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Fatigue is a very common symptom among people with multiple sclerosis (MS), but

its management in clinical practice is limited by the lack of clear evidence about the

pathogenic mechanisms, objective tools for diagnosis, and effective pharmacological

treatments. In this scenario, neurophysiology could play a decisive role, thanks to its

ability to provide objective measures and to explore the peripheral and the central

structures of the nervous system. We hereby review and discuss current evidence

about the potential role of neurophysiology in the management of MS-related fatigue.

In the first part, we describe the use of neurophysiological techniques for exploring the

pathogenicmechanisms of fatigue. In the second part, we review the potential application

of neurophysiology for monitoring the response to pharmacological therapies. Finally, we

show data about the therapeutic implications of neurophysiological techniques based on

non-invasive brain stimulation.
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INTRODUCTION

Fatigue is a very common symptom inmultiple sclerosis (MS) and produces significant detrimental
effects on the quality of life (1). Despite its prevalence and impact, the management of fatigue in
clinical practice is often challenging since the underlying pathophysiological mechanisms have
not been well-elucidated (2), pharmacological treatments have limited efficacy (3), and fatigue
assessment is commonly based exclusively on self-report questionnaires (4).

Although the advent of magnetic resonance imaging (MRI) significantly changed the overall
management of MS, the role of neurophysiology remains of great importance in the functional
evaluation of specific pathways such as visual, somatosensory, auditory, and motor systems
and in the study of the central and the peripheral mechanisms of sensorimotor integration.
Fatigue is a complex symptom including motor, cognitive, and psychological aspects, but through
neurophysiological techniques, it is possible to evaluate mainly motor fatigue, from both research
and clinical perspectives. Motor fatigue can be classified as central or peripheral. By definition,
peripheral fatigue is the inability to generate force at the muscle level, while central fatigue refers to
changes arising from the neural networks in the brain and the spinal cord, causing a lack of drive
to the muscles.

The alterations occurring at the neuromuscular level cannot fully explain the phenomenon
of fatigue (5), and in the last few years, different studies have speculated over the meaning and
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magnitude of the contribution of the central nervous system
(CNS). In particular, in MS, fatigue seems to arise from the
disruption of a complex neural network involving the cerebral
cortex, the thalamus, and the basal ganglia (6–8). Similarly also
in other neurological conditions such as Parkinson’s disease and
stroke, different supraspinal structures are considered to be key
players in fatigue generation (9).

In this scenario, neurophysiological techniques can play
a decisive role in the assessment of the pathophysiology
of MS-related fatigue, thanks to their ability to provide
objective measures and to explore the peripheral and the
central structures of the nervous system, with excellent time
resolution. Besides that, various studies have also demonstrated
good correlations between neurophysiological parameters
and disability measures (10), highlighting the usefulness of
neurophysiology in monitoring disease evolution and response
to therapy.

Finally, several studies have evaluated the therapeutic
implications of neurophysiological techniques based on non-
invasive brain stimulation (NIBS) in different neuropsychiatric
diseases such as stroke, depression, dementia, and movement
disorders (11–13). In particular, in MS, promising results have
been obtained in the treatment of disabling symptoms such as
spasticity (14) and fatigue (15).

In this review, we will provide an outline of the current
evidence about the potential role of neurophysiology in the
management of MS-related fatigue. In the first part, we
will describe the potential application of neurophysiological
techniques for exploring the pathogenic mechanisms of fatigue.
Then, we will report on the potential use of neurophysiology for
measuring fatigue and monitoring the response to symptomatic
therapies. In the third part, we will review the potential
application of neuromodulation as an innovative treatment for
fatigue. Eventually, we will discuss the limitations and the
shortcomings of available data, highlighting the key challenges in
the field and suggesting some directions for future research.

NEUROPHYSIOLOGY AS INVESTIGATING
TOOL FOR THE PATHOGENIC
MECHANISMS OF FATIGUE

During a physical effort, there is a progressive decline of firing
rate of spinal motoneurons (16), but the significance of such
phenomenon is not clear as it can be interpreted as exhaustion
or as fatigue adaptation.

Most studies reported that MS patients present lower strength
values of maximal voluntary contraction (MVC) in comparison
to healthy subjects (17–20), and the decrease of these values
is positively correlated with fatigue perception (21). The fall of
muscle force (andMVC as well) could be related to a submaximal
voluntary drive, which is known as central activation failure
(CAF) (9). CAF can be evaluated by the twitch-interpolated
technique, in which the subjects are asked to perform a MVC
in a given muscle and an electrical stimulus is subsequently
applied to the motor nerve supplying the tested muscle. If
there is a further increase of muscle force after electrical

stimulation, then the muscle’s voluntary central drive was not
at its maximum, thus demonstrating CAF. Using this technique,
Steens et al. (22) showed a decrease of voluntary activation during
fatiguing exercise in people with MS (PwMS) in comparison to
healthy subjects, probably due to insufficient CNS compensatory
mechanisms. The reduction of voluntary activation seems to be
particularly important in the pathogenesis of fatigue in patients
with secondary-progressive MS as compared to relapsing–
remitting MS (23).

Electromyography (EMG) allows quantifying the reduction
of amplitude or frequency of muscle action potentials (MAP)
during a fatiguing task. Surface EMG (sEMG) is a non-invasive
technique in which electrodes placed on the skin record electrical
muscle activity (24, 25). In particular, the amplitude of the
sEMG signal is considered as a measure of voluntary drive to
peripheral structures (9). Muscle contraction is characterized by
the progressive recruitment of different motor units, depending
on their size, biochemical features, and fatigability (26, 27). The
development of muscular fatigue produces specific changes in
EMG signal, consisting in an initial increase and then in the
decrease of MAP amplitude (28, 29), a reduction of median
frequency of discharge, and a reduction of motor conduction
velocity along fatigued muscle fibers (28, 30, 31).

These phenomena, also present in healthy subjects, are
more evident in PwMS. For instance, Eken et al. found that
prolonged walking produces a significant decrease of EMG
median frequency with a corresponding increase of the root
mean square of the EMG signal of the soleus muscle (32). Similar
changes of EMG parameters have also been found in the upper
limb by Severijns et al. (33) in a cohort of PwMS after a protocol
of repetitive shoulder anteflexionmovements. Interestingly, these
changes in EMG parameters are present even without a clear
performance decline and are not directly correlated with the
level of perceived fatigue. These findings suggest that peripheral
mechanisms cannot fully explain the development of fatigue and
that central mechanisms could also be involved. In this regard,
different neurophysiological methods can be used to study the
contribution of CNS.

Electroencephalography (EEG) allows evaluating the
role of cortico-cortical connections. Using this technique,
Leocani et al. (34) investigated the correlation between fatigue
severity [measured through the Fatigue Severity Scale (FSS)
questionnaire] and EEG parameters consisting of event-related
desynchronization (ERD) and event-related synchronization
(ERS). They found that, in PwMS compared to healthy controls,
FSS correlated positively with ERD over midline frontal
structures during movement and inversely with contralateral
sensorimotor ERS after movement. These findings suggest
an overactivation of the frontal regions in fatigued patients,
a possible expression of a compensatory mechanism for the
subcortical dysfunction causing fatigue.

Transcranial magnetic stimulation (TMS) is a non-invasive
brain stimulation technique that can be used to explore
the contribution of the different structures of the CNS to
fatigue generation. Indeed single-pulse TMS allows evaluating
the functionality of the corticospinal tract by recording the
amplitude and the latency of motor-evoked potentials (MEP),
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while paired-pulse TMS provides insight into the cortico-cortical
connections. Moreover, repetitive TMS (rTMS) protocols are
known to induce short- and long-term modifications of cortical
excitability, thus reflecting plasticity changes at the cortical level.

