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Next Generation Sequencing (NGS) has dramatically improved the flexibility and outcomes of cancer
research and clinical trials, providing highly sensitive and accurate high-throughput platforms for
large-scale genomic testing. In contrast to whole-genome (WGS) or whole-exome sequencing (WES), tar-
geted genomic sequencing (TS) focuses on a panel of genes or targets known to have strong associations
with pathogenesis of disease and/or clinical relevance, offering greater sequencing depth with reduced
costs and data burden. This allows targeted sequencing to identify low frequency variants in targeted
regions with high confidence, thus suitable for profiling low-quality and fragmented clinical DNA sam-
ples. As a result, TS has been widely used in clinical research and trials for patient stratification and
the development of targeted therapeutics. However, its transition to routine clinical use has been slow.
Many technical and analytical obstacles still remain and need to be discussed and addressed before large-
scale and cross-centre implementation. Gold-standard and state-of-the-art procedures and pipelines are
urgently needed to accelerate this transition. In this review we first present how TS is conducted in can-
cer research, including various target enrichment platforms, the construction of target panels, and
selected research and clinical studies utilising TS to profile clinical samples. We then present a gener-
alised analytical workflow for TS data discussing important parameters and filters in detail, aiming to
provide the best practices of TS usage and analyses.

� 2019 The Authors. Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY license (http://creativecommons.

org/licenses/by/4.0/).
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1. Introduction

Recent advances in next-generation sequencing technology
have revolutionised our understanding of cancer biology and clin-
ical research. It is now more affordable than before to carry out
large-scale NGS experiments with a reasonable turnaround time.
This has led to a rapidly expanding body of pioneering research
exploring the genomic landscape and molecular mechanisms of
various cancer types, as well as the discovery of genetic drivers
(i.e., mutations that confer a selective growth advantage, thus pro-
moting cancer development), exemplified by the effort from large
international sequencing initiatives, such as The Cancer Genome
Atlas (TCGA) and the International Cancer Genome Consortium
(ICGC). This has generated vast amounts of data and identified
numerous biomarkers and targets for patient stratification and
therapeutics. Although the translation of these findings into the
clinic has been slow, in certain settings, NGS is becoming a comple-
mentary diagnostic tool, guiding the decision making to achieve
personalised and/or precision medicine in a number of cancers
[1–6]. With the magnitude of sequencing data generated, the con-
tinuing development of advanced bioinformatics tools capable of
Methods of DNA-seq. Whole genome sequencing, whole exome sequencing an
ches are shown.
handling these data efficiently in a timely manner is vital for
NGS-centred research and clinical implementation. Researchers
and clinicians are now faced with a wide range of NGS techniques
and platforms with no clear consensus guidelines, where the trade-
offs between costs, accuracy, power and technical difficulties must
be considered.

There are three main types of NGS sequencing of DNA that can
be used for the identification of genomic mutations: whole-
genome sequencing, whole-exome sequencing and targeted
sequencing (Fig. 1). We summarise and compare the key informa-
tion of these three platforms in Table 1. Compared to WGS and
WES, TS, is a powerful approach that can fulfil the best balance
between the accurate identification of targeted events with great
sensitivity, and the overall cost and data burden for large-scale
executions. For the data analysis, many existing methods and
pipelines designed for WGS/WES can be applied to TS. However,
due to the high depth of TS, extra care needs to be taken during
the analysis to ensure only high-quality variant calls are retained,
especially for data generated from low quality or fragmented
DNA and/or without matched normal control. Currently, as with
other types of NGS, there is still a lack of gold-standard pipelines
d targeted sequencing are illustrated. For the latter, the two library preparation



Table 1
Different types of Next Generation Sequencing for genomics.

Platform Cost (per sample,
USD)

Sites Region Size (bp) Depth Data size (Processed Bam)

WGS $1000–$3000 All coding and non-coding
regions

~3 � 109 30–60� Depending on coverage ~60 GB–350 GB

WES $500–$2000 Exonic regions ~6 � 107 150–200� Depending on coverage ~5 GB–20 GB
TS $300–$1000 Specifically targeted regions Varies by panel size ~1 � 105–

1 � 107
200–1000�
+

Varies by panel size and coverage ~100 MB–
5 GB

Table 2
A comparison of targeted methods of genomic analysis.

Platform Target size Cost (per sample, USD) Massively Parallel Minimum allele frequency Purpose in Research

TS ~1 � 105–1 � 107 bp $300–$1000 True 1% (without error suppression) Discovery/Validation
Sanger Sequencing 300–1000 bp <$30 False ~15% Validation
Digital PCR 1–80 bp <$10 False <0.001% Validation
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for TS analysis, which can lead to poor reproducibility between lab-
oratories, even for the same data sets. This greatly affects the accu-
racy and efficacy of TS in calling variants for prognostic and
therapeutic signatures, as different labs working with different
pipelines may not reliably call these variants.

