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Abstract

Intrinsically Disordered Proteins/Regions (IDPs/IDRs) are currently recognized as a widespread phenomenon having key
cellular functions. Still, many aspects of the function of these proteins need to be unveiled. IDPs conformational flexibility
allows them to recognize and interact with multiple partners, and confers them larger interaction surfaces that may increase
interaction speed. For this reason, molecular interactions mediated by IDPs/IDRs are particularly abundant in certain types
of protein interactions, such as those of signaling and cell cycle control. We present the first large-scale study of IDPs in
Arabidopsis thaliana, the most widely used model organism in plant biology, in order to get insight into the biological roles
of these proteins in plants. The work includes a comparative analysis with the human proteome to highlight the differential
use of disorder in both species. Results show that while human proteins are in general more disordered, certain functional
classes, mainly related to environmental response, are significantly more enriched in disorder in Arabidopsis. We propose
that because plants cannot escape from environmental conditions as animals do, they use disorder as a simple and fast
mechanism, independent of transcriptional control, for introducing versatility in the interaction networks underlying these
biological processes so that they can quickly adapt and respond to challenging environmental conditions.
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Introduction

To some extent contradicting the classical protein structure-

function relationship paradigm, there is a type of proteins whose

function is indeed determined by their intrinsic lack of a fixed 3D

structure. These proteins, known as ‘‘intrinsically unstructured (or

disordered) proteins’’ (IUPs/IDPs) are totally or partially unfolded

in their native state [1,2,3,4]. First regarded as having little

biological interest, these proteins (or protein regions -IDRs-) were

considered as ‘‘junk proteome’’ not performing important

functions within the cell. Research on these polypeptides was

delayed not only by those misconceptions but also by the fact that

structural and molecular biology techniques were designed to work

under the paradigm of the structure-function relationship.

Nevertheless, from being considered as rare ‘‘trash’’ proteins

without important functions, IDPs are finally being recognized as,

i) a widespread phenomenon, and ii) proteins with very important

functions within the cell.

IDPs and IDRs were first detected as missing segments in

protein structures determined by X-ray diffraction or as those for

which not enough constraints existed for defining a fixed structure

in NMR spectra, both indicative of highly mobile regions. At the

sequence level, IDPs and IDRs are characterized by long stretches

of polar and charged residues, which impede the formation of

hydrophobic cores and the subsequent folding [2,3,5,6]. Due to

this particular amino acid composition, these regions without

defined structure were associated to ‘‘low complexity’’ or

‘‘composition biased’’ sequence segments [7,8,9,10]. Computa-

tional methods for detecting low complexity regions existed long

ago before IDPs were found, and consequently they were among

the first tools for predicting IDRs in proteins. Later, as the number

of experimentally detected IDPs increased, it was possible to

develop specific methods trained with them [10,11,12]. These

methods based on machine learning, together with later ones

based on physical properties [13,14] were used for scanning large

collections of protein primary sequences in the search for IDRs.

This prediction of IDPs and IDRs in complete proteomes

rendered a surprising result: a large fraction of these proteomes

was predicted to be unstructured, especially in eukaryotic

organisms. In fact, between 5%–15% of the proteins are expected

to be fully disordered, and about half of the proteins to have at

least one long disordered region of 30 residues or more [12,15].

In parallel to their abundance estimation, it started to become

evident that these IDPs play central roles within the cell [16,17].

They are involved, among other, in the control of the cell cycle,

transcriptional regulation, signaling cascades, and chaperone

activity [6,18,19,20]. Within these biological processes, IDRs have

two main molecular functions, arisen from their lack of fixed

structure: flexible connectors (‘‘springs’’, ‘‘linkers’’, etc.) between

globular domains, and molecular recognition sites. The molecular

interaction mediated by IDRs may be either permanent or
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transient and, in some cases, these unstructured proteins (or

segments) acquire structure upon binding to a partner [5]. The

interactions mediated by IDPs/IDRs have characteristics of

affinity/specificity that are very suitable for certain types of

protein interactions, such as those occurring in the previously

mentioned biological processes (e.g. signaling cascades, cell cycle

regulation). Given their intrinsic flexibility and ability to accom-

modate to different binding surfaces, IDPs are able to recognize

and interact with multiple partners, thus relating protein disorder

with interaction versatility [5,6,21]. Similarly, this same confor-

mational flexibility confers them a larger interaction surface that

may translate into an increased speed of interaction [22].

Due to the importance and widespread occurrence of these

proteins and their special structural and functional roles,

particularly in terms of molecular interactions, the repertoires of