) ppm; 13C-NMR (DMSO-d6): δ 19.1 (CH3),
55.3 (OCH3), 110.3, 113.6, 114.5, 126.9, 127.2, 128.7, 132.7, 149.6, 153.7 (Ar-C), 157.1, 159.1
(2C=O) ppm; IR (KBr): v 3423 (NH), 3022, 2924 (C-H), 1676, 1659 (2C=O) cm−1.
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3.2.5. 1-(5-((4-Chlorophenyl)diazenyl)-4-methylthiazol-2-yl)-1,2-dihydropyridazine-3,6-
dione (5e)

Dark red fine crystals; m.p. 195–197 ◦C (DMF). Anal. Calcd. for C14H10ClN5O2S
(397.04): C, 48.35; H, 2.90; N, 20.14. Found C, 48.75; H, 2.74; N, 19.98%; MS m/z (%) 397 (M+,
12), 283 (4), 267 (22), 185 (4), 152 (8), 129 (26), 111 (60), 99 (66), 86 (61), 57 (100); 1H-NMR
(DMSO-d6): δ 2.56 (s, 3H, CH3), 6.27 (d, J = 12 Hz, 1H, CH=CH), 6.64 (d, J = 12 Hz, 1H,
CH=CH), 7.26–8.12 (m, 4H, Ar-H), 10.84 (br s, 1H, NH) ppm; IR (KBr): v 3433 (NH), 3042,
2925 (C-H), 1671, 1657 (2C=O) cm−1.

3.2.6. 1-(5-((4-Bromophenyl)diazenyl)-4-methylthiazol-2-yl)-1,2-dihydropyridazine-3,6-
dione (5f)

Brown fine crystals; m.p. 207–209 ◦C (DMF). Anal. Calcd. for C14H10BrN5O2S (392.23):
C, 42.87; H, 2.57; N, 17.86. Found C, 43.21; H, 2.25; N, 17.55%. MS m/z (%) 392 (M+, 2), 325
(53), 274 (11), 171 (25), 129 (15), 91 (57), 86 (89), 73 (64), 57 (100); 1H-NMR (DMSO-d6): δ 2.43
(s, 3H, CH3), 6.12 (d, J = 12 Hz, 1H, CH=CH), 6.46 (d, J = 12 Hz, 1H, CH=CH), 7.39–8.20 (m,
4H, Ar-H), 11.23 (br s, 1H, NH) ppm; IR (KBr): v 3434 (NH), 3032, 2923 (C-H), 1685, 1660
(2C=O) cm−1.

3.2.7. 1-(4-Oxo-5-(2-phenylhydrazineylidene)-4,5-dihydrothiazol-2-yl)-1,2-
dihydropyridazine-3,6-dione (9a)

Yellow fine crystals; m.p. 161–163 ◦C (EtOH). Anal. Calcd. for C13H9N5O3S (315.31):
C, 49.52; H, 2.88; N, 22.21. Found C, 49.70; H, 2.57; N, 21.88%. MS m/z (%) 315 (M+, 7), 307
(100), 279 (22), 150 (14), 104 (10), 92 (67), 77 (35), 65 (29); 1H-NMR (DMSO-d6): δ 6.20 (d,
J = 12 Hz, 1H, CH=CH), 6.41 (d, J = 12 Hz, 1H, CH=CH), 7.04–7.82 (m, 5H, Ar-H), 10.75,
11.00 (2br s, 2H, 2NH) ppm; 13C-NMR (DMSO-d6): δ 110.3, 116.3, 117.9, 123.1, 129.0, 130.3,
131.5, 147.7 (Ar-C and C=N), 158.2, 161.7, 172.8 (3C=O) ppm; IR (KBr): v 3429, 3178 (2NH),
3040, 2975 (C-H), 1706, 1680, 1653 (3C=O) cm−1.