Bearing all these in mind, in this review we first present a gen-
eral overview of TS, associated platforms and their implementa-
tions in various cancer studies. We show that TS provides a
powerful and versatile tool to profile clinical samples in cancer
research and clinical trials. We then present a generalised analyti-
cal workflow for TS data, with commonly used software, and
important parameters and filters discussed in each step. We aim
to provide guidance on how to analyse the data in a more stan-
dardised manner.
2. Targeted genomic sequencing

TS focuses on a number of targeted regions often including
many known drivers or clinically-actionable genes of interest and
identifies sequence variants with high confidence and accuracy.
For example, the genes KRAS and TP53 are often targeted across a
range of cancer types, as they are commonly found to be mutated
with a number of hotspots. BRAF and EGFR are also screened in
many solid tumours, as they contain clinically relevant mutations
[7–13].

The great sequencing depth utilised in TS (e.g., ultra-deep
sequencing at a depth of 10,000x and higher) makes it very power-
ful for profiling clinical samples, such as formalin fixed paraffin
embedded (FFPE) and circulating tumour DNA (ctDNA) where
DNA quality and/or tumour content is low. Greater depth of cover-
age also allows TS to pick out mutations that are present only in a
small fraction of malignant cells (i.e., sub-clonal), and in the setting
of detecting minimal residual disease, with variant allele frequency
(VAF) sufficiently detected as low as 0.1–0.2% [14–16]. All these
attributes ensure that TS is superior to non-NGS based techniques
(e.g., Sanger sequencing and digital PCR) and WGS/WES in large-
scale genomic testing and clinical trial setting (see comparison
details in Table 2).

TS has been widely used in cancer studies and clinical trials to
stratify patients into risk groups based on the mutational status
of key genes [17–23]. In clinical practice, Foundation Medicine
has launched the first FDA-approved broad companion diagnostic
(CDx) that is clinically and analytically validated for solid tumours.
This platform identifies genomic alterations and biomarkers across
300+ genes with a median depth of coverage of 500x. It is suitable
for processing FFPE samples with quick turnaround (<2 weeks),
offering invaluable information for therapeutic targets and
immunotherapy biomarkers.
2.1. Methods of targeted sequencing

Targeted sequencing comes in two main forms, amplicon or
capture-based (Fig. 1). Amplicon-based enrichment utilises specif-
ically designed primers to amplify only the regions of interest prior
to library preparation [24]. Alternatively, in capture-based
approaches, the DNA is fragmented and targeted regions are
enriched via hybridization oligonucleotide bait sequences attached
to biotinylated probes, allowing for isolation from the remaining
genetic material [24,25]. Amplicon-based enrichment is the
cheaper of the two technologies and shows a greater number of
on target reads; however, the coverage of these regions is more
uniformwith hybrid sequencing [24,26]. Some commercially avail-
able amplicon platforms attempt to address the coverage issues by
using specific primers that are able to amplify overlapping frag-
ments in a single PCR reaction [27]. Amplicon based sequencing
requires much less starting material than hybrid-capture, making
it ideal if there is little DNA available for TS.

Hybrid-capture has been shown to produce fewer PCR dupli-
cates than amplicon enrichment (<40% and up to ~80%, respec-
tively) [24]. These duplicates are also more trivial to remove
computationally, as the random shearing of the DNA in hybrid-
capture platforms reduces the likelihood of two unique fragments
aligning to the same genomic coordinates compared with the iden-
tical amplicons generated by amplicon enrichment platforms. This
makes hybrid-capture especially useful for samples where these
PCR artefacts are more likely to occur, such as FFPE and ctDNA
samples. Further, certain regions of the genome make primer
design for amplicon enrichment difficult (e.g. regions with a high
number of repeated sequences). The long bait sequences used in
hybrid-capture, however, allow a greater level of specificity in
region selection. Overall hybrid-capture based platforms provide
more accurate and uniform target selection, whilst amplicon-
based platforms are often used in small scale experiments where
sample quantity or cost are a factor.
2.2. Platforms for targeted sequencing

There are several commercially available platforms for these
two approaches. Many of these platforms are also used for WES.
An outline of these platforms is shown in Table 3. Despite the dif-
ferences between the various platforms, they have been shown to
lead to relatively concordant variant calling [24].



Table 3
An overview of some commercially available TS platforms.

Platform Company Enrichment Protocol overview

Ion AmpliSeqTM Thermo
Fisher
Scientific

Amplicon Targeted regions are amplified
through target specific primers.
These primers are removed, the
sequencing adapters are added
and the amplicons are amplified
again to generate the library.
Needs to be sequenced using Ion
TorrentTM Sequencer.

Access Array Fluidigm Amplicon Amplifies target regions, adding
an overhanging universal
adapter.
The universal adapter is then
bound by the sequencing
adapters.
Can be sequenced on both Ion
TorrentTM and Illumina
platforms.

HaloplexHS Agilent Amplicon Circularises restriction enzyme
fragmented gDNA using
biotinylated probes.
Probes captured using magnetic
streptavidin beads.
Circular molecules are then
amplified to generate a linear
library.

GeneRead
DNAseq
Targeted
Panels V2

Qiagen Amplicon Targeted regions amplified via
multiplexed PCR-based
enrichment.
The samples are pooled, and the
amplicons are purified using
AMPure XP beads.
Sequencing library can then be
created using a platform specific
kit.

TruSeq
Amplicon

Illumina Amplicon Probes are bound at either end
of a targeted region.
The region is amplified via PCR,
leaving an amplicon of the
region with probes either end.
Indices and sequencing adapters
are then bound to the
overhanging ends of the probes.

