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Abstract: Anaplastic thyroid carcinoma (ATC) is rare but highly aggressive. We investigated the
association of selected driver mutations, including BRAF, RAS, PIK3CA, TERT promoter, TP53,
POLE, and mismatch repair deficiency (MMR-D) with the clinicopathological features of ATC to
identify prognostic and predictive biomarkers. Thirty-nine retrospective cases from pathology
archives were enrolled for clinicopathology analysis and immunohistochemistry, and 27 cases had
sufficient specimens for further molecular testing using targeted next-generation sequencing and
mass spectrometry. BRAFV600E and RAS mutations were identified in 25.9% and 40.7% of ATC,
respectively. BRAFV600E mutation was significantly associated with coexisting papillary thyroid
carcinoma (p = 0.009) and RAS mutations with female gender (p = 0.012). In univariant analysis,
the non-BRAF/RAS tumors were significantly associated with the presence of a sarcomatoid pattern
(p = 0.045). PIK3CA, TERT promoter, and TP53 mutations were identified in 14.8%, 81.5%, and 70.4%
of cases, respectively. No MMR-D or POLE mutations were detected. In survival analyses, RAS and
PIK3CA mutations were significantly associated with inferior outcomes (p = 0.03 and p = 0.006,
respectively). In conclusion, driver mutations in ATC are associated with distinct clinicopathological
features. RAS and PIK3CA mutations were negative predictors for patient survival. Emerging
therapeutic agents targeting BRAF, RAS, and PI3 kinase may benefit a substantial proportion of
ATC patients.
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1. Introduction

Thyroid carcinoma is the most common malignancy of the endocrine system [1]. Anaplastic thyroid
carcinoma (ATC) is an aggressive tumor comprising 1%~2% of thyroid carcinoma [2]. Most patients
present with advanced disease at the initial clinical encounter, and up to 90% of them die within
a year after diagnosis [3,4]. ATC is managed by a multi-modality treatment approach combining
surgical resection and chemoradiation. However, the effectiveness of the current treatment approach is
limited [2]. As such, identification of actionable treatment targets, as well as biological predictors for
clinical behavior in ATCs, is of value to improve clinical outcomes.
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Genomic-scale analyses using next-generation sequencing have unraveled close genetic and
phenotypic associations in well-differentiated thyroid carcinoma (WDTC). RAS-activating mutations
and BRAFV600E mutation are the most common driver mutations in WDTC [5,6]. RAS mutations are
associated with follicular patterned thyroid tumors including follicular adenoma, follicular carcinoma
(FTC), and follicular variant of papillary thyroid carcinoma (PTC) [5]. These follicular patterned
tumors share a RAS-driven transcriptome [5]. In contrast, BRAFV600E mutation is highly associated
with classical PTC and tall cell variant of PTC. The BRAF-driven PTC has lower expression of thyroid
differentiation genes, a higher risk of tumor recurrence, and strong MAP kinase signaling activation as
opposed to activation of both MAP kinase and PI3 kinase pathways in RAS-driven PTC [7]. RAS and
BRAFV600E mutations were also commonly mutated genes in ATC [8–17]. Studies indicated that
RAS-driven and BRAF-driven ATC share homogenous transcriptome with an undifferentiated thyroid
gene expression profile [9,18].

TERT promoter and TP53 were genomic hallmarks of ATC and less frequently detected in
WDTC [19]. Additionally, mutations of PI3 kinase-Akt pathway-related genes were also identified
in ATC [2,6,20,21]. Moreover, an increase of somatic mutation in ATC as compared to WDTC has
been reported [15,18,22]. Defects in DNA mismatch repair mechanism or DNA polymerase epsilon
(POLE) mutation could contribute to hypermutation in tumors and have therapeutic implications for
the emerging immunotherapies [23]. It has been proposed that these molecular changes are acquired
during tumor de-differentiation and contribute to anaplastic transformation in thyroid carcinoma [19].
However, the phenotypic association with the aforementioned genetic alterations has not been well
delineated in ATC. In this study, we aimed to characterize these selected driver mutations and their
associated clinicopathological features in ATC.