3.2.8. 1-(4-Oxo-5-(2-(p-tolyl)hydrazineylidene)-4,5-dihydrothiazol-2-yl)-1,2-
dihydropyridazine-3,6-dione (9b)

Yellow fine crystals; m.p. 154–156 ◦C (EtOH). Anal. Calcd. for C14H11N5O3S (329.33):
C, 51.06; H, 3.37; N, 21.27. Found C, 51.35; H, 3.06; N, 21.03%. MS m/z (%) 329 (M+, 7), 263
(12), 155 (18), 125 (4), 111 (10), 101 (16), 97 (15), 86 (100), 58 (46); 1H-NMR (DMSO-d6): δ (s,
3H, CH3), δ 6.23 (d, J = 12 Hz, 1H, CH=CH), 6.45 (d, J = 12 Hz, 1H, CH=CH), 7.40–8.00 (m,
4H, Ar-H), 10.54, 10.79 (2 br s, 2H, 2NH); IR (KBr): v 3431, 3278 (2NH), 3030, 2979 (C-H),
1705, 1679, 1629 (3C=O) cm−1.

3.2.9. 1-(5-(2-(4-Chlorophenyl)hydrazineylidene)-4-oxo-4,5-dihydrothiazol-2-yl)-1,2-
dihydropyridazine-3,6-dione (9c)

Yellow fine crystals; m.p. 170–172 ◦C (EtOH). Anal. Calcd. for C13H8ClN5O3S (349.75):
C, 44.64; H, 2.31; N, 20.02. Found C, 44.93; H, 2.01; N, 19.70%. MS m/z (%) 351 (M++2, 2),
349 (M+, 7), 310 (5), 239 (5), 152 (10), 125 (36), 111 (31), 83 (39), 69 (58), 57 (100); 1H-NMR
(DMSO-d6): δ 6.30 (d, J = 12 Hz, 1H, CH=CH), 6.54 (d, J = 12 Hz, 1H, CH=CH), 6.93–7.58
(m, 4H, Ar-H), 9.96, 12.68 (2 br s, 2H, 2NH) ppm; IR (KBr): v 3431, 3219 (2NH), 3039, 2989
(C-H), 1705, 1657, 1629 (3C=O) cm−1.

3.2.10. 1-(5-(2-(2,4-Dichlorophenyl)hydrazineylidene)-4-oxo-4,5-dihydrothiazol-2-yl)-1,2-
dihydropyridazine-3,6-dione (9d)

Yellow fine crystals; m.p. 149–151 ◦C (EtOH). Anal. Calcd. for C13H7Cl2N5O3S
(382.19): C, 40.64; H, 1.84; N, 18.23. Found C, 40.93; H, 1.55; N, 18.00%. MS m/z (%) 382
(M+, 3), 375 (100), 349 (12), 347 (18), 218 (5), 160 (21), 133 (21), 112 (9), 82 (12); 1H-NMR
(DMSO-d6): δ 6.30 (d, J = 12 Hz, 1H, CH=CH), 6.54 (d, J = 12 Hz, 1H, CH=CH), 6.93–7.58
(m, 3H, Ar-H), 9.96, 12.68 (2 br s, 2H, 2NH) ppm; IR (KBr): v 3383, 3219 (2NH), 3039, 2983
(C-H), 1696, 1657, 1641 (3C=O) cm−1.
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3.2.11. 1-(5-(2-(4-Nitrophenyl)hydrazineylidene)-4-oxo-4,5-dihydrothiazol-2-yl)-1,2-
dihydropyridazine-3,6-dione (9e)

Yellow fine crystals; m.p. 159–161 ◦C (EtOH). Anal. Calcd. for C13H8N6O5S (360.30):
C, 43.34; H, 2.24; N, 23.33. Found C, 43.42; H, 2.09; N, 23.15%; MS m/z (%) 360 (M+, 12),
328 (9), 259 (4), 221 (3), 180 (4), 152 (4), 129 (12), 113 (40), 97 (27), 87 (38), 71 (48), 59 (100);
1H-NMR (DMSO-d6): δ 2.26 (s, 3H, CH3), 6.27 (d, J = 12 Hz, 1H, CH=CH), 6.51 (d, J = 12
Hz, 1H, CH=CH), 6.98–7.97 (m, 4H, Ar-H), 10.54, 10.77 (2 br s, 2H, 2NH) ppm; IR (KBr): v
3426, 3178 (2NH), 3030, 2922 (C-H), 1703, 1649, 1632 (3C=O) cm−1.