SureSelectXT Agilent Hybridization Fragmented gDNA is amplified
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2.3. Use and design of panels for targeted sequencing

2.3.1. Targeted panel construction
The term targeted panel is used here to refer to the collection of

genomic coordinates that are of interest to the user. An important
difference between WES panels and targeted panels, is that TS is
not constrained to canonical gene targets and can target other
regions, such as promoters [28] or breakpoints [29].

There are commercially available targeted gene panels, usually
designed for research [30,31] or clinical purposes [32,33]. They are
designed to amplify genomic regions that are known to be of inter-
est within cancer, or specific cancer subtypes. Using these panels
greatly speeds up the process of the sequencing as they have
already been designed, tested and validated.

Commonly, however, users design their own customised panels
dependent on their research questions, although thorough target
validation of these panels is needed before use. Customised panels
are often generated by a thorough review of the current literature
and cross referencing publicly available cancer mutation resources
such as TCGA, ICGC, CbioPortal, and Catalogue of Somatic Muta-
tions in Cancer (COSMIC) (http://cancer.sanger.ac.uk) databases
[34–38], selecting genes that are frequently mutated, and targets
that have been functionally validated in that cancer. In many can-
cer studies, an initial discovery cohort has been initially profiled
with WGS or WES to the identify significantly mutated genes (via
algorithms like MutSigCV [39], dNdScv [40], oncodriveFM [41]).
These genes are then selected for TS with higher depth in the val-
idation cohort(s) to establish their validity and frequencies [42–
45]. Examples of the applications of these panels are included in
the next section.

2.3.2. Applications of targeted gene panels in cancer studies
There are a large body of clinical studies that utilise genomic TS

for research on clinical samples. Some recent examples have been
listed in Table 4 [17,43–50], with targeted panels ranging from as
few as 25 genes [44] to 122 genes [49]. These studies illustrate that
a wide range of TS platforms, sequencing depths, data processing
and variant calling methods were used.
and the targeted regions are
captured using target specific
biotinylated probes.
These probe-bound fragments
are isolated and amplified to
create the library.

SeqCap EZ Roche
Nimblegen

Hybridization Fragmented gDNA is amplified,
the sequencing adapters are
added, and these fragments are
then amplified.
Target specific probes are added
and probe bound fragments are
isolated to generate the library.

Cell3TMTarget Nonacus Hybridization DNA is enzymatically
fragmented and Illumina
Unique Molecular Identifier
(UMI) containing adapters are
ligated.
The fragments are amplified
prior to target enrichment using
biotin-labelled probes and
streptavidin coated beads.
The enriched fragments are
amplified again and then
sequenced on an Illumina
sequencer.
3. Guidance for analysis of targeted genomic sequencing

In this section we provide detailed guidance for the analysis of
TS, from initial quality control (QC) and data pre-processing, to
variant calling, annotation and filtering (Fig. 2). Commonly used
methods and software in each step and important parameters/fil-
ters are discussed, aiming to provide readers a comprehensive
overview of the whole analytical process from raw reads to high-
confidence annotated calls. We further focus on PCR duplication
marking/removal and variant filtering in greater depth, as these
are crucial steps to ensure the best quality variant calls. Key steps
of TS data analysis and commonly used software are listed in
Table 5.

3.1. Quality control and data pre-processing

3.1.1. QC and alignment
The first step of all NGS pipelines is to assess the quality of the

sequenced reads, using FastQC (http://www.bioinformatics.bbsrc.
ac.uk/projects/fastqc). It summarises and visualises base quality
score for every base pair sequenced, which allows users to have
an overview of the read quality and decide whether a trimming
step is needed, especially at the 30 end where the base quality is
often lower. FastQC also produces summarised information of
adapter fragment contamination and GC content within all reads.
This analysis determines whether adapter fragments have been
incorporated into the reads and need to removed using software
such as CutAdapt [51]. The GC content of the reads is useful to indi-
cate whether the sample is contaminated with DNA from another

http://cancer.sanger.ac.uk
http://www.bioinformatics.bbsrc.ac.uk/projects/fastqc
http://www.bioinformatics.bbsrc.ac.uk/projects/fastqc


Table 4
Selected example of studies that analysed mutations using targeted DNA sequencing in human samples.

Disease Tissue
Origin

Authors Journal Genes Depth Platform Target
capture
mode

Machine FFPE/
fresh
frozen
(FF)