In healthy subjects, MEP amplitude increases during a
fatiguing exercise and reduces after its end (35). In MS patients,
results are more variable because some studies reported a
decrease of MEP amplitude similar to healthy subjects (36,
37), while others reported an increase (19, 38) or no changes
(39). Also, in the premovement phase, a significant lack of
MEP facilitation after a sustained motor task was shown in
fatigued PwMS compared to controls and not-fatigued patients
(40, 41), suggesting a disruption of the brain networks involved
in motor preparation which has been correlated to structural and
functional changes in frontal-thalamic pathways (41).

Different paired-pulse TMS studies have demonstrated,
in healthy subjects, physiological modifications of cortical
excitability as a result of fatigue development. Paired-pulse
TMS protocols are used to test different cortical circuits
(42) and include short-interval cortical inhibition (SICI) (43),
a protocol related to inhibitory gamma-aminobutyric acid
(GABA)-A interneurons, in which a subthreshold conditioning
first pulse inhibits the response to a suprathreshold second
pulse delivered 1–5ms later (44); intracortical facilitation (ICF)
(45), linked to glutamatergic intracortical circuits in which a
subthreshold conditioning first pulse enhances the response to
a suprathreshold second pulse delivered 7–20ms later (46); and
late intracortical inhibition (LICI) (47), mediated by GABA-
B receptors in which two suprathreshold pulses at long-
interstimulus intervals of 50–200ms are delivered (48). Benwell
et al. (49) showed that SICI initially increases and then decreases
as force declines during a fatiguing exercise involving the first
dorsal interosseous (FDI) muscle. Similarly, Maruyama et al.
(50) found a transient reduction of SICI in FDI muscle after
isometric contractions, while there was no change in ICF. By
contrast, Hunter et al. (51) likewise found a reduction of SICI,
while ICF decreased during a sustained submaximal voluntary
muscle contraction. Besides that, changes of ICF or SICI seem
to depend also on the type of fatiguing motor task used in
the experimental protocol—for instance, being different during
handwriting compared to isometric finger abduction (52).

In PwMS, different alterations in cortical excitability
parameters have been described. Liepert et al. (37) found that,
compared to healthy controls and to PwMS without fatigue, SICI
was reduced in PwMS with fatigue, already at baseline, before the
fatiguing exercise. In contrast, Morgante et al. (40) found similar
values of SICI and ICF in PwMS with and without fatigue and in
healthy controls, while Chalah et al. found a significant reduction
of SICI in non-fatigued compared to fatigued PwMS and no
significant difference in ICF and other TMS measures (53).

Another neurophysiological measure which can be assessed
through TMS is the cortical silent period (CSP) that is an
interruption of the voluntary muscle contraction after a TMS
pulse over the contralateral motor cortex and is thought to be
mediated by GABA-B inhibitory neurotransmission, (54). CSP
duration in PwMS predicted fatigue and was associated with poor
cardiovascular fitness (55).

Several studies have investigated the changes of cortical
plasticity of PwMS through rTMS protocols (56, 57), but only a
few of them have explored their role in fatigue pathogenesis.

Morgante et al. (40) found that PwMS have reduced plasticity
demonstrated by the lack of MEP increase after the 5-Hz
rTMS protocol, without any difference between fatigued and
not-fatigued patients. Conte et al. (58) found instead that,
during an attention-demanding task, the response to 5-Hz rTMS
and paired associative stimulation (PAS)—a neuromodulatory
protocol consisting of repetitive peripheral nerve stimulation
combined with TMS over the contralateral motor cortex (59)—
significantly differs between PwMS with or without fatigue.
Indeed in fatigued patients both PAS and 5-Hz stimulation did
not produce the expected changes in cortical excitability, while
in not-fatigued patients they both increased the MEP response,
although less efficiently than in healthy subjects.

TMS techniques do not allow a complete evaluation of
brain subcortical structures, the role of which seems to be
crucial in fatigue generation. In a recent study, Capone et al.
(60) evaluated how high-frequency oscillations (HFOs)—a
burst of fast oscillations that overlies the cortical response
of median nerve somatosensory-evoked potentials—are
influenced by a fatiguing exercise in a cohort of 15 PwMS
and 15 healthy controls. They showed a significant change
of the early component of HFOs, reflecting the possible
primary role played by the thalamus in the pathogenesis of
MS-related fatigue, while the latter component reflects that the
cortico-cortical network activity in the somatosensory cortex
was not modified significantly. Furthermore, increasing
evidence from neuroimaging studies is supporting the
hypothesis that the thalamus is a key player in fatigue
generation (6).

Fatigue is a complex symptom involving both cognitive
and motor domains and multiple factors, in addition to
sensorimotor dysfunction as assessed by EEG and EPs,
which can contribute to its pathogenesis and/or exacerbate
its manifestations (demographics, comorbidity, genetics, diet,
exercise, depression, cognitive impairment, pain, and sleep
disorders) (6). Neurophysiology can also play an important role
in defining and quantifying some of these factors. For instance,
event-related potentials (ERP) could be a useful tool to investigate
themechanisms involved in the pathogenesis of cognitive fatigue.

Pokryszko-Dragan et al. found that fatigued PwMS have
worse cognitive performances and delayed latency in the P300
component of the auditory ERP and also in the early stage of the
disease. These results were confirmed by Chinnadurai et al. (61)
in a sample of 50 PwMS using a modified version of auditory
ERP. However, a recent study by Lazarevic et al. (62) did not
find any effect of depression and fatigue on the ERP parameters.
Thus, further research is needed to clarify the role of ERP in the
assessment of cognitive impairment in PwMS.

It has been demonstrated that sleep disorders such as
obstructive sleep apnea (63), restless leg syndrome (64, 65),
periodic limbmovements (66), and rapid eyemovement behavior
disorders (67) are more frequent in PwMS than in the general
population and can contribute to the development of motor
(2) and cognitive fatigue (68). In all these disorders, overnight
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polysomnography is essential to make a diagnosis and to quantify
the consequent reduction of sleep efficiency (69).

Moreover, the disease itself can produce pathological and
functional modifications in the CNS that alter the restorative
sleep capacity and thus exacerbate fatigue perception. This
phenomenon was investigated by Bridoux et al. using TMS
for assessing the reduction of MEP amplitude induced by an
exercise (post-exercise corticomotor depression or PECD). They
demonstrated that, in healthy subjects, sleep enhances recovery
from PECD, while in PwMS, the restorative effect of sleep is
reduced or lost (70).

Autonomic dysfunction is very common among PwMS and
can occur since the earliest stages of the disease. It is mainly
caused by demyelinating lesions located in the periventricular
region of the fourth ventricle, in the brainstem, and in the
spinal cord (69). Autonomic dysfunction can produce different
symptoms affecting the bowel, the bladder, the heart, and the
blood vessels.

The functionality of the autonomic nervous system can
be tested by the Quantitative Sudomotor Axon Reflex testing
(71) and the study of cardiovascular parameters such as blood
pressure and heart rate response to Valsalva maneuver, heart rate
variability during deep breathing, and blood pressure and heart
rate changes during tilt test (72).

In particular, cardiac autonomic dysfunction has been
associated to fatigue in PwMS (73), but the mechanisms and
significance of this association remain unclear.

Some authors have hypothesized that MS-related fatigue is
caused by a sympathetic vasomotor dysfunction with a normal
parasympathetic activity (74–76).

On the contrary, other studies found that fatigued PwMS have
a reduction in vagal activity compared to controls (77–79).

Recent evidence suggests that pupillometry could be an
alternative method to evaluate the involvement of the autonomic
nervous system in PwMS. Indeed the pupil size depends
on the balance between the sympathetic and parasympathetic
components of the autonomic nervous system. For instance, de
Rodez Benavent et al. (80) investigated the changes in pupil
size during problem-solving in MS patients (with and without
fatigue) vs. controls. They found that MS-related changes in
cognition and fatigue could be associated with changes in the
autonomic regulation of task-related pupillary responses.