3.3. Alternate Synthesis of Thiazole Derivative 5a
3.3.1. Synthesis of 3,6-Dioxo-3,6-dihydropyridazine-1(2H)-carbothioamide (6)

An equivalent amount of glacial AcOH (0.5 mL) was added to an ethanolic solution
of maleic anhydride 1 (0.098 g, 1 mmol) and thiosemicarbazide 2 (0.092 g, 1 mmol). The
reaction mixture was heated in a microwave oven at 500 W and 150 ◦C for 2 min. as
monitored by TLC. The formed product was recrystallized from ethanol to give pure
derivative 6 as white solid; m.p. 232–234 ◦C. Anal. Calcd. for C5H5N3O2S (171.17): C,
35.08; H, 2.94; N, 24.55. Found C, 35.01; H, 2.84; N, 24.49%; MS m/z (%): 171 (M+), 132 (19),
107 (80), 87 (53), 57 (100); 1H-NMR (DMSO-d6): δ 6.19 (d, J = 12 Hz, 1H, CH=CH), 6.44
(d, J = 12 Hz, 1H, CH=CH), 9.30 (br s, 2H, NH2), 10.46 (br s, 1H, NH) ppm; IR (KBr): v
3387–3314, 3258 (NH2 and NH), 3149, 2963 (C-H), 1687, 1634 (2C=O) cm−1.

3.3.2. Reaction of 6 with 3a

Equimolar amounts of carbothioamide 7 (0.171 g, l mmol) and 2-oxo-N-phenylpropane
hydrazonoyl chloride 3a (0.196 g, mmol) in ethanol (15 mL) containing an equivalent
amount of chitosan (0.1 g) was heated in a microwave oven at 500 W and 150 ◦C for 5 min.
as monitored by TLC. The hot solution was filtered to remove chitosan and excess solvent
was removed under reduced pressure, gave product identical in all respects (m.p., mixed
m.p. and IR spectra) with compounds 5a.

3.4. Alternate Synthesis of Thiazole Derivative 9a
3.4.1. 1-(4-Oxo-4,5-dihydrothiazol-2-yl)-1,2-dihydropyridazine-3,6-dione (11)

To a solution of maleic anhydride 1 (0.098 g, 1 mmol), thiosemicarbazide 2 (0.092 g,
1 mmol), and ethyl 2-bromoacetate 10 (0.0165 g, 1 mmol) in ethanol (15 mL), an equivalent
amount of chitosan (0.1 g) was added. The reaction mixture was heated in microwave
oven at 500 W and 150 ◦C for 4 min. as monitored by TLC. The hot solution was filtered to
remove chitosan and excess solvent was removed under reduced pressure. The reaction
mixture was triturated with methanol and the product separated was filtered, washed with
methanol, dried and recrystallized from ethanol to give thiazolone products 11 as yellow
solid; m.p. 157–159 ◦C; Anal. Calcd. for C7H5N3O3S (211.01): C, 39.81; H, 2.39; N, 19.90.
Found C, 40.21; H, 2.17; N, 19.64%. MS m/z (%) 211 (M+, 16), 149 (19), 117 (63), 92 (66), 57
(100); 1H-NMR (DMSO-d6): δ 3.82 (s, 2H, CH2), 6.22 (d, J = 12 Hz, 1H, CH=CH), 6.53 (d,
J = 12 Hz, 1H, CH=CH), 10.25 (s, 1H, NH) ppm; IR (KBr): v 3438 (NH), 3168, 2987 (C-H),
1708, 1650, 1648 (3C=O) cm−1.

3.4.2. Coupling of 11

To a solution of each of compound 10 (0.211 g, 1 mmol) with sodium acetate trihydrate
in ethanol (10 mL) was added benzenediazonium chloride solution, (prepared as usual by
diazotizing aniline (1 mmol) in hydrochloric acid (1 mL, 6 M) with sodium nitrite (0.07 g,
1 mmol) in 10 mL water) portion wise with stirring and cooling. After complete addition,
the reaction mixture was left for 12 h. in the refrigerator. The precipitate formed was
collected by filtration, washed with water, dried and then recrystallized from EtOH to give
the respective product identical in all respects with 9a.
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3.5. Synthesis of Bis-Thiazole 13 and Bis-Thiazolone 14

To a solution of maleic anhydride 1 (0.196 g, 2 mmol), thiosemicarbazide 2 (0.184
g, 2 mmol) in ethanol (20 mL), an equivalent amount of glacial acetic acid (1 mL) was
added. The reaction mixture was heated in microwave oven at 500 W and 150 ◦C for 2 min.
Then, the appropriate bis-hydrazonoyl halides 12a,b (1 mmol for each) and chitosan (0.2
g) were added, the reaction mixture was further heated in microwave oven at 500 W and
150 ◦C until all the starting material was consumed (8 min as monitored by TLC). The hot
solution was filtered to remove chitosan and excess solvent was removed under reduced
pressure. The reaction mixture was triturated with methanol and the product separated
was filtered, washed with methanol, dried and recrystallized from ethanol to give products
13 and 14, respectively.

3.5.1. 1,1′-(([1,1′-Biphenyl]-4,4′-diylbis(diazene-2,1-diyl))bis(4-methylthiazole-5,2-
diyl))bis(1,2-dihydropyridazine-3,6-dione) (13)

Yellow fine crystals; m.p. 187–189 ◦C; Anal. Calcd. for C28H20N10O4S2 (624.11): C,
53.84; H, 3.23; N, 22.42. Found C, 54.04; H, 3.09; N, 22.27%; MS m/z (%) 624 (M+, 22),
373 (13), 341 (10), 299 (2), 271 (21), 112 (20), 98 (39), 86 (67), 69 (45), 54 (100); 1H-NMR
(DMSO-d6): δ 2.58 (s, 6H, CH3), 6.27 (d, J = 12 Hz, 2H, CH=CH), 6.63 (d, J = 12 Hz, 2H,
CH=CH), 7.43 (s, 8H, Ar-H), 10.64 (br s, 2H, 2NH) ppm; 13C-NMR (DMSO-d6): δ 19.7
(CH3), 109.5, 115.7, 120.7, 127.5, 133.2, 137.9, 142.1, 143.1, 152.1 (Ar-C and C=N), 156.8, 160.0
(2C=O) ppm; IR (KBr): v 3428 (NH), 2922 (C-H), 1699, 1659 (2C=O) cm−1.

3.5.2. 1-(5-(2-(4′-(2-(2-(3,6-Dioxo-3,6-dihydropyridazin-1(2H)-yl)-4-oxothiazol-5(4H)-
ylidene)hydrazinyl)-[1,1′-biphenyl]-4-yl)hydrazineylidene)-4-oxo-4,5-dihydrothiazol-2-
yl)-1,2-dihydropyridazine-3,6-dione (14)

Yellow fine crystals; m.p. 198–200 ◦C; Anal. Calcd. for C26H16N10O6S2 (628.60): C,
49.68; H, 2.57; N, 22.28. Found C, 49.59; H, 2.48; N, 22.10%; MS m/z (%) 628 (M+, 4), 367 (31),
334 (24), 313 (19), 294 (49), 236 (25), 184 (63), 139 (66), 97 (36), 71 (49), 55 (100); 1H-NMR
(DMSO-d6): δ 6.29 (d, J = 12 Hz, 2H, CH=CH), 6.53 (d, J = 12 Hz, 2H, CH=CH), 7.52 (m, 8H,
Ar-H), 10.37, 10.79 (2 br s, 4H, 2NH) ppm; IR (KBr): v 3422, 3032 (2NH), 2978, 2930 (C-H),
1683, 1655, 1636 (3C=O) cm−1.

3.6. In Vitro XTT Assay

XTT assay, a non-radioactive colorimetric assay system, is usually used for measuring
cell viability, proliferation and cytotoxicity through the measurement of cellular metabolic
activity. This test depends on the reduction of a yellow tetrazolium salt (XTT dye) to
an orange formazan dye by metabolically active cells. The minimal inhibitory concen-
tration (MIC) values, which represent the lowest concentrations of samples or standard
drugs (Vancomycine for bacteria and Amphotricine B for fungi) that completely inhibit
the microbial growth. MICs were determined using the microdilution method. The bac-
terial inoculum was prepared, and the suspensions were adjusted to 106 CFU/mL. The
samples under investigation and the standard drugs were prepared in dimethyl sulfox-
ide (DMSO) and subsequent twofold dilutions were performed in a 96-well plate. Each
well of the microplate included 40 µL of the growth medium (Brain Heart Infusion, BHI),
10 µL of the inoculum and 50 µL of the investigated compounds diluted to final concentra-
tions of (1000–0.12 µg/mL), and DMSO was used as a negative control. The plates were
incubated at 37 ◦C for 24 h. Thereafter, 40 µL of tetrazolium salt {2,3-bis[2-methyloxy-
4-nitro-5-sulfophenyl]-2H-tetrazolium-5-car-boxanilide (XTT)} were added. The plates
were incubated in dark for 1 h at 37 ◦C, after which colorimetric change in the XTT re-
duction assay was measured using a microtiter plate reader (Tecan Sunrise absorbance
reader; Tecan UK, Reading, United Kingdom) at 492 nm. The MIC was detected as the
lowest concentration capable of causing the largest color change compared to the negative
control [52].
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3.7. In Silico Studies

The electronic properties of the synthesized derivatives that demonstrated the best
biological activities in the in vitro XTT assay were investigated with density functional
theory calculations. The calculations were carried out with the aid of Gaussian 09 [53]. The
geometry of the studied molecules was fully optimized using B3LYP/6-311G functional
and the obtained molecular orbitals were visualized.

Molecular docking was used to investigate the interaction of the best biologically active
molecules with the microbial receptors. We selected the most probable bacterial/fungal
proteins that can be affected by the synthesized thiazole ligands based on the results
previously reported in the literature. Molecular docking was carried out with the aid of the
Molecular Operating Environment (MOE) 2014 software [54]. The geometry-optimized
compounds that demonstrated the lowest MIC values in the XTT assay were selected
and docked with the corresponding receptors. High-resolution 3D molecular structures
of the receptors Secreted Aspartic Proteinase (SAP2; C. albicans; PDB ID: 1EAG), Enoyl-
acyl Carrier Protein Reductase (fabI; S. aureus; PDB ID: 3GR6) and Enoyl-acyl Carrier
Protein Reductase (FabI; P. aerugiosa; PDB ID: 4NR0) were obtained from the Protein Data
Bank (PDB).

4. Conclusions

In summary, we have developed a new green methodology and synthesized several
novel 1-thiazolylpyridazine derivatives by MWI in high, efficient yields and short reaction
time. Additionally, the antimicrobial activities of the candidate lead molecules were tested
against S. aureus, P. aeruginosa and C. albicans using the XTT assay and compounds with
the highest activity in terms of MIC were docked with the corresponding microorganisms’
receptors. The results depict that compound 5d shows comparable biological activities to
these of the standard antibacterial/antifungal drugs in case of S. aureus and C. albicans. In
addition, compound 9d demonstrated the highest activity against P. aeruginosa.
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