Duplicate
handling

Variant
Calling

Acute
Myeloid
Leukaemia

Tumour Ivey et al.
2016

New England
Journal of
Medicine

51 1280x Agilent
HaloplexHS

Amplification HiSeq 2000 Not
Reported

Not
Reported

VarScan2

Normal
Peripheral
blood

Abelson et al.
2018

Nature 111 Not
Reported

Roche
NimbleGen

Hybrid
Capture

HiSeq 2000 FF MBC Varscan2

Agilent
SureSelect

Shearwater ML
Pindel

Breast
Cancer

Tumour Ellis et al.
2012

Nature Variable Not
Reported

Roche
NimbleGen

Hybrid
Capture

Not
Reported

FFPE Picard VarScan2
BreakDancer

Germline Couch et al.
2015

Journal of
Clinical
Oncology

122 300x Illumina
TruSeq
Amplicon

Amplification HiSeqTM

2000
Not
Reported

Not
Reported

GATK Unified
Genotyper/
SAMtools

FL Tumour Okosun et al.
2014

Nature Genetics 28 840x Fluidigm
Access
ArrayTM

Amplification Miseq FF Not
Reported

VarScan2

Tumour Pastore et al.
2015

The Lancet
Oncology

74 Not
Reported

Agilent
SureSelect

Hybrid
Capture

HiSeq 2500 FFPE Picard MuTect
Indel Locator

Tumour Araf et al.
2018

Leukaemia 25 8000x Agilent
HaloplexHS

Amplification MiSeq FFPE UMI VarScan2

Pancreas Tumour Sausen et al.
2015

Nature
Communications

116 754x Agilent
SureSelect

Hybrid
Capture

HiSeq 2000/
25000 &
MiSeq

Both CASAVA VariantDx

Skin Cancer Normal
Skin

Martincorena
et al. 2015

Science 74 500x Agilent
SureDesign

Hybrid
Capture

HiSeq 2000/
25000

FF Picard Shearwater ML
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organism, as this would likely lead to a secondary peak due to the
different GC content of that genome [63].

Next, raw or trimmed reads are aligned to the reference genome
to generate Sequence Alignment Map (SAM) or Binary Alignment
Map (BAM) files for each sample. Commonly used aligners include
the Burrows-Wheeler Aligner (BWA) [53] and Bowtie2 [54]. Ion
TorrentTM also have their own customised aligner specifically for
working on data generated from their platform. Within alignment
files the mapping quality score (i.e., the likelihood of a read map-
ping to multiple locations in the genome) is recorded for each read,
in addition to their mapped coordinates.

It should be noted that the experimental and web-lab quality of
TS experiments is also a key determinant of the sequencing data
quality, such as how fragmented the DNA is, and the amount of
input DNA. Low quantity of input DNA will require more PCR
cycles, leading to a high level of PCR duplicates and limiting the
achievable depth of coverage of the experiment. Monitoring the
experimental quality of TS is always part of good laboratory prac-
tice, ensuring the highest quality of sequencing data in the down-
stream analyses. It is also important to check for germline/tumour
mix-ups and contamination whilst running the pipeline. Whilst
these errors are very difficult to determine from the FASTQ files
alone, they may become more apparent in the later analytic stages,
such as variant calling and VAFs, e.g. a large number of variants
called in the germline that are absent in the tumour sample.
3.1.2. Assessment of off-target reads
Various QC steps should always take place to ensure the best

quality of TS data. As TS focuses on regions of interest in the design
panel, we expect the majority of reads generated should come from
targeted regions, however, off-target reads are a common occur-
rence. After alignment, the percentage of reads that cover targeted
regions can be assessed using software such as bedtools [52], and
the GATK coverage module. A high proportion of off-target reads
may indicate that the TS experiment has failed, or the targeted
regions contain too many repeat sequences. This could be possibly
adjusted by making the capture or library preparation process
more efficient, e.g., adjust input DNA to beads ratio, and wash more
stringently. With a large panel of hundreds of targeted genes,
roughly >70% of the reads aligning to the targeted regions is a pos-
itive indicator of a good quality TS data set [26].
3.1.3. Marking and removal of PCR duplicates
PCR duplicates are sequence reads that align to the same geno-

mic coordinates and typically arise during PCR steps in the library
preparation. The duplication rate tends to be much higher for frag-
mented DNA of low quality, e.g. FFPE and ctDNA, reaching ~50–60%
for some cases, while for FF DNA, this rate is usually less than 20%.
These PCR duplicates need to be marked and removed before any
downstream analysis, as including them will lead to overestima-
tion of coverage in targeted regions, and more importantly result
in incorrect allele frequency estimation.

A number of software are used to search for PCR duplicates
within aligned NGS data. A commonly used program is the
MarkDuplicates function within Picard Tools (http://broadinsti-
tute.github.io/picard/). This tool looks for reads with the same start
and end coordinates and then add tags to the bam files that mark
these reads as duplicates. Another tool, SAMtools rmdup, simply
outright removes the duplicate reads retaining the read with the
highest mapping quality [55]. However, these software based
attempts cannot discriminate between two unique reads that hap-
pen to align in the same position by chance and actual duplicates
[64]. There are additional molecular techniques, such as Unique
Molecular Identifiers or Molecular Barcodes (MBC), available to
ensure only unique reads are measured in the downstream analy-
sis. These are exemplified by the Nonacus Cell3TM Target, Agilent
HaloplexHS and SureSelectXT platforms.

UMIs or MBCs are random short nucleotide sequences that are
ligated to the DNA fragments during the library preparation. These
sequences act as barcodes that mark each read as coming from the
amplification of a single fragment, providing a more accurate
mechanism for determining PCR duplicates. The different methods

http://broadinstitute.github.io/picard/
http://broadinstitute.github.io/picard/


Table 5
Steps and commonly used software for the processing of targeted sequencing data.