Taken together, the neurophysiologic data demonstrated that
MS-related fatigue seems to have a central origin. The changes in
EMG parameters, described in MS patients (32, 33), are thought
to be more a consequence of alterations in CNS structures
rather than a primary determinant of fatigue. However, it
cannot completely be ruled out that such changes could be
the epiphenomenon of peripheral alterations occurring at the
neuromuscular level.

Neuroimaging studies (60, 81, 82) demonstrated that the
main pathogenic substrate of MS-related fatigue could be a
dysfunction of the circuits between the thalamus, the basal
ganglia, and the cortex, and neurophysiological findings support
this hypothesis. Indeed single-pulse TMS studies demonstrated
that in MS patients the pathogenesis of fatigue is not driven by
mechanisms directly related to corticospinal functioning but is

due to alterations in structures located upstream to the primary
motor cortex (39). In particular, both EEG (34) and TMS studies
(37, 40, 58) pointed out the role of cortical areas involved in
movement preparation and attention. For instance, Sandroni
et al. (83) found that, in PwMS, fatiguing tasks are associated
with a change in ERP without significant modifications in MEP
parameters, thus suggesting that fatigue affects neural processes
acting after stimulus evaluation and before the activation of the
primary motor cortex.

More recently, Capone et al. (60) explored the contribution of
the thalamus by means of HFOs obtained from the median nerve
SEP, demonstrating that a dysfunction of the thalamo-cortical
axons contributes to fatigability in MS patients.

Although CNS functional alterations are consistently
reported by neurophysiological studies, their significance
remains largely unknown because they were considered by
some authors as pathogenic factors (40) and by others as the
epiphenomena of adaptive processes (60). According to the
first hypothesis, neurophysiologic techniques measure the
change in the activity of CNS networks caused by the MS-
related damage of gray and white matter. On the other side,
according to the alternative hypothesis, this damage produces
compensatory/adaptive mechanisms that can be recorded by
means of neurophysiological techniques.

More broadly, several structural and functional abnormalities
in various cortico-subcortical neural networks (e.g., fronto-
striatal network, cortico-striato-thalamo-cortical loop) occur
during MS as a result of inflammation, neurodegeneration, and
compensatory neuroplasticity processes. From this perspective,
the development of fatigue could depend on the dynamic balance
between damage and restorative processes during the disease’s
course (8). Indeed the latter can be predominant in the initial
phase of the disease, thus masking the clinical occurrence
of fatigue, while, later on, the damage could prevail so that
patients experience clinically relevant fatigue. Accordingly, the
heterogeneity in the results of neurophysiological studies can
depend on the stage of the disease in which the recording has
been done.

Interestingly, the neurophysiological markers of fatigue at
different levels, such as changes in EMG parameters (33), in
HFO features (60), or in cortical plasticity (40), can also be
observed in MS patients without fatigue. This finding could
suggest that an impairment in fatigability mechanisms (expressed
by neurophysiological alterations) does exist in MS since the
earliest phases of the disease, independently from the level of
fatigue in everyday life measured through questionnaires. This
is not surprising because fatigue is a multifactorial and complex
symptom, and different factors, in addition to thalamo-cortical
dysfunction, could be necessary to make it clinically relevant.

MS can cause extensive damage of the CNS, so it is not
surprising that autonomic nervous system involvement or subtle
alterations of cognitive functioning may occur at any stage of the
disease. Thus, these are other factors that need to be considered
as potential players in fatigue generation, but evidences are not
unambiguous. Sleep disorders should also be taken into account
since the impairment of a restorative process can exacerbate—or
even be one of the main generators— fatigue (2, 68, 70).
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Longitudinal studies involving patients at different
stages of the disease (from clinically isolated syndrome
to advanced progressive MS) and investigating possible
factors involved in fatigue perception (such as genetics,
comorbidity, cognitive impairment, depression, and sleep
disorders) could contribute to corroborate such hypothesis.
In Table 1, we have summarized the studies that have
used neurophysiological techniques for investigating
fatigue pathogenesis.

NEUROPHYSIOLOGY FOR MONITORING
THE RESPONSE TO THERAPIES FOR
FATIGUE

The most frequently used pharmacological treatments for
fatigue are amantadine, 4-aminopyridine, and modafinil. The
non-pharmacological interventions include physical (e.g.,
aerobic exercises, resistance training, yoga, and tai-chi) and
psychological/cognitive approaches (e.g., cognitive behavioral
therapy, education programs, and mindfulness interventions).
However, evidence supporting the efficacy of these interventions
is still preliminary and, sometimes, conflicting (87).

Amantadine is an antiviral agent firstly introduced to
prevent and treat flu viruses. Animal models have shown
that amantadine induces the release of dopamine from nerve
endings (88). Moreover, one clinical trial has shown an
increased level of beta-endorphin and beta-lipoprotein after
amantadine assumption, with clear clinical improvement (89).
The real mechanism of action of amantadine as fatigue therapy
is not yet clear, but the fact that amantadine acts as a
dopaminergic factor supports the dopamine imbalance theory
for fatigue generation (90). One relevant study, addressing the
neurophysiological effects of amantadine in MS-related fatigue,
was conducted by Santarnecchi et al. (91). They found that
chronic treatment with this drug improves clinical fatigue
(assessed through questionnaires) and restores GABAergic
inhibitory mechanisms in the motor cortex of PwMS, as
indicated by the normalization of CSP in basal condition
and by the reduction of CSP duration after a fatiguing task.
Reis et al. (92) evaluated the effect of a single dose of
amantadine on human motor cortex excitability in healthy
subjects. They showed that a single dose of amantadine
significantly decreases ICF and increases LICI in the motor
cortex. MEP recruitment curves, motor thresholds, and duration
of CSP remained unchanged after treatment. These data
suggested that a single dose of amantadine is able to modulate
motor cortex excitability, possibly involving GABAergic and
glutamatergic neurotransmission.

Another drug, tested for MS-related fatigue, was modafinil,
a central alpha-adrenergic agonist approved for the treatment
of attention-deficit hyperactivity disorder and narcolepsy. Lange
et al. (93) reported a significant improvement of fatigue
questionnaire scores and in the nine-hole peg test, after modafinil
administration, in a group of 21 PwMS. Furthermore, they tested
different TMS protocols before and after 8 weeks of treatment,

showing an increase of MEP size by paired pulse TMS, in the
modafinil group.

Nagels et al. (94) evaluated visual- and auditory-evoked
potentials (EP) for predicting the response tomodafinil treatment
(100mg, once daily, for 4 weeks), in 33 PwMS with fatigue. They
found that the latency of auditory P300 predicted the treatment
response with a good specificity and sensitivity. In particular, a
shorter latency at baseline was associated with a better response
to modafinil treatment.

In order to better clarify the mechanisms of action of
modafinil in fatigue relief, Niepel et al. (76) investigated the
effect of a single dose (200mg) of modafinil on measures of
alertness and autonomic function in fatigued PwMS compared
to not-fatigued PwMS and healthy controls.

They found that fatigued patients had a reduced level of
alertness and cardiovascular sympathetic activation compared to
the other two groups, and modafinil was able to reverse these
deficiencies. On the basis of these findings, they hypothesized that
the anti-fatigue effect of modafinil was related to the activation of
the noradrenergic locus coeruleus (76).

Despite these interesting data, at present, there is no
indication, in clinical practice, for the use of modafinil for
fatigue relief.

Potassium channel blockers—e.g., 4-aminopyridine (4-AP)—
belong to a group of drugs able to restore conduction propriety in
demyelinating axons as shown in animal models (95). Different
trials have also explored the central effect of 4-AP, speculating
on a potential role in optimizing neurotransmitter release at
the synaptic level (dopamine, acetylcholine, noradrenaline, and
serotonin). This latter hypothesis is supported by the observation
of an increase BOLD signal during a motor task following a 3,4-
diaminopyridine administration compared with a placebo dose
assumption (96).