2. Results

2.1. Clinicopathological Features of ATC

We assembled a cohort of 39 ATC cases. The clinicopathological features are summarized in Table 1.
The median age was 75 years. Female patients comprised 51.3% of the cases. More than half (55.6%)
were stage IVC disease at initial presentation. Most patients underwent total or subtotal thyroidectomy
(61.5% and 23.1%), while 15.4% of cases had biopsy only. Up to 51.3% of the patients received additional
therapies, including external radiation (25%), chemotherapy (24.1%), radioiodine (21.4%), and targeted
therapy (15.1%). Histologically, epithelial, sarcomatoid, and giant cell are well-described morphologic
patterns in ATC (Figure 1a–c). Twelve (30.8%) cases showed more than one histologic pattern. In our
cohort, the epithelial pattern was the most frequent (71.8%), followed by sarcomatoid (43.6%) and
giant cell (12.8%). A coexisting well-differentiated thyroid carcinoma component was identified in
33.3% of cases, including 10 PTC and 3 FTC (Figure 1d,e). Immunohistochemical stains were utilized
to detect thyroid-lineage marker expression and BRAFV600E mutation (Figure 1f–h). PAX8 expressed
in 56.4% and TTF-1 in 5.1% of the cases (Table 2). BRAF VE1 staining was positive in 25.6% of all
cases. Coexisting PTC was identified in 6/10 (60%) of the BRAF VE1-positive ATC and 4/29 (13.8%) of
wild-type ATC. Coexisting PTC was significantly associated with BRAFV600E mutation (p = 0.009).
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Table 1. Summary of clinicopathological features of 39 anaplastic thyroid carcinoma cases.

Age, n (%)

≤55 4 (10.3)
>55 35 (89.7)

Gender, n (%)

Female 20 (51.3)
Male 19 (48.7)

Stage, n (%) a

IVA 5 (13.9)
IVB 11 (30.6)
IVC 20 (55.6)

Surgery, n (%)

Subtotal thyroidectomy 9 (23.1)
Total thyroidectomy 24 (61.5)

Biopsy only 6 (15.4)

Other Therapies b, n (%)

Chemotherapy 7 (24.1)
Radioiodine 6 (21.4)

External radiation 7 (25)
Targeted therapy 5 (15.1)
Tumor size c (cm) 7.14

Histologic Pattern, n (%)

Epithelial + 28 (71.8%)
- 11 (28.2%)

Giant cell
+ 5 (12.8%)
- 34 (87.2%)

Sarcomatoid
+ 17 (43.6%)
- 22 (56.4%)

Coexisting WDTC, n (%)

PTC
+ 10 (25.6)
- 29 (74.4)

FTC
+ 3 (7.7)
- 36 (92.3)

a Of patients with available information regarding tumor stage. b Of patients with available information regarding
therapies. c Median size of the tumors. WDTC, well-differentiated thyroid carcinoma; PTC, papillary thyroid
carcinoma; FTC, follicular thyroid carcinoma.

Table 2. Summary of the results of immunohistochemistry.

Case Number
n (%)

PAX8 TTF-1 BRAF VE1 Retained MMR Proteins

All 39 22 (56.4) 2 (5.1) 10 (25.6) 39 (100)
Coexisting

WDTC
None 26 15 (5.8) 2 (7.7) 4 (15.4) 26 (100)
PTC 10 7 (70) 0 6 (60) 10 (100)
FTC 3 0 0 0 3 (100)

WDTC, well-differentiated thyroid carcinoma; PTC, papillary thyroid carcinoma; FTC, follicular thyroid carcinoma;
MMR, mismatch repair.
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Figure 1. Anaplastic thyroid carcinoma. Common morphologic patterns include epithelial (a), 
sarcomatoid (b), and giant cell (c) pattern (H&E, 200×). Papillary carcinoma (d) and follicular 
carcinoma (e) coexist with the anaplastic component in an intermingled arrangement or with a sharp 
border (H&E, 100×). Cases positive for PAX8 (f), TTF-1 (g), and BRAF VE1 (h) immunostains are 
shown (200×). 