Step Software

QC FastQC, CutAdapt [51], bedtools [52]
Alignment BWA [53], Bowtie2 [54], Torrent

Suite
PCR Duplicates Handling or Unique

Molecular Identifier /Molecular
Barcode (MBC) deconvolution

Duplicates - Picard, SAMtools [55],
Torrent Suite UMI/MBC – fgbio, Agi-
lent Genomics NextGen Toolkit,
Gencore, Connor

Realignment and base score
recalibration

Genome Analysis Tool Kit (GATK)
[56]

Variant calling MuTect2 (GATK), Strelka2 [57],
VarScan2 [58], HaplotypeCaller
(GATK), Torrent Suite, Pindel [59],
Ion Reporter Software, VariantDX

Annotation Annovar [60], snpEFF [61], Variant
Effect Predictor [62]

Fig. 2. A generalised workflow for calling variants in clinical samples. This workflow includes quality check, sequence alignment and further processing, variant calling,
annotation and filtering.
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of PCR duplicate handling are outlined in Fig. 3. An outline of the
additional steps required for UMI/MBC workflow are as follows:
� Align the reads to the reference genome first as usual, with all
the barcodes contained in a separate file.

� The reads are then grouped by their barcodes to ensure the
duplicate reads are found next to one another.

� The reads with the same UMIs are then collapsed to create con-
sensus reads, with all duplicated reads removed. Available pro-
grams to deal with UMIs or MBCs include ‘fgbio’
(http://fulcrumgenomics.github.io/fgbio), The Agilent Genomics
NextGen Toolkit (AGeNT) (Agilent Technologies, http://www.
genomics.agilent.com), Gencore (https://github.com/
OpenGene/gencore) and Connor (https://github.com/umich-
brcf-bioinf/Connor).

Fig. 4 demonstrates the effect of UMI duplicates from FFPE and
FF samples from follicular lymphoma biopsies (unpublished in-
house data, used here for demonstration purpose only). These sam-
ples were processed using a custom hybrid capture panel from
Nonacus run in-house at BCI. The number of duplicate reads found
to share the same UMI were counted for each sample. While FF
samples had an average of 2–3 duplicated reads per consensus
sequence, FFPE samples had a far greater number of PCR dupli-

http://fulcrumgenomics.github.io/fgbio
http://www.genomics.agilent.com
http://www.genomics.agilent.com
https://github.com/OpenGene/gencore
https://github.com/OpenGene/gencore
https://github.com/umich-brcf-bioinf/Connor
https://github.com/umich-brcf-bioinf/Connor


Fig. 3. Considering duplicates in next generation sequencing. PCR duplicates can occur during the course of NGS. Whilst duplicates will appear to be separate reads, they are
actually technical noise due to errors during PCR and sequencing. The two methods of correcting these errors are detailed above. The red lines indicate reads the start and end
coordinates of the duplicates. Reads are coloured based on whether they are considered individual reads (grey) or duplicates (red), the coloured bars at the start of each read
in the UMI panel represent different UMI sequences. In the above situation marking duplicates would cause 4 reads to be combined into a single read whereas the UMI based
duplicate method is able to distinguish between true duplicates and unrelated reads with the same coordinates.

Fig. 4. The number of UMIs found in common across FFPE and FF clinical samples. FF and FFPE follicular lymphoma biopsies were sequenced using the Nonacus hybrid
capture platform (unpublished in-house data for demonstration purposes). The number of UMI tagged duplicates that were found in these samples were counted. Only
consensus reads with at least two duplicate reads were considered in this analysis.
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cates, with some consensus sequences having >50–100 duplicate
reads. This is likely due to the increased amplification needed to
produce enough DNA from FFPE samples combined with the
reduced quality of DNA extracted from FFPE samples. Here our case
clearly shows that the usage of UMI or MBC can greatly increase
the accuracy of detection of low-quality DNA with much improved
allelic quantifications, e.g., for FFPE and ctDNA.
3.1.4. Realignment, base score recalibration and estimation of
sequencing coverage

Next, filtered alignments are further processed to improve the
alignment quality, including local realignment around indels and
base quality score recalibration using GATK. The step of local
realignment is to improve the alignment quality for bases around
known and suspected indel positions to reduced false positive
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calls. Base score recalibration is carried out to recalculate base
quality scores for all sequenced reads based on known polymor-
phisms (e.g., SNPs from 1000G Project). The base and mapping
quality scores are used to filter reads during variant calling and
the fine-tuning that occurs in this step is important to ensure only
high-confidence variants are called.

Base coverage information is another important parameter to
assess the overall quality of TS data. Using recalibrated BAM files,
one can further calculate the coverage/depth for bases within the
targeted regions, using Bedtools or GATK coverage. Depending on
the quality of DNA and total number of reads generated, several
hundred times depth per base is often expected, although some
regions may have much higher coverage or targeted rates than
others. However, for ultra-deep sequencing, the depth of tens of
thousands of reads is often required to detect very low frequency
clones.

3.2. Variant calling

Once all TS pre-processing steps are completed, these high-
quality alignment data are ready for variant calling. Variant calling
is the process of comparing the aligned reads to a reference gen-
ome or matched normal DNA sequences to identify base pair vari-
ations. Here we describe the procedure for samples with matched
normal and without matched normal separately. We then focus on
variant calling parameters and filters which can be tuned accord-
ingly to achieve the best outcome.