Sheean et al. (97) evaluated changes in TMS-evoked
corticospinal excitability parameters in eight PwMS with fatigue
before and after treatment with 3,4-diaminopyridine. The motor
performance of adductor pollicis muscle was evaluated by
TMS, rapid voluntary movements, and a fatiguing exercise
test consisting of a sustained isometric contraction. After 3
weeks, fatigue was significantly reduced but neurophysiological
parameters (central motor conduction time andMEP amplitude)
did not change in the treated patients compared to the
untreated ones. These findings suggest that the effect of 3,4-
diaminopyridine on fatigue could be linked with mechanisms
and structures other than corticospinal tract functionality.
Moreover, methodological factors should be considered in the
interpretation of these results. Indeed only upper limbs spared
from the disease were evaluated, thus representing a major
limitation of the study.

More recently, Marion et al. designed a randomized double-
blind placebo-controlled trial to investigate the effect of
modified-release 4-aminopyridine (fampridine) on upper limb
function, fatigue, and several neurophysiological parameters
such as visual-evoked potentials (latency and amplitude),
somatosensory-evoked potentials (latency and amplitude),
motor-evoked potentials (latency), central motor conduction
time, resting motor threshold, MEP recruitment curves, and
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TABLE 1 | Neurophysiological studies exploring the pathogenic mechanisms of fatigue in PwMS.

References Neurophysiologic

technique

Sample

size

Sample composition Main findings

Steens et al. (22) EMG 20 PwMS

+ 20 HCs

20 patients (RR); age range: 20–58 years;

EDSS <5.5

Positive correlation between fatigue perception and the

decline of MCV during a sustained contraction

Rice et al. (17) EMG 4 PwMS +

16 HCs

4 patients (SP, RR); age range: 28–53 years;

mean EDSS 4.6

PwMS present lower values of MVC

Sheean et al. (18) EMG 21 PwMS

+ 19 HCs

21 patients (RR; SP, PP); age range: 26–55

years; mean EDSS: 2–8

PwMS present lower values of MVC

Perretti et al. (19) MEP 41 PwMS 41 patients (RR), on IFN b1a treatment; age

range: 30.7 ± 8.8; EDSS: 3.2 ± 0.5; divided

into fatigued and not-fatigued

MS patients do not have TMS MEP depression following

fatiguing exercise, while post-exercise MEP facilitation

was similar to that seen in normal subjects

Steens et al. (22) EMG 20 PwMS

+ 20 HCs

20 patients; age range: 21–58 years; EDSS ≤ 5 Decrease of voluntary activation during fatiguing exercise

in PwMS in comparison to HC

Wolkorte et al. (23) EMG 45 PwMS

+ 25 HCs

45 patients (RR, SP); age range: 20–65 years;

EDSS: 0–7

Compared to controls, the SPMS patients had reduced

voluntary activation during brief and sustained

contractions.

Eken et al. (32) EMG 8 PwMS +

10 HCs

8 patients (RR, SP, PP); age range: 49±9

years; EDSS: 1–6

Prolonged walking produces a significant decrease of

EMG median frequency and an increase of root mean

square EMG signal of the soleus muscle

Severijns et al. (33) EMG 16 PwMS

+ 16 HCs

16 patients (RR, SP, PP); age range: 55 ± 8

years; mean EDSS: 6; divided into fatigued and

not-fatigued

PwMS with hand grip weakness, experience a larger

increase in fatigue compared to PwMS with normal hand

grip strength

Leocani et al. (34) EEG 33 PwMS

+ 14 HCs

33 patients; EDSS < 1.5; divided into fatigued

(age: 33 ± 8 years) and not-fatigued (age: 32 ±

6 years)

In PwMS, FSS correlated positively with ERD over

midline frontal structures during movement and inversely

with contralateral sensorimotor ERD after movement

Petajan and White

(36)

MEP 32 PwMS

+ 10 HCs

32 patients; divided into 2 subgroups: patients

without weakness of upper limbs (age: 44 ±

10.3 years) and patients with weakness of

upper limbs (age: 42.9 ± 9.9 years)

Decrease of MEP amplitude similar to HCs

Liepert et al. (37) MEP 16 PwMS

RR + 6

HCs

16 patients, divided in 2 subgroups: fatigued

(FSS > 4, mean EDSS: 3.1); not-fatigued (FSS

< 4, mean EDSS: 2.9)

Decrease of MEP amplitude similar to HC; in fatigued

patients, SICI was reduced at baseline

Thickbroom et al.

(38)

MEP 10 PwMS

+ 13 HCs

10 patients (RR); age range: 33–64 years;

EDSS ≤ 4; MRC grade ≥ 4/5

Increase of MEP amplitude in PwMS compared to HC

Mordillo-Mateos

et al. (39)

MEP 17 PwMS

+ 16 HCs

17 patients (RR; SP); mean age: 36.3 ± 9.5

years; mean EDSS: 5

No changes in MEP amplitude in the two groups

Morgante et al.

(40)

MEP 33 PwMS 33 patients (RR), divided into 2 subgroups:

fatigued (mean age 38 ± 9.4 years; mean

EDSS 1.6 ± 0.6) and not-fatigued (mean age

41.1 ± 10.9 years; mean EDSS 1.8 ± 0.6)

PwMS with fatigue lacked pre-movement facilitation

compared to PwMS without fatigue and HC

Conte et al. (58) 5Hz rTMS, PAS 25 PwMS

+ 18 HCs

25 patients (RR); EDSS < 3.5; divided into 2

subgroups, fatigued (mean age 41.3 ± 7.7

years; mean EDSS 1) and not-fatigued (mean

age 38.3 ± 8.4 years; mean EDSS 1.1)

In non-fatigued patients, PAS and rTMS increased the

MEP response; in fatigued patients, they did not produce

changes in cortical excitability

Capone et al. (60) SEP, HFO 15 PwMS

+ 15 HCs

15 patients (RR); mean age: 42.1 years; mean

EDSS 1

Fatiguing task induces a change in the early component

of HFOs in PwMS

Russo et al. (41) MEP 24 PwMS

+ 10 HCs

24 patients (RR), age range: 18–65 years;

EDSS ≤ 2.5

Premovement facilitation is reduced in fatigued PwMS

Russo et al. (84) MEP 30 PwMS 30 patients (RR); mean age: 24–63 years;

EDSS < 3.5; divided into 2 subgroups,

fatigued and not-fatigued

Fatigue is associated with a disruption of brain networks

involved in motor preparation processes, depending on

frontal-thalamic pathways

Chalah et al. (53) MEP 38 PwMS 38 patients (RR, PP, SP); age range: 34–67

years; EDSS: 3–6.5; divided into 2 subgroups,

fatigued and not-fatigued

Fatigued patients had higher depression, anxiety,

alexithymia scores, higher SICI, larger caudate nuclei,

and smaller left parietal cortex.

Chaves et al. (55) MEP 82 PwMS 92 patients (RR; PP, SP); mean age: 47.40 ±

10.2 years; EDSS 2.04 ± 1.

Longer CSP predicted worsened fatigue in PwMS

Pokryszko-Dragan

et al. (85)

ERP 86 PwMS

+ 40 HCs

86 patients (CIS; RR; SP); age range: 19–60

years; EDSS: 1–6.5; divided into 3 groups: not

fatigued, moderately fatigued, severely fatigued

Fatigued PwMS have worse cognitive performances and

delayed latency in P300 component of auditory ERP

(Continued)
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TABLE 1 | Continued

References Neurophysiologic

technique

Sample

size

Sample composition Main findings

Pokryszko-Dragan

et al. (86)

ERP 44 CIS +

45 HCs

44 patients (CIS); age range: 21 – 48 years;

EDSS: 1–2

N200 latency was correlated with fatigue.

Chinnadurai et al.

(61)

ERP 50 PwMS

+ 50 HCs

50 patients (RR; PP; SP); age range: 13–66

years; EDSS: 1–9

Clinical measures of cognitive fatigue were correlated

with the neurophysiological measures (ERP)

Lazarevic et al.

(62)

ERP 81 PwMS

+ 32 HCs

81 patients (RR); age: 41.09 ± 8.72 years;

EDSS: 0–7; divided in two groups: fatigued and

not fatigued

Depression and fatigue have no effect on ERP amplitude

and latency

Bridoux et al. (70) MEP 30 PwMS

+ 15 HCs

12 fatigued patients (RR; SP); mean age: 44 ±

3 years; EDSS: 1–3.5

In PwMS, sleep does not enhance motor recovery from

PECD following a fatiguing exercise

Lebre et al. (74) ANS testing 50 PwMS 50 patients (RR); mean age 37 years; EDSS <

3.5; divided in two subgroups: fatigued and

not-fatigued

Loss in the capacity to increase the blood pressure in

patients with fatigue, suggesting a sympathetic

dysfunction

Flachenecker et al.

(75)

ANS testing 60 PwMS

+ 36 HCs

60 patients (RR); mean age 41.5 ± 9.9 years;

mean EDSS 3.0; divided in two subgroups:

fatigued and not-fatigued

The median HR response to standing (HR-Post30/15)

was significantly reduced, and BP-Grip tended to be

lower in pwMS compared to HCs.

Niepel et al. (76) Sleep study 26 PwMS

+ 9 HCs

26 patients (RR; SP; PP); divided in 2

subgroups, fatigued (FSS > 5; age range 49.4

± 9.2 years) and not-fatigued patients (FSS <

4.0; age range 41.8 ± 13.1 years)

Fatigue patients showed evidence of reduced level of

alertness on a number of subjective and objective

measures of alertness, in contrast to non-fatigued MS

patients and HCs

Keselbrener et al.

(77)

ANS testing 10 PwMS

+ 10 HCs

10 patients; age: 22–58 years; FSS > 3.5 Fatigued PwMS showed a reduction in vagal activity

which was more marked than in the control subjects

Heesen et al. (78) ANS testing 23 PwMS

+ 25 HCs

23 patients (RR; SP); mean age: 40.13 ± 2.23

years; mean EDSS 2.36 ± 0.36. 14 patients on

DMD (8 interferon, 5 glatiramer acetate, 1

azathioprine)

Cognitive stress induces IFNγ production in HC but not

in MS patients with fatigue. Reduced cardiac response

might indicate an autonomic dysfunction in PwMS.

Sander et al. (79) ANS testing 53 PwMS 53 patients (RR, SP, PP); mean age: 50.1 ± 8.7

years; mean EDSS 3.3 ± 1.7

Reduced responsiveness and high- and

very-low-frequency components of HR variability,

indicating an increased parasympathetic activity

de Rodez

Benavent et al.

(80)

ANS (pupillary

response)

49 PwMS

+ 46 HCs

49 patients (RR); age range: 18–50 years;

mean EDSS 1.9 ± 0.8

MS-related changes in cognition and fatigue could be

associated with changes in the autonomic regulation of

task-related pupillary responses

EMG, electromyography; PwMS, people with multiple sclerosis; HCs, healthy controls; RR, relapsing–remitting; PP, primary progressive; SP, secondary progressive; EDSS, expanded

disability status scale; MVC, maximum voluntary contraction; MEP, motor-evoked potentials; IFN, interferon; TMS, transcranial magnetic stimulation; EEG, electroencephalography;

ERD, event-related desynchronization; FSS, fatigue severity scale; SICI, short-interval intracortical inhibition; PAS, paired associative stimulation; rTMS, repetitive transcranial magnetic

stimulation; SEP, somatosensory-evoked potentials; HFO, high-frequency oscillations; CSP, cortical silent period; CIS, clinically isolated syndrome; PECD, post-exercise cortical

depression; ERP, event-related potentials; ANS, autonomic nervous system; HR, heart rate; BP, blood pressure; MS, multiple sclerosis.

paired-pulse TMS protocols. They found that fampridine (10mg
bd, for eight consecutive weeks) did not produce significant
changes in upper limb function, fatigue, and neurophysiological
parameters (98).

Over the last years, various studies have demonstrated
that neurophysiology can be helpful in measuring and
predicting response to treatment. However, the results
are not definitive since data are scarce and sometimes not
conclusive. Studies greatly differ from each other in variables
such as outcome measures, treatment and follow-up duration,
neurophysiological techniques, and clinical features of patients.
Moreover, to the best of our knowledge, no study has evaluated,
through neurophysiological tools, the effectiveness of non-
pharmacological interventions such as physical, psychological,
and cognitive approaches. Anyway, it still seems reasonable to
assume that neurophysiology can have a role in monitoring the
response to fatigue treatment, and more studies on the matter
are warranted.

In Table 2, we have summarized the studies that have used
neurophysiological techniques for monitoring the treatment for
fatigue in PwMS.

NEUROPHYSIOLOGY AS INNOVATIVE
TREATMENT FOR FATIGUE IN MS
PATIENTS

Neurophysiological studies are being carried out not only
to identify objective and measurable markers of fatigue, as
previously illustrated, but also to find neuromodulation protocols
able to reduce this disabling symptom.

NIBS approaches are playing a major role in this research
setting, following a large neurophysiological evidence of central
abnormalities in PwMS with fatigue (34, 39, 56, 99).

In Table 1, the results of a MEDLINE research on sham-
controlled NIBS studies for the treatment of fatigue in PwMS
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TABLE 2 | Neurophysiological studies for monitoring response to therapies for fatigue in PwMS.

References Therapy Neurophysiologic

technique

Sample

size

Sample composition Main findings

Santarnecchi

et al. (91)

Amantadine MEP, EMG for

CSP study

10

PwMS +

10 HCs

10 patients (RR; SP); age range:

24–44 years; mean EDSS: 2.1 ± 1.4

Normalization of CSP in basal

condition and a reduction of CSP

duration after the fatiguing task

Reis et al. (92) Amantadine, single dose MEP, EMG for

CSP, SICI, LICI

14 HCs 14 healthy volunteers; mean age: 25

± 2.8 years

A single dose of amantadine was able

to modulate motor cortex excitability

(decreases ICF and increases LICI in

M1)

Lange et al.

(93)

Modafinil, 100 mg/day for

the first week and 200

mg/day for subsequent 7

weeks vs. placebo

MEP 21

PwMS

21 patients, FSS ≥ 36, EDSS < 7.0;

divided into 2 subgroups: treated

(mean age: 42.6 ± 9.7 years; mean

EDSS; 3.1 ± 0.6) and placebo (mean

age: 44.1 ± 12.1 years; mean EDSS:

3.2 ± 1.1)

Increase MEP size by paired pulse

TMS in the modafinil group

Nagels et al.

(94)

Modafinil, 100mg, once

daily, for 4 weeks

ERP 33

PwMS

33 fatigued patients (RR; SP; PP);

mean age: 43 ± 2 years; mean

EDSS: 5

A shorter P300 latency at baseline

was associated with a better

response to modafinil treatment

Sheean et al.

(97)

3,4- diaminopyridine MEP 8 PwMS 8 patients (RR; SP; PP); mean age:

39 years; mean EDSS: 6

After treatment, fatigue was

significantly reduced but the

neurophysiological parameters

(central motor conduction tip and

MEP amplitude) did not change

4-AP vs. fluoxetine SEP, MEP 60

PwMS

60 patients (RR); age range: 18–50

years; mean EDSS: 5.5; divided into 2

subgroups: fatigued (mean EDSS: 3.3

± 2.5) and not-fatigued (mean EDSS:

3.1 ± 2.3)

Significant reduction of the fatigue

questionnaire scores, with a greater

reduction for the 4-AP subgroup

Marion et al.