2.2. Molecular Profiles of ATC 

Twenty-seven ATC cases with sufficient formalin-fixed paraffin-embedded (FFPE) materials for 
DNA extraction were subjected to targeted next-generation sequencing (NGS) and mass 
spectrometry, and the results are summarized (Figure 2, Supplementary Data 1 and Data 2). 
BRAFV600E (c.T1799A) was identified in 25.9% of the cases. All ATC with BRAFV600E mutation detected 
by NGS were positive for the BRAF VE1 immunohistochemistry. RAS-activating mutations at codon 
12, 13, and 61 were analyzed. We found overall RAS mutations in 40.7% of the cases, and among the 
11 cases, 8 were found in N-RAS (Q61R in 6, Q61K in 1, and G12D in 1) and 3 in K-RAS (Q61R in 2 
and G12A in 1). H-RAS mutation was not identified. To investigate the potential association between 
driver mutations and clinicopathological features, the 27 cases were stratified into three molecular 
groups: BRAF-mutated, RAS-mutated, and non-BRAF/RAS group (Table 3). We found that RAS 
mutation was associated with female gender (90.9% versus 44.4% and 28.6% in non-BRAF/RAS and 
BRAF groups respectively, p = 0.012). The non-BRAF/RAS group was associated with the presence of 
a sarcomatoid component morphologically (77.8% versus 45.5% in RAS and 14.3% in BRAF groups, 
respectively, p = 0.045). Association between RAS mutations and female gender remains significant 
(odds ratio 20.31, p = 0.022, supplementary Table S1) in multivariate analysis, while the 
non-BRAF/RAS group becomes marginally associated with the presence of a sarcomatoid pattern 
(odds ratio 23.17, p = 0.089, Supplementary Table S2). TERT promoter C288T mutation was present 
in 81.5% of cases, while C250T was not detected in any of the cases. TP53 missense mutation was 
found in 70.4% of ATC. PIK3CA mutation was present in 14.8% of ATC, including one E542K, one 
E545K, and two H1047R mutations. Mismatch repair deficiency and POLE exonuclease domain 
mutation potentially led to a hypermutation phenotype in tumors. We found that mismatch repair 
(MMR) protein expression was retained in all of the cases (Table 2). We did not identify mutations in 
the exonuclease domain of POLE in any of the ATC. 

Figure 1. Anaplastic thyroid carcinoma. Common morphologic patterns include epithelial (a),
sarcomatoid (b), and giant cell (c) pattern (H&E, 200×). Papillary carcinoma (d) and follicular carcinoma
(e) coexist with the anaplastic component in an intermingled arrangement or with a sharp border (H&E,
100×). Cases positive for PAX8 (f), TTF-1 (g), and BRAF VE1 (h) immunostains are shown (200×).

2.2. Molecular Profiles of ATC

Twenty-seven ATC cases with sufficient formalin-fixed paraffin-embedded (FFPE) materials for
DNA extraction were subjected to targeted next-generation sequencing (NGS) and mass spectrometry,
and the results are summarized (Figure 2, Supplementary Data 1 and Data 2). BRAFV600E (c.T1799A)
was identified in 25.9% of the cases. All ATC with BRAFV600E mutation detected by NGS were positive
for the BRAF VE1 immunohistochemistry. RAS-activating mutations at codon 12, 13, and 61 were
analyzed. We found overall RAS mutations in 40.7% of the cases, and among the 11 cases, 8 were
found in N-RAS (Q61R in 6, Q61K in 1, and G12D in 1) and 3 in K-RAS (Q61R in 2 and G12A in
1). H-RAS mutation was not identified. To investigate the potential association between driver
mutations and clinicopathological features, the 27 cases were stratified into three molecular groups:
BRAF-mutated, RAS-mutated, and non-BRAF/RAS group (Table 3). We found that RAS mutation was
associated with female gender (90.9% versus 44.4% and 28.6% in non-BRAF/RAS and BRAF groups
respectively, p = 0.012). The non-BRAF/RAS group was associated with the presence of a sarcomatoid
component morphologically (77.8% versus 45.5% in RAS and 14.3% in BRAF groups, respectively,
p = 0.045). Association between RAS mutations and female gender remains significant (odds ratio
20.31, p = 0.022, supplementary Table S1) in multivariate analysis, while the non-BRAF/RAS group
becomes marginally associated with the presence of a sarcomatoid pattern (odds ratio 23.17, p = 0.089,
Supplementary Table S2). TERT promoter C288T mutation was present in 81.5% of cases, while C250T
was not detected in any of the cases. TP53 missense mutation was found in 70.4% of ATC. PIK3CA
mutation was present in 14.8% of ATC, including one E542K, one E545K, and two H1047R mutations.
Mismatch repair deficiency and POLE exonuclease domain mutation potentially led to a hypermutation
phenotype in tumors. We found that mismatch repair (MMR) protein expression was retained in all
of the cases (Table 2). We did not identify mutations in the exonuclease domain of POLE in any of
the ATC.
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Figure 2. Summary of the mutational profile of the 27 cases of anaplastic thyroid carcinoma analyzed 
by next-generation sequencing and mass spectrometry. WDTC, coexisting well-differentiated 
thyroid carcinoma; P, papillary carcinoma; F, follicular carcinoma; pTERT, TERT promoter. 

Table 3. Summary of clinicopathological features of 27 anaplastic thyroid carcinoma cases with 
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Biopsy only 0 1 (9.1) 1 (11.1)  

Other Therapies b, n (%)  
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Figure 2. Summary of the mutational profile of the 27 cases of anaplastic thyroid carcinoma analyzed
by next-generation sequencing and mass spectrometry. WDTC, coexisting well-differentiated thyroid
carcinoma; P, papillary carcinoma; F, follicular carcinoma; pTERT, TERT promoter.

Table 3. Summary of clinicopathological features of 27 anaplastic thyroid carcinoma cases with
stratification by BRAFV600E and RAS mutations.

BRAF RAS Non-BRAF/RAS p Value

Case Number 7 11 9

Age, n (%)

≤55 1 (14.3) 1 (9.1) 2 (22.2) 0.803
>55 6 (85.7) 10 (90.9) 7 (77.8)

Gender, n (%)

Female 2 (28.6) 10 (90.9) 4 (44.4) 0.012 *
Male 5 (71.4) 1 (9.1) 5 (55.6)

Stage, n (%) a

IVA 1 (14.3) 0 (0) 2 (25) 0.445
IVB 3 (42.9) 4 (44.4) 1 (12.5)
IVC 3 (42.9) 5 (55.6) 5 (50)

Surgery, n (%)

Subtotal Tx 1 (14.3) 2 (18.2) 4 (44.4) 0.488
Total Tx 6 (85.7) 8 (72.7) 4 (44.4)

Biopsy only 0 1 (9.1) 1 (11.1)

Other Therapies b, n (%)

Chemotherapy 1 (16.7) 3 (33.3) 2 (33.3) 0.851
Radioiodine 1 (16.7) 2 (22.2) 0 (0) 0.763

External radiation 1 (16.7) 4 (44.4) 1 (20) 0.568
Targeted therapy 2 (33.3) 1 (10) 0 (0) 0.314
Tumor size, cm 5.1 7.8 7.5 0.253

Histologic Pattern, n (%)

Epithelial + 6 (85.7) 8 (72.7) 6 (66.7) 0.860
- 1(14.3) 3 (27.3) 3 (33.3)

Giant cell
+ 1 (14.3) 1 (9.1) 1 (11.1) 1
- 6 (85.7) 10 (90.9) 8 (88.9)

Sarcomatoid
+ 1 (14.3) 5 (45.5) 7 (77.8) 0.045 *
- 6 (85.7) 6 (54.5) 2 (22.2)

Coexisting WDTC, n (%)

PTC
+ 3 (42.9) 2 (18.2) 1 (11.1) 0.369
- 4 (57.1) 9 (81.8) 8 (88.9)

FTC
+ 0 (0) 1 (9.1) 1 (11.1) 1.000
- 7 (100) 10 (90.9) 8 (88.9)

a Of patients with available information regarding tumor stage. b Of patients with available information regarding
therapies * Statistically significant. Tx, thyroidectomy; WDTC, well-differentiated thyroid carcinoma; PTC, papillary
thyroid carcinoma; FTC, follicular thyroid carcinoma.
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2.3. Survival Analysis of ATC Cohort

Follow-up data of all cases was obtained, and the median survival interval was 54 days (1–1079).
We constructed Kaplan–Meier survival curves with stratification on molecular alternations including
BRAFV600E, RAS, TERT promoter, TP53, and PIK3CA mutations (Figure 3). RAS and PIK3CA mutations
were significantly associated with an inferior survival (median 94 versus 41 days, p = 0.03 and median
94 versus 29 days, p = 0.006 respectively). None of the other mutations correlate with patient survival.
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Figure 3. Survival analysis of anaplastic thyroid carcinoma (ATC). Kaplan–Meier survival analysis
was performed with cases stratified by RAS mutations (a), PIK3CA exon 2 and exon 9 mutations
(b), BRAFV600E mutation (c), TERT promoter mutation (d), and TP53 non-synonymous mutations (e).
Survival differences were analyzed by log-rank test with significance at p value < 0.05 (bold type). WT,
wild-type; pTERT, TERT promoter.

3. Discussion

In the current study, we analyzed a cohort of ATC and identified RAS mutations in 40.7% and
BRAFV600E mutation in 25.9% of ATC. The two mutations were mutually exclusive and detected in up
to 70% of ATC. ATC stratified by BRAFV600E and RAS mutations showed distinct clinicopathological
features. BRAFV600E mutation was significantly associated with coexisting PTC. RAS-mutated ATC
was positively associated with female gender and an inferior survival outcome. Non-RAS/BRAF
tumors tended to show a sarcomatoid morphological pattern. PIK3CA mutations were found in
14.8% of ATC and were also identified as a negative prognostic indicator. TERT promoter and TP53
mutations were frequent mutations in ATC, identified in 81.5% and 70.4% of the tumors respectively.
MMR deficiency and POLE exonuclease domain mutation were not detected in our cohort. Except for
RAS and PIK3CA mutations, none of the other molecular changes investigated in this study showed
prognostic significance.

Genetic alternation rates of selected genes in ATC reported in the literature are summarized
in Table 4. RAS mutation rate in ATC was reported ranging from 18% to 44.4%. In our cohort,
N-RAS mutation was the most frequent (eight cases, 29.6%) among the three RAS subtypes, concordant
with findings in previous reports [9,13,15,16]. K-RAS mutation was present in three cases (11.1%),
while H-RAS mutation was not detected. Mutations at codon 61 were the most common, followed
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by codon 12. RAS-mutated ATC emerged with distinct clinicopathological features. RAS mutations
were strongly associated with female gender in both univariate and multivariate analyses (p = 0.012
and 0.022) and showed significantly poor survival outcomes (p = 0.03). It has been reported that
the co-occurrence of RAS and TERT promoter mutations was associated with an inferior survival
outcome [8,18]. Our study was the first one to demonstrate that RAS mutations alone predicted a
significantly poor outcome. On the other hand, BRAFV600E mutation rate in ATC was reported ranging
from 12.8% to 56% (Table 4). In one Korean report where PTC is prevalent, the BRAFV600E mutation
in ATC was up to 91% [14]. In our cohort, BRAFV600E mutation was also strongly associated with
a coexisting PTC component (p = 0.009). In the 10 ATC with coexisting PTC, up to 60% harbored
BRAFV600E mutation. Therapies targeting BRAFV600E are being utilized for the treatment of ATC.
In BRAFV600E-mutated ATC, combination treatment with Dabrafenib and Trametinib has been proven
robust as an adjuvant therapy to improve clinical outcomes and a neoadjuvant treatment to facilitate
complete surgical resection for local control [24,25]. Direct inhibitors of RAS have not yet achieved
clinical success. Recently, small molecules targeting KRAS G12C have entered phase 1 and 2 clinical
trials for the treatment of colorectal carcinoma [26]. Targeting RAS may become a potential strategy in
the management of advanced malignancy. Among the 27 cases subjected to NGS studies, nine cases
were absent of either RAS or BRAFV600E mutations. Whether these tumors harbor other rare targetable
driver fusion events found in WDTC, such as RET-PTC, PAX8-PPARG, NTRK, and ALK rearrangement,
requires further analysis [27].

Mutation rates of PIK3CA, TERT promoter, and TP53 are higher in ATC as compared to WDTC [19].
These gene mutations often co-occur with BRAFV600E and RAS mutations and are thought to be
acquired during thyroid cancer de-differentiation [19]. In the 18 cases with the driver BRAFV600E or
RAS mutations, only one was absent of all PIK3CA, TERT promoter, and TP53 mutations. PIK3CA
mutation rates were reported ranging from 0% to 44% in the literature (Table 4). We identified PIK3CA
mutations in 14.8% of our cohort, with two cases co-occurring with BRAFV600E mutation and one with
RAS mutation. Moreover, we identified PIK3CA mutation significantly associated with an inferior
survival outcome (p = 0.006). Duan et al. also reported PIK3CA as a negative predictor of patient
survival in ATC, and co-occurrence of PIK3CA and TERT promoter mutations had a higher risk of
mortality than patients with only one of either mutation [10]. PI3 kinase pathway and MAP kinase
pathway are divergent pathways downstream of RAS signaling. Pre-clinical studies had identified
combined treatment with MEK and PI3 kinase inhibitors synergized to target BRAFV600E and PIK3CA
double-mutant ATC cell lines and genetically engineered mice [28]. PI3 kinase inhibitors have also
been evaluated in clinical trials for breast, colorectal, and lung cancers [29]. Whether targeting
PI3 kinase serves as an effective treatment strategy for ATC remains to be elucidated. Mutations
of TERT promoter and TP53 are the genetic hallmark of ATC [2,12,20]. In ATC, the rate of TERT
promoter and TP53-inactivating mutations ranged from 32% to 75% and 25% to 65.6%, respectively
(Table 4). Moreover, TERT promoter mutation had been recurrently reported to associate with shorter
survival [8,10,18]. Xu et al. and Duan et al. both showed that TERT promoter mutation alone served as
a negative prognostic indicator [8,10]. Xu et al. further found that patient outcome was particularly
grave in tumors with co-occurrence of TERT promoter mutation with RAS or BRAFV600E mutation [8].
Yet no prognostic effect of TERT promoter mutation could be observed in our analysis. This could be
attributed to a high mutation rate of TERT promoter in our cohort.

Previous studies reported an increase in somatic mutation numbers in ATC [15,18]. In colorectal
and endometrial carcinoma, it was well demonstrated that MMR-D or POLE exonuclease domain
mutation could lead to a marked increase of somatic mutations in tumors and predict response to
anti-PD-L1 treatment [30–32]. Prior studies demonstrated MMR-D in up to 13.6% of ATC [8,15,22,33],
and POLE missense mutation in 4% and 9% (Table 4). The mutation sites of POLE were not specified
in previous studies. In our cohort, all ATC had preserved MMR protein expression, and we did not
detect any non-synonymous mutations specifically in the POLE exonuclease domain. Our findings
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along with previous reports suggested that MMR-D and POLE exonuclease domain mutations were
rare in ATC and had limited implications regarding anti-PD-L1 therapy.

In this study, we identified distinct clinicopathological features in ATC stratified by BRAFV600E

and RAS mutations. BRAFV600E mutation was significantly associated with coexisting PTC,
while RAS-mutated tumors were strongly associated with female gender. Of note, RAS and PIK3CA
mutations were significantly associated with worse prognostic outcomes in ATC. Genetic hallmarks
including TERT promoter and TP53 mutations were prevalent, while MMR-D or POLE exonuclease
domain mutations were not identified in our ATC cohort. The molecular profile of these selected
driver mutations has clinical implications regarding the emerging targeted therapies in this particularly
aggressive cancer.

Table 4. Literature review of molecular alternations in anaplastic thyroid carcinoma.

References Case No. BRAFV600E RAS TP53 TERT PIK3CA POLE MMR
Alternation b

Current Study 27 25.9% 40.7% 70.4% 81.5% 14.8% 0% 0%
Xu 2020 [8] a 102 43.1% 22% 63% 75% 18% 4% 8%

Khan 2019 [16] 90 32% 26% 65.6% 32% 12.2% na na
Duan 2019 [10] 25 56% 24% 60% 56% 44% na na

Yoo 2019 [9] 27 40.1% 44.4% 48.1% 55.6% 11.1% na na
Ravi 2019 [33] 11 18% 18% 55% 36% 18% 9% 9%
Chen 2018 [17] 12 25% 33% 25% na 0% na na

Bonhomme 2017 [13] 94 12.8% 42.6% 54.4% 54% 6.4% na na
Kunstman 2015 [15] 22 27.3% 27.3% 27.3% na 9.1% na 13.6%
a Cases from Landa et al. 2016 [18] and Pozdeyev et al. 2018 [34] were included in Xu 2020; b MMR alternations
include MMR deficiency detected by immunohistochemistry in this study as well as mutations of the MMR genes
detected in Xu 2020, Ravi 2019, and Kunstman 2015; MMR, mismatch repair; na, not analyzed.

4. Materials and Methods

4.1. Case Selection

This study was carried out in accordance to the Declaration of Helsinki and approved by
the Institutional Review Board of Taipei Veterans General hospital, which granted exemption of
informed consent for tissue procurement through the Biobank of Taipei Veterans General Hospital
after an unlinked anonymous process (IRB no.: 2018-06-008BC, June 7th, 2019; Biobank no.: 10707).
A total of 39 ATC cases from four participating hospitals in the period between 1997 and 2018 were
enrolled. All pathology slides were reviewed, and the diagnosis of ATC in each case was confirmed
according to the 2017 WHO Classification of Tumors of Endocrine Organs [35]. Histologic patterns,
including epithelial, giant cell, and sarcomatoid, as well as the presence of coexisting differentiated
carcinoma component, were recorded. Clinical information including age, gender, stage at presentation,
specimen obtaining procedure, treatment modality, and follow-up information was obtained from the
biobank database.

4.2. Construction of Tissue Microarray and Immunohistochemistry

For each case, representative formalin-fixed paraffin-embedded (FFPE) ATC tissue was selected,
and two 2-mm cores were obtained for tissue microarray construction. Four-µm tissue microarray
sections were used for H&E and immunohistochemistry. Immunohistochemical stains for PAX8
(1:400 dilution; clone 10336-1-AP; Proteintech, Rosemont, IL), TTF-1 (1:300 dilution; clone 8G7G3/1,
Dako GmbH, Jena, Germany), and BRAF VE1 (1:200 dilution; clone VE1; Spring Bioscience,
Pleasanton, CA, USA) were performed on Leica Bond-Max autostainer (Leica Microsystems GmbH,
Wetzlar, Germany). To investigate mismatch repair protein (MMR) deficiency, immunohistochemical
stains for the four MMR proteins, including MSH2, MSH6, PMS1, and MLH2, were performed.
Prediluted antibodies for MLH1 (clone M1), PMS2 (clone A16-4), MSH2 (clone G219-1129), and MSH6
(clone SP93) were applied on BenchMark Ultra slide stainer (Ventana Medical Systems, Tuscan, Italian).
The automated program for immunohistochemistry included deparaffinization, antigen retrieval,
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incubation with primary antibody followed by secondary antibody, and chromogen visualization.
For PAX8 and TTF-1, positive staining was defined as the presence of positive nuclear staining in more
than 5% of ATC tumor cells. For BRAF VE1, positive staining was defined as diffuse cytoplasmic
staining of moderate to strong intensity. Loss of MMR protein expression was defined as complete
absence of nuclear staining in the entire tumor area with lymphocytes and vascular endothelial cells
serving as positive internal control.

4.3. DNA Extraction

Cases with sufficient FFPE tissue were subjected to molecular testing. Representative FFPE blocks
were used for DNA extraction. Four to six 10 µm-sections on glass slides were used for each case
based on tissue size. DNA extraction was performed using QIAamp DNA FFPE tissue kit (Qiagen,
Germantown, MD, USA) based on the manufacturer’s instruction. In brief, the tumor region on section
was applied with lysis buffer, scraped off the glass slide, and collected into a microcentrifuge tube
in a total volume of 180 µL. The sample was then incubated with 20 µL proteinase K at 56 ◦C for
1 h and then mixed with 200 µL buffer AL and 200 µL ethanol. The mixture was then transferred to
the MinElute column, centrifuged to remove the buffer, and passed sequentially by buffer AW1 and
AW2. Finally, 60 µL of buffer ATE was added to the column and the eluate containing extracted DNA
was collected.

4.4. Targeted Next-Generation Sequencing (NGS)

We performed targeted NGS panel to identify mutation at BRAF exon 15 (NM_004333.4),
RAS codon 12, 13, and 61 (H-RAS NM_005343.2, N-RAS NM_002524.4, and K-RAS NM_033360.2) [36],
POLE exonuclease domain encompassing codons 268 to 471 (NM_006231.2) [37], TERT promoter
(NC_000005.9) [12], and TP53 whole coding region (NM_000546.5). The amount of 250 ng tumor
genomic DNA of each individual was used for library construction of the targeted gene regions using
QIAseq target DNA system (Qiagen). Briefly, DNA was enzymatically fragmented and end-repaired
in a 25 µL reaction containing 2.5 µL 10× fragmentation buffer and 5 µL fragmentation enzyme mix.
The reaction was carried out at 4 ◦C for 1 min, 32 ◦C for 24 min, and 65 ◦C for 30 min. Immediately after
the reaction, 10 µL 5× ligation buffer, 5 µL DNA ligase, 2.8 µL 25 µM barcoded adapters, and water
were added to reach a total volume at 50 µL. The reaction was incubated at 20 ◦C for 15 min. To ensure
complete removal of free barcoded adapters, each reaction was purified for two rounds using beads.
To amplify the barcoded DNA fragments, the purified DNA was then mixed with 10 nM each of
target primer (a total of 72 target specific primers), 400 nM Forward primer, 1× PCR buffer, and 0.8 µL
HotStarTaq DNA polymerase in a 20 µL reaction. The PCR was carried with the following conditions:
95 ◦C for 13 min, 98 ◦C for 2 min; six cycles of 98 ◦C for 15 s and 65 ◦C for 15 min; 72 ◦C for 5 min.
The reaction was then incubated with beads to remove remaining excess primers. The DNA product
was subjected to another round of amplification by mixing with 400 nM Universal primer, 400 nM
Index primer, 1X PCR buffer, and 1 µL HotStarTaq DNA polymerase in a volume of 20 µL, with the
following PCR conditions: 95 ◦C for 13 min, 98 ◦C for 2 min, 20 cycles of 98 ◦C for 15 s and 60 ◦C for
2 min; 72 ◦C for 5 min. The DNA library was purified by incubation with beads, and the final pool
subjected to targeted sequencing using Illumina MiniSeq sequencer (Illumina, San Diego, CA, USA).
The raw outputs of each case were>16 Mb, and the average depth of target regions was more than
500 folds. The sequence of each read was trimmed based on the quality score (Q30), and reads with
length less than 45 bp were discarded in subsequent analysis. Reads were aligned to the human hg19
reference genome using BWA-MEM [38]. GATK Unified Genotyper was used for variant calling [39].
Variant Effect Predictor was used to annotating the variants [40]. Variants with an allelic frequency
≤5% were excluded. Only non-synonymous mutations reported in the Sanger Institute Catalogue were
taken into account.
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4.5. Mass Spectrometry for PI3KCA Mutations

Analysis of hot spot somatic mutations of PI3KCA in exon 9 and exon 20 (NM_006218.4) [41] was
performed using Agena MassARRAY platform with iPLEX reagent chemistry (Agena, San Diego, CA,
USA). The genotypes of the codons assayed are listed in Supplementary Table S3. The specific PCR
primer and extension primer sequences were designed with Assay Designer software package (v.4.0).
Multiplex PCR reaction was carried by mixing 10 ng genomic DNA sample, 1 U Taq polymerase,
500 nmol each of PCR primers, and 2.5 mM dNTP in 5 µL reaction volume and amplified in a
thermocycler for 45 cycles. Unincorporated dNTPs were deactivated using 0.3 U of shrimp alkaline
phosphatase. Single base extension reaction was performed by adding a mix of specific extension
primers, dideoxynucleotide terminators, and extension enzyme, followed by thermocycling according
to manufacturer’s instruction. The specific extension primers anneal directly to the mutation sites,
and were extended and terminated by the dideoxynucleotide terminators complementary to the target
somatic mutational site. The reaction was purified by incubation with cation exchange resin, and 7 µL
of the purified product was loaded onto a matrix pad of a SpectroCHIP where the analyte crystalizes
with a pre-spotted MALDI matrix. SpectroCHIPs were loaded in MassARRAY Analyzer 4 where
ionization and signal detection were carried, and base calling reported by clustering analysis with
TYPER 4.0 software.

4.6. Statistical Analysis

Categorical data were analyzed using Fisher exact test and logistic regression for univariate and
multivariate analyses. Survival curves were built using the Kaplan–Meier method, and log-rank
test was applied to test for differences between the variables. The p-values were two-sided, and a
value <0.05 was considered significant. All analyses were performed using R software (version 3.5.1,
R Foundation for Statistical Computing, Vienna, Austria).

5. Conclusions

This study illustrates clinicopathological features in ATC stratified by BRAFV600E and RAS
mutations. Importantly, RAS and PIK3CA mutations were found to be negative prognostic indicators in
ATC. In concordance with previous reports, we demonstrated that genetic hallmarks in ATC including
TERT promoter and TP53 mutations were prevalent in ATC. MMR-D or POLE exonuclease domain
mutations were not identified in our study cohort. Acknowledging molecular profiles of ATC may
have clinical implications regarding emerging targeted therapies, including BRAF, RAS, and PI3
kinase inhibitors.

Supplementary Materials: The following are available online at http://www.mdpi.com/2072-6694/12/7/1973/s1,
Supplementary data 1: Mutational profile of anaplastic thyroid carcinoma cases detected by next-generation
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spectrometry, Table S1: Clinicopathological features of RAS-mutated and RAS wild-type ATC cases, Table S2:
Clinicopathological features of ATC cases wild type for RAS and BRAFV600E and cases with either one mutation,
Table S3: List of PIK3CA mass spectrometry assay panel.
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