3.2.1. A note on paired end sequencing
Whilst paired end sequencing improves the accuracy of read

alignment, it can lead to overlapped regions within read pairs. This
problem is especially prevalent with shorter DNA fragments. As
these paired reads are from the same DNA fragment, the overlap-
ping sections are duplicates of one another and will lead to the
bases in this region being counted twice. To combat this source
of error most variant callers have built in methods to handle over-
laps. For example, SAMtools mpileup will set the mapping quality
of one of the overlapped reads to 0 (i.e., not mapped) within this
region, to ensure it is not included in the variant calling.

3.2.2. Samples with matched normal
Normal refers to DNA extracted from the non-tumour tissue of

the cancerous organ, however it is often that ‘‘blood derived DNA”
is used as a germline control when normal tissue is unsuitable or
unavailable. Five of the studies shown in Table 4 included matched
tumour/normal samples [17,22,34,46,48]. This allows for the
patient specific germline SNPs to be identified and disregarded in
the tumour sample [57,65]. Commonly used software for somatic
variant calling includes MuTect2 [56], Strelka2 [57] and VarScan2
[58] somatic mode. These methods process normal and tumour
alignment BAM files together, first by calling variants against a ref-
erence genome before determining somatic variants based on
sophisticated models (e.g., mixture model), taking into considera-
tion of factors like depth, error rate and haplotype to call high-
confidence variants. However, one can always further filter pro-
duced variants using the total coverage and number of supporting
reads for the sites [66–68].

Studies comparing multiple variant callers found poor overlap
results between different methods [66,67]. MuTect2 and Strelka2
seemed to perform well compared to their contemporaries, and
also display a good level of concordance with one another in their
SNV calls (~90%), although their indel calls were much less concor-
dant (~55%) [68]. Thus, in some studies, variants were called using
multiple callers and only these supported by at least two methods
were selected [68,69].
3.2.3. Samples without matched normal
However, matched normal samples are often not available in

the clinical setting, especially for retrospective FFPE or FF samples.
Consequently, it is much more challenging to call reliable somatic
variants in this scenario, confounded by the presence of a large
number of germline SNPs. As with matched samples, variant call-
ing starts with comparison to the reference genome identifying
all possible variant positions, including germline and potential
somatic calls, using VarSan2 or SAMtools [55]. Both methods can
work on one or multiple sample alignments in a ‘pileup’ format
generated by SAMtools, and call variants against the reference gen-
ome with filters, such as the minimum base and mapping quality,
the number of supporting reads and total coverage for called sites.
Another commonly used method is GATK, where the Haplo-
typeCaller module can be used to call variants for multiple samples
effectively. HaplotypeCaller is able to call SNPs and indels simulta-
neously via local de-novo assembly of haplotypes in an active
region. In regions with many variations detected, HaplotypeCaller
reassembles the reads in that region without the use of existing
mapping information. This makes the calls much more accurate,
especially for different types of variants close to each other. Vari-
ous variant annotation and filtering steps are then applied, out-
lined below, to remove low-confidence and non-significant calls,
which we will expand in the following sections. Without the
matched normal samples, germline variants cannot be removed
as above and must be thoroughly processed to remove commonly
or benign variants that are less likely to originate from the tumour.
In many studies, although the matched normal samples were not
available, a panel of normal DNA samples were included to help
significantly remove SNPs and sequencing artefacts [15,17,70]. In
order to increase the validity of normal samples, they should be
as closely matched as possible to the study cohort e.g. sex and
ethnicity.

3.2.4. Calling inherited germline variants
The pipeline presented in Fig. 2 is versatile, and can also be

applied for germline variant calling. However, when calling
somatic variants, positions that are called in common between
samples are highly likely to be SNPs/artefacts and should be
removed, unless they are mutational hotspots. In contrast when
calling germline variants these recurring calls should be kept if
they are found within members of the same pedigree as these
are likely to be inherited variants. An additional consideration with
germline calls is that VAFs for these variants should be at ~50%
(heterozygous, using a VAF range of 30–70% or 40–60% depending
on the sequencing depth) or ~100% (homozygous). Any ‘sub-clonal’
variants should be ignored in germline variant calling. Further-
more, any genes shared across different pedigrees should be
regarded as important familial gene candidates.

3.2.5. Variant calling parameters and filtering
A set of important parameters need to be considered for variant

calling and filtering for high-quality calls. These include,

� Number of total reads: this parameter can be used to ensure
there is sufficient coverage over the position for variants to be
called. Often a minimum of 20-30x depth is required for TS
[71–75].

� Number of variant supporting reads: this parameter should be
set in order to limit variants with very few supporting reads
being considered. The value can be tuned based on the average
coverage of the samples. Usually the minimum value ranges
from 4 to 10 reads [26,47,76].

� Minimum base and mapping quality score: Setting a threshold
for base and mapping quality scores stops poorly sequenced
or aligned reads from being considered in the variant calling.
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The default minimum values of many programmes are set as
20–30 as these correspond to an accuracy of 99% and 99.9%
respectively.

� Minimum allele frequency for called variants: Like the number
of variant supporting reads, this can be used to eliminate vari-
ant positions with low levels of support. Often, a relatively
low threshold (e.g., 3% with a depth of 200x) is initially used
to include most of the variants, and further filtering and refine-
ment are performed via testing a range of threshold values to
choose the best cutoff value for VAF. For FFPE samples, the final
threshold is set as at least 10% or even 20% across many studies
[77,78]. For FF samples this threshold can be much lower
depending on overall sequencing depth [46,50]. One should
note that the tumour purity of clinical samples is often highly
heterogeneous. Thus, filtering simply based on an observed
VAF cutoff may not provide the most accurate way to include
high-quality or exclude low-quality calls. One way to overcome
this is to further adjust VAF values based on the estimates of
tumour purity of clinical samples, and apply the threshold on
these adjusted VAFs to filter calls for the downstream analyses.
When an accurate measurement of tumour purity is not avail-
able, VAFs of mutations in many known clonal driver genes
(e.g., KRAS and TP53 for many solid tumours) could be used to
derive a rough estimate.

Additional parameters also include:

� Strandedness of variant supporting reads: If a variant occurs
within a sample, paired sequencing should show evidence of
this variant on both strands. Therefore if the majority of the
reads for a variant occur on only one strand (i.e., strand bias),
it could suggest that variant reads are artefacts [58,76]. In many
programmes, at least one supporting read is required to be pre-
sent on each strand for the called variants. In VarScan2, it is pos-
sible to require that a maximum of 90% of all reads (across
reference and alternative alleles) are found on one strand,
meaning positions that have a strand bias will be ignored.

� Significance score for a statistical test: Many variant callers will
calculate a statistical evaluation of the likelihood of a variant
differing from the reference allele [47,76]. VarScan2 for exam-
ple provides the user with a p value for a Fisher’s Exact Test
on the observed and expected variant reads. This can be used
to further eliminate low-quality calls.

These parameters can be fine-tuned based on the aims of the
project and the data that is generated. Among the publications
reviewed in Table 4, for example, the high depth of sequencing
in Araf et al. (estimated at ~8000�) combined with error suppres-
sion allowed variants to be called with VAFs as low as 0.1% [44].
Elis et al. initially called variants of VAFs as low as 2% in matched
FFPE samples, utilising the validation mode within VarScan2, fol-
lowed by further customised filtering to retain high quality calls
[48]. In defining the m7-FLIPI index a VAF cut-off of >10% was used.
These data were generated from FFPE samples and many samples
had no matched germline to filter out SNPs, meaning a robust
cut-off was necessary to ensure high quality calls [17].

3.3. Annotation and further filtration of variants.

Following variant calling, the next step is to annotate the vari-
ants in relation to genes (e.g., within or outside a gene), codon
and amino acid positions, and classify types of variants, such as
nonsense, missense, exonic deletions and synonymous variants.
This allows for greater understanding of their functional conse-
quences on genes they relate to. In many TS studies, only non-
silent exonic or splicing mutations are selected for further analysis,
focusing on functional coding variants and mutations only. How-
ever, these criteria may vary depending on the region of interest
or the purpose of the study, e.g. variants in promoter regions or
UTRs of the genome.

Commonly used variant annotation methods include ANNO-
VAR, SNPeff, VEP and Oncotator [60–62,79]. These methods pro-
vide rich resources of gene and regulatory annotation, functional
prediction, sequence conservation and frequencies in the popula-
tion level. Here we describe a general annotation and filtering
workflow for variants called in a cancer TS experiment without
matched normal tissue. The workflow follows as below,

1. Gene annotation: annotate variants against Ensembl or RefGene
gene models, to retain all non-silent variants including those
affecting splice sites and exonic indels.

2. SNP and cancer variant identification and filtering: Find vari-
ants that are overrepresented in the general population. Data-
sets such as dbSNP, 1000 Genome Project, NHLBI GO Exome
Sequencing Project (ESP), The Genome Aggregation Database
(gnomAD) [80] and ExAC [81] include the estimated frequency
of variants. Any variants with minor allele frequency >1% are
excluded, as these more common variants are less likely to have
any oncogenic implications. Filtered variants are then anno-
tated against the COSMIC database (a cancer mutation cata-
logue), allowing those variants present in dbSNP but also
previously identified as cancer mutations to be retained.

3. Variant recurrence filtering: the remaining non-silent variants
are still likely to contain many SNPs and sequencing artefacts.
Specifically, variants that occur in many samples (e.g.,
>15/20% of samples) but are not known COSMIC hotspots are
likely these candidates for removal. When VAFs of those vari-
ants are consistently low (e.g., <5% when UMIs are not used)
across all samples, these typically represent sequencing arte-
facts. When recurrent variants have consistently high VAFs
(over 30/40%) across all samples, this suggests that they are
likely SNPs. A panel of normal samples (unmatched) sequenced
alongside the tumour samples can significantly aid in reducing
these recurrent variants if they also occur in the normal
controls.

4. Variant and gene prioritisation: functional consequences of
variants are predicted using databases such as SIFT [79], Poly-
Phen [80], and MutationTaster [82]. Highly scored variants are
likely to have strong deleterious effects on the targeted genes,
warranting further investigation. Genes with deleterious vari-
ants that are over-represented across the cohort, are potentially
strongly involved in the biology of that cancer. However, care
must be taken when selecting candidates for further study as
confounding factors can also cause a high level of mutations
in individual genes, e.g. gene length. Commonly used pro-
grammes to detect significantly mutated genes (e.g., MutSigCV
and dNdScv) can still be applied to TS data to prioritise candi-
date genes.

3.4. Estimation of background error rate

The sensitivity of NGS is in the regions of VAF 1% [83,84]. How-
ever, there is a need in some studies to identify variants with much
lower VAFs, e.g., to detect very small subclonal and minimal resid-
ual disease (MRD) mutations. To achieve this, higher depth of
sequencing is usually required, and a comprehensive strategy is
needed to differentiate between genuine calls and background
sequencing artefacts or the background noise rate at VAFs < 1%.
Tawana et al. applied ultra-deep TS (depth of 10,000–100,000�)
to investigate pre-existing leukaemic clones and disease evolution
in sequential acute myeloid leukaemia biopsies [16]. Two indepen-
dent strategies were used to account for the noise level: first, the
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reference and variant allele supporting reads of targeted variants
were compared among sequential samples and also with a panel
of non-related DNA, to ensure these were not recurrent sequencing
artefacts; second, the reads for the variants of interest were also
compared with those of variants detected within surrounding base
pairs, to exclude false positive calls due to background noise, with
the background noise rate also calculated at around 0.20%. This
successfully led to the discovery of a small clone (3% of cells) har-
bouring a TET2 nonsense mutation, which expanded and became
the dominant clone at a later stage.

There are also software packages available that try to control for
background mutation rate in non-matched samples using a panel
of normals [85,86]. Integrated digital error suppression (iDES) is
one such method that utilises a combination of CAPP-Seq molecu-
lar barcodes and background ‘polishing’ that is able to reduce the
error rate further than either method used in isolation [86]. The
molecular barcodes allowed an in silico reassembly of the original
DNA duplex reducing sequencing artefacts, whilst the polishing
was carried out using a novel method, which removed variants
that were statistically indistinguishable from background levels
found in a panel of normals. Whilst combining the methods
resulted in the best improvement in background error rate reduc-
tion (~15 fold) the polishing alone was shown to improve the error
by ~3 fold, similar to the effect of the molecular barcodes. There-
fore, the iDES polishing alone could be easily included in existing
variant calling pipelines to reduce the error rate. The iDES software
can be found at: http://cappseq.stanford.edu/ides/.
4. Summary and outlook

TS is a powerful and invaluable tool for mutational detection,
and it has been widely applied in cancer research and clinical stud-
ies across many cancer types. Compared to its counterparts WGS
and WES, TS can screen a large number of samples at much
reduced costs and computational burden. This makes it extremely
attractive for clinical research with fast turnaround. Until theWGS/
WES cost drops to an affordable rate for large-scale applications, TS
will continue to be the main genomic tool in disease genotyping.
The capability of TS to detect subclonal mutations, sequencing
ctDNA and for minimal residual disease monitoring also makes it
a useful genetic tool to track disease evolution and study drug
resistance.

However, the use of TS in routine clinical practice is still in its
infancy. Whilst these data demonstrate TS can generate clinically
relevant results, the key question remains whether TS can be used
as a stand-alone genomic diagnostic tool. We believe that this
depends on the clinical questions under investigation. When clonal
mutations are explored for diagnosis and targeted therapies, TS is
accurate with a normal depth of 300-500x. When subclonal events
and/or MRD serve as the focus, we recommend that TS should be
validated and interpreted with other approaches (e.g., digital
PCR). As shown above rarer events can be observed with very high
depth sequencing, but the levels of sequencing artefacts will also
increase. In these cases, the estimation of the background noise
level is crucial in determining an appropriate cutoff for acceptable
variants. However, for FFPE samples, we argue that a cutoff of VAF
value of 10% should be implemented in cases where these samples
are investigated for diagnosis and prognosis due to the poor DNA
quality of these samples. Note that tumour purity should also be
accounted for if necessary.

One should also be aware of the limitations of TS. Due to its nat-
ure, targeting pre-defined genes, it is less useful or efficient for the
detection of large-scale rearrangements (e.g., structural variants)
and copy number changes, compared to the whole-genome profil-
ing (e.g., WGS/WES). However, for known common translocation
events (e.g., t(14;18) in follicular lymphoma), one can still design
primers or probes to capture regions spanning the breakpoints,
and TS should be able to detect these events by identifying reads
that cleanly span the breakpoints. For copy number changes, nor-
malised sequencing depth of coverage can still be used to infer
copy number status, using software such as CONTRA [87] and
SeqCNV [88]. However, this still remains challenging, strongly
determined by the TS quality and uniformity of coverage across
genes. Although not suitable for the detection of novel genomic
events, TS remains as a powerful and economical tool to identify
known events in patients.

The current challenge and bottleneck for large-scale cross-
centre TS applications is the lack of gold-standard methods for
identifying cancer-associated mutations. Individual laboratories
tend to develop their own pipelines with different parameters
used, often leading to a poor level of overlapped results. Thus, there
is an urgent need for reliable and standard data processing and
mining methods that can bring TS into routine clinical practice.
We argue that benchmarking studies are urgently needed to
address this issue. Initiatives such as the ICGC-TCGA DREAM Geno-
mic Mutation Calling Challenge on WGS data are first steps in this
direction [89]. Once we have the standard off-the-shelf TS analysis
methods and pipelines accepted by the community, these can then
be widely used across many research and clinical settings.
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