(98)

4-aminopyridine, 10mg bd,

for 8 consecutive weeks vs.

placebo

VEP, SEP, MEP 40

PwMS

40 patients (RR; SP; PP); mean age:

52 years; mean EDSS: 6.0

Fampridine did not produce

significant changes in upper limb

function, fatigue, and

neurophysiological parameters

MEP, motor evoked potentials; EMG, electromyography; CSP, cortical silent period; PwMS, people with multiple sclerosis; HCs, healthy controls; RR, relapsing–remitting; PP, primary

progressive; SP, secondary progressive; EDSS, expanded disability status scale; SICI, short interval intracortical inhibition; LICI, long-interval intracortical inhibition; TMS, transcranial

magnetic stimulation; ERP, event-related potentials; SEP, somatosensory-evoked potentials; VEP, visual-evoked potentials.

is presented, and the stimulation parameters are described for
each study.

Transcranial direct current stimulation (tDCS) is the NIBS
technique mostly used so far (cf. Table 1). It is classically
assumed that tDCS can modulate human brain activity with
effects that could outlast the period of stimulation by inducing
a subthreshold shift of the resting membrane potential toward
depolarization (anodal tDCS) or hyperpolarization (cathodal
tDCS) (15). Beyond local effects, connectional (axonal) and
non-neuronal effects have also been described (15). The tDCS
mechanisms of action are still incompletely understood; an
effect on calcium-dependent synaptic plasticity of glutamatergic
neurons and a local reduction in GABA neurotransmission have
been hypothesized (15).

Anodal tDCS applied to the motor cortical areas reduced
motor fatigue in healthy subjects (100, 101). In patients with MS-
related fatigue, anodal tDCS has been used with variable effects,
depending on the parameters of stimulation and the clinical
characteristics of the patients included in the studies.

As shown in Table 1, different targets have been stimulated by
anodal tDCS. The evidence of functional alterations in the frontal
areas in PwMS with fatigue (8) focused the attention of some

researchers on the stimulation of the left dorsolateral prefrontal
cortex (DLPFC).

Among these studies, negative results were reported by Saiote
et al. (102) and Ayache et al. (103). Some methodological factors
such as the wash-out duration and the stimulation intensity
(102), the stimulation duration, and the heterogeneity of the
population included (103) could have played a role in these
results. Other three studies reported positive results on fatigue
after anodal tDCS was applied over the left DLPFC (104–106).
Among these, worthy of note are the use of a remotely supervised
tDCS system in combination with a computer-based cognitive
training (105) and the use of objective outcome measures, such
as the P300 evoked potential and the reaction time (106). The
application of anodal tDCS to the motor cortex bilaterally (107)
and to the right parietal cortex (108) also gave a preliminary
evidence of efficacy.

The group of Tecchio et al. focused on a personalized anodal
tDCS approach targeting the whole-body primary somatosensory
areas (S1) bilaterally, following the evidence of S1 reduced
excitability and M1 hyperexcitability in PwMS with fatigue (109–
112). They used a tailored procedure with personalized electrodes
based on the patients’ brain MRI located in place through an
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TABLE 3 | Sham-controlled NIBS studies for the treatment of MS-related fatigue.

References Anode:

location

dimensions

Cathode:

location

dimensions

Stim

duration

stim

intensity

Efficacy Fatigue

evaluation

methods

Study

design

Sample

size and

MS

subtype

Sample

composition

(values

expressed as

mean ± SD,

when available)

Adverse

effects

1) Anodal Tdcs

Saiote

et al.

(102)

Left DLPFC

5 × 7 cm

Right

forehead

6 × 15 cm

20

min/day,

5 days

1mA

No - FSS

- MSFSS

- MFIS

Crossover,

sham-

controlled

(2-week

wash-out)

13

RR

Clinically definite

MS (121)

Age: 46.9 ± 6.8

EDSS: 3.5 ± 4.0

FSS: 5.67 ± 2.47

MFIS: 47 ± 31

Tingling, light

headache

Ayache

et al.

(103)

Left DLPFC

25 cm2

Right

supraorbital

region 25 cm2

20

min/day,

3 days

2mA

No MFIS

(secondary

outcome)

Crossover,

sham-

controlled

(3-week

wash-out)

16

(11RR,

4SP,

1PP)

Clinically definite

MS (121) and

history of

neuropathic pain

with VAS >40

Age: 48.9 ± 10

EDSS: 4.25 ± 1.4

MFIS: 52.6 ± 12.2

Insomnia,

nausea,

severe

headache,

phosphenes

Chalah

et al.

(104)

a) Left DLPFC

25 cm2

b) Right PPC

25 cm2 in

different

blocks

a) Right

supraorbital

region 25

cm2 b) Cz

(EEG 10-20

system) 25

cm2

20

min/day,

5 days

2mA

a) Yes (on

FSS and on

MFIS physical

and

psychosocial

subscales)

b) No

- FSS

- MFIS

- VAS

Crossover.

sham-

controlled

(3-week

wash-out)

10 (9 RR,

1 SP)

Clinically definite

MS (121)

Age: 40.50 ±

11.18

EDSS: 2.3 ± 2.5

FSS: 6.5 ± 3.8

a) None b)

Insomnia,

headache

Charvet

et al.

(105)

Left DLPFC

5 × 5 cm

Right DLPFC

5 × 5 cm

Remotely

supervised

tDCS

combined

with

computer-

based

cognitive

training

20

min/day,

20 days

over 4

weeks

From 1.5

to 2mA

YES - FSS

- PROMIS-

fatigue

short form

- VAS

Randomized,

sham-

controlled

27 (15

active of

which

40% RR,

12 sham

of which

58% RR)

Clinically definite

MS Active group

(n = 15):

- age: 44.8 ±

16.2

- EDSS: 6.0

(range 0.0–7.0)

- FSS (%clinical

fatigue): 50

Sham group (n =

12):

- age: 43.4 ±

16.2

- EDSS: 3.5

(range 0.0–8.5)

- FSS (%clinical

fatigue): 76

Tingling,

itching,

burning, head

pain, difficulty

concentrating

Fiene

et al.

(106)

Left DLPFC

5 × 5 cm

Right

shoulder

5 × 7 cm

Single

session

of 27.29

±

1.15min

(10min

tDCS

only,

20min

tDCS

during

testing)

1.5mA

Yes

(on P300

amplitude

and RT, not

on subjective

fatigue)

- P300

amplitude

and latency

during an

auditory

oddball task

- simple RT in

an alertness

test

Crossover,

sham-

controlled

(1-week

wash-out)

15 (14

RR, 1

SP)

Clinically definite

MS (121) with a

minimum of 9

points on the

cognitive subscale

of the WEIMuS

age: 43.20 ±

14.97

EDSS: 3.54 ±

1.94

WEIMuS physical:

19.73 ± 5.70

itching

(Continued)
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TABLE 3 | Continued

References Anode:

location

dimensions

Cathode:

location

dimensions

Stim

duration

stim

intensity

Efficacy Fatigue

evaluation

methods

Study

design

Sample

size and

MS

subtype

Sample

composition

(values

expressed as

mean ± SD,

when available)

Adverse

effects

- subjective

fatigue via a

10-point

numerical

rating scale

and

objective

fatigue

(e.g.,

WEIMuS

physical)

Ferrucci

et al.

(107)

Bilateral

motor cortex

5 × 7 cm

Right deltoid

5 × 7 cm

15

min/day,

5 days

1.5mA

Yes (n23, 15

responders)

FIS Crossover,

sham

controlled

(1-month

wash-out)

25 (22

RR, 3

SP)

Clinically definite

MS (121)

Responders (n =

15):

- age: 40.3 ± 2.3

- EDSS: 3 ± 0.4

- FIS anodal: 59.5

± 7.1

- FIS sham: 49.8

± 7

Non-responders (n

= 8):

- age: 52.5 ± 4.1

- EDSS: 3.8 ± 0.7

- FIS anodal: 58.5

± 10.7

- FISsham: 61

± 11.4

Skin reaction

Tecchio

et al.

(112)

Whole-body

bilateral

somatosensory

cortex

Custom-sized

S1 electrode

using

individual

brain MRI

data 35 cm2

Oz (EEG

10–20

system)

7 × 10 cm

15

min/day,

5 days

1.5mA

Yes MFIS Crossover,

sham-

controlled

(washout

individually

calculated by

MFIS

compared to

baseline)

10 (7 RR,

1 SP, 2

PP)

MS in a mild state

(EDSS < 3.5) with

MFIS > 38

age: 45.8 ± 7.6

EDSS: 1.5 (range

0–3.5)

MFIS: 41.6 ± 6.4

None

reported

Tecchio

et al.

(111)

Oz (EEG

10–20

system)

6 × 14 cm

15

min/day,

5 days

1.5mA

Yes MFIS Crossover,

sham-

controlled

(washout

individually

calculated by

MFIS

compared to

baseline

13 RR MS patients with

physical items

mFIS score > 15

age: 45.8 ± 7.6

EDSS: 1.5 (range

0–3.5)

MFIS: 41.6 ± 7.5

None

reported

Cancelli

et al.

(109)

Oz (EEG

10–20

system)

7 × 10 cm

15

min/day,

5 days

1.5mA

Yes MFIS Crossover,

sham-

controlled

10 RR MS patients (121)

with physical items

mFIS score > 35

Age: 43.2 ± 13.1

None

(Continued)
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TABLE 3 | Continued

References Anode:

location

dimensions

Cathode:

location

dimensions

Stim

duration

stim

intensity

Efficacy Fatigue

evaluation

methods

Study

design

Sample

size and

MS

subtype

Sample

composition

(values

expressed as

mean ± SD,

when available)

Adverse

effects

EDSS: 0.9 (range

0–3.5)

MFIS: 46.6 ± 15.9

Porcaro

et al.

(110)

Oz (EEG

10–20

system)

7 × 10 cm

15

min/day,

5 days

1.5mA

Yes MFIS Crossover,

sham

controlled

(washout

individually

calculated by

MFIS

compared to

baseline

18

RR

MS patients with

EDSS < 3.5 and

mFIS score > 30

Age: 44.5 ± 10.4

EDSS: 1.1 (range

0–3.5)

MFIS pre-real:

45.6 ± 31.66

MFIS pre sham:

44.9 ± 30.67

None

reported

Tecchio

et al.

(111)

Bilateral

sensorimotor

hand area 70

m2

Under the

chin

84 cm2

15

min/day,

5 days

1.5mA

No MFIS Crossover,

sham-

controlled

(washout

individually

calculated by

MFIS

compared to

baseline)

8

RR

MS patients with

physical items

mFIS score > 15

age: 38.1 ± 9.8

EDSS: 2 (range

1–2.5)

MFIS: 57.1 ± 19.9

None

reported

Hanken

et al.

(108)

Right parietal

cortex (P4)

5 × 7 cm

Right

forehead

6 × 15 cm

Single

session

20min

Yes (RT)

No (subjective

fatigue)

Only in

subgroup

with mild to

moderate

cognitive fatigue

- RT during a

vigilance

task

- subjective

fatigue (VAS)

Randomized,

sham-

controlled

46 (18

RR, 28

SP)

analyzed

20 for

each

arm,

divided in

subgroups

according

to

cognitive

fatigue

assessed

by FSMC

MS patients (121)

Mild/moderate CF

active:

- age: 51.8 ± 9.9

- EDSS: 4.0 ± 1.5

Severe CF

active:

- age: 50.9 ± 8.8

- EDSS: 4.8 ± 1.2

Mild/moderate CF

sham:

- age: 47.1 ±

10.3

- EDSS: 3.4 ± 2.1

Severe CF

sham:

- age: 46.5 ± 9.1

- EDSS: 4.5 ± 1.0

None

reported

References Stimulation

location

TMS

protocol

TMS coil

Stimulation

parameters

Efficacy Fatigue

evaluation

methods

Study

design

Sample

size and

MS

subtype

Sample

composition

(values

expressed as

mean ± SD,

when available)

Adverse

effects

2) TMS

Mori

et al.

(119)

M1 leg area

contralateral

to the

affected limb

iTBS +

individualized

ET (2 h/day

for 2 weeks)

1

session/day

for 10

sessions

over 2

weeks

Yes

(real iTBS +

exercise

therapy

group)

FSS

Seconday

outcome

Randomized,

sham-

controlled

20

RR

Definite RR MS

(121) patients with

spasticity affecting

predominantly one

lower limb Active

Treatment

was generally

well-tolerated.

(Continued)
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TABLE 3 | Continued

References Stimulation

location

TMS

protocol

TMS coil

Stimulation

parameters

Efficacy Fatigue

evaluation

methods

Study

design

Sample

size and

MS

subtype

Sample

composition

(values

expressed as

mean ± SD,

when available)

Adverse

effects

10 bursts

of 3

stimuli at

50Hz,

repeated

at 5Hz

every

10 s, for

a total of

600

stimuli;

biphasic

waveform

80%

AMT

iTBS + ET (n =

10):

- age: 38.1 ±

10.7

- EDSS: 3.6 ± 1.2

- FSS: 39.5 ± 4.2

Sham iTBS + ET

(n = 10):

- age: 37.7 ±

12.3

- EDSS: 3.8 ± 1.6

Active iTBS only (n

= 10):

- age: 38.3 ±

11.9

- EDSS: 3.5 ± 1.0

Gaede

et al.

(117)

a) left PFC

(sham-

controlled)

b) bilateral M1

Deep TMS

a) H6-coil

b) H10-coil

(bihemispherical

stimulation)

18

sessions

(3/week)

over 6

weeks a)

50 bursts

of 36

stimuli,

18Hz,

120%

RMT, ITI

20 s,18min

b) 40

bursts of

20

stimuli,

5Hz, ITI

20 s,

90%

RMT,

16min

Yes (more

pronounced

for bilateral

M1)

FSS Randomized,

sham-

controlled

9 PCF

real, 10

PFC

sham, 9

M1

MS diagnosis

(121), with FSS >

4 or BDI-IA > 12

PFC real:

- age: 47 (32–51)

- EDSS:

2.5 (2.0–3.0)

PFC sham:

- age: 41 (39–45)

- EDSS:

3.0 (2.5–3.0)

M1 real:

- age: 46 (42–48)

- EDSS:

2.5 (2.5–3.5)

None serious:

headache

(30%),

paresthesia or

pain, gait

disturbance,

dizziness,

tiredness,

legs/bladder

spasticity,

discomfort

Korzhova

et al.

(118)

Bilateral M1 a) 20Hz rTMS

f8 coil b) iTBS

+ physical

therapy

(45–55

min/session)

1/day for

5

consecutive

days, for

2 weeks

a) 2 s on,

28 s off,

1,600

stimuli,

80%

RMT,

30min

b) 10

bursts of

3 stimuli

at 35Hz,

ITI 5Hz,

1,200

stimuli/session,

80%

RMT,

10min

Yes (20Hz

rTMS group

only)

MFIS

Secondary

outcome

Randomized,

sham-

controlled

34

SP

(12 in the

20

Hz-rTMS

group,

12 in the

iTBS

group,

10 in the

sham

group)

SP MS diagnosis

according to

McDonald criteria

2010 and lower

spastic

paraparesis with

MAS > 2

measured in the

knee

- age: 45 (mean)

- EDSS: 6.5

(mean)

None

reported

(Continued)
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TABLE 3 | Continued

References Anode:

location

dimensions

Cathode:

location

dimensions

Stim

duration

stim

intensity

Efficacy Fatigue

evaluation

methods

Study

design

Sample

size and

MS

subtype

Sample

composition

(values

expressed as

mean ± SD,

when available)

Adverse

effects

3) tRNS

Palm

et al.

(113)

F3 (EEG

10–20

system)

25 cm2

AF8 (EEG

10–20

system)

25 cm2

20

min/day

for 3

days

Peak to

peak

amplitude

of 2mA,

full-band

white

noise

from 0 to

500Hz,

variance

650/2

µA

No MFIS Crossover,

sham-

controlled

(3-weeks

wash-out)

16 (11

RR, 4

SP, 1 PP)

Clinically definite

MS (121) and

history of

neuropathic pain

with VAS > 40

age: 47.4 ± 8.9

EDSS: 4.2 ± 1.3

MFIS: 52.6 ± 12.3

Phosphenes,

insomnia,

nausea,

severe

headache (1,

after sham)

DLPFC, dorsolateral prefrontal cortex; EEG, electroencephalography; FSS, Fatigue Severity Scale; iTBS, intermittent theta burst stimulation; ITI, inter-train interval; MFIS, Modified Fatigue

Impact Scale; MSFSS, MS-specific FSS; MRI, magnetic resonance imaging; PFC, prefrontal cortex; PP, primary progressive; PPC, posterior parietal cortex; PROMIS, Patient-Reported

Outcomes Measurement Information System; RMT, resting motor threshold; RR, relapsing–remitting; RT,reaction time; SP, secondary progressive; rTMS, repetitive transcranial magnetic

stimulation; tDCS, transcranial direct current stimulation; tRNS, transcranial random noise stimulation; VAS, visual analog scale for fatigue.

MRI-guided neuronavigation system. In a more recent study
of this group, the importance of the individual baseline neural
networks activity has been outlined as a further parameter
for individualized treatment (110). The results of their studies
support the efficacy of personalized tDCS approaches.

Only one sham-controlled study has explored the effects on
MS-related fatigue of another NIBS technique called transcranial
random-noise stimulation (tRNS). This stimulation was applied
on frontal regions but produced negative results (113).

The other NIBS technique introduced in the research setting
for the treatment of fatigue in PwMS is TMS. (114). Repetitive
protocols of TMS showed long-lasting effects on cortical
excitability in patients with stroke (115), MS-related spasticity
(116) and major depression (13).

Regarding MS-related fatigue, three sham-controlled studies
using TMS showed promising results (117–119). Two of these
studies used TMS in combination with physical therapy and
enrolled patients affected by spasticity (118, 119). Different TMS
protocols were used: intermittent theta-burst stimulation (iTBS)
applied to the M1 leg area (119), deep TMS, delivered with
specific H-coils to the left prefrontal cortex and to bilateral M1
(117), and 20-Hz repetitive TMS and iTBS applied to bilateral
M1 (118). Preliminary evidence of efficacy was described for all
the protocols excepted for iTBS on bilateral M1 (118).

In a recent systematic meta-analysis, Liu et al. reviewed the
efficacy and safety of NIBS specifically for the treatment of MS-
related fatigue (120). They performed a literature search for
sham-controlled brain stimulation studies based on tDCS, rTMS,
tRNS, and transcranial alternating current stimulation (tACS).

A total of 14 eligible studies published from 2011 to 2018, for
a total of 207MS patients, were found: 11 tDCS studies, one
rTMS study, one iTBS (combined with exercise therapy) study,
and one tRNS study. A significant improvement in fatigue scores
compared to sham was found after tDCS treatment. A subgroup
analysis demonstrated significance for the intensity of 1.5mA
and for bilateral S1 stimulation location. The two TMS studies
and the tRNS study did not reach statistical significance.

Several data are available about the therapeutic use of NIBS
for reducing MS-related fatigue (Table 3). These techniques—
and in particular tDCS and some TMS protocols—have shown
to be effective as add-on therapy for fatigue management, and
more studies are needed to explore their further implementation.
The mechanisms by which NIBS could improve fatigue are still
unclear (8, 15, 104). Different hypothesis have been proposed
such as presynaptic increase of spinal drive from motor cortex,
modulation of premotor areas, increase in motivation, decrease
in muscle pain, increase in muscle coupling, promotion of
changes in cortical resting state activity and cortico-cortical
connectivity, and induction of long-term potentiation-like and
long-term depression-like neuroplastic changes at a local and/or
network level. The potential role of altered oscillatory activity in
the pathogenesis ofMS-related cognitive fatigue and the potential
advantage of tACS application have also been outlined (122).
A better comprehension of the pathogenesis could be useful
to develop therapies that specifically target the mechanisms of
fatigue generation in MS.

The studies published so far are greatly heterogeneous,
differing in many variables such as the NIBS technique used, the
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cortical targets, the stimulation intensity, and the characteristics
of the populations included. Indeed although most of the studies
enrolled patients with EDSS≤ 6, other population characteristics
were more heterogeneous among studies, such as the MS
subtype, the presence of comorbidities, the measured outcome
in addition to spasticity (e.g., neuropathic pain), and the baseline
fatigue scores.

Other important limitations to the use of NIBS for therapeutic
purpose remain the still heterogeneous definition of fatigue,
the limited comprehension of its complex and multifactorial
pathophysiology, and the limited use of objective measures other
than self-report questionnaires.

Because of this methodological heterogeneity and the low
sample sizes, the level of evidence for NIBS efficacy resulted
too low to draw any robust conclusion to support its use in
clinical practice (15) but encourages further studies on NIBS as
a treatment for fatigue (120).

CONCLUSIONS

Several studies have used neurophysiological tools to evaluate
MS-related fatigue. Until now, this possibility has been mainly
exploited for investigating the pathogenic mechanisms of fatigue
and for modulating brain circuits for therapeutic purposes. The
potential role of neurophysiology for quantifying fatigue and
predicting and/or monitoring response to treatment has been
evaluated in only a few studies.

From a methodological perspective, the most used
techniques are TMS and tDCS. TMS is a very versatile
method that allows both to assess, non-invasively, the
functionality of corticospinal tract and cortico-cortical
connections and, when delivered in repetitive protocols, to
modulate brain activity (114). On the other side, tDCS is

the most investigated technique as a potential treatment
for fatigue because it is safe, well-tolerated, low-cost, and
portable (13, 15).

Other neurophysiological techniques have been used,
although in a relatively small number of studies. In particular,
EEG has been used for exploring the role of cortico-cortical
connections (34), EMG for evaluating the contribution of
peripheral structures (9), evoked potentials for investigating
the pathogenetic mechanisms (60) and predicting response to
pharmacological treatment (94) and autonomic nervous system
testing and polysomnography for assessing additional factors
that can produce or exacerbate fatigue in PwMS.

Most part of the studies have been conducted in small
samples by comparing the findings obtained in fatigued MS
patients with those obtained in healthy controls or not-
fatigued MS patients. Usually, each study used a single
neurophysiological technique, while few studies combined
different neurophysiological techniques (83) or neurophysiology
with MRI (58).

Overall the literature data presented in this review
demonstrate that neurophysiology could play a role in the
management and evaluation of MS-related fatigue. Despite of
heterogeneity in results and methodological limitations, current
evidence supports further studies on the role of neurophysiology
in the management of fatigue. In particular, for therapeutic
purpose, tailored approaches based on individual network
dysfunctions, individual plasticity impairment, and other
neurophysiological variables should be explored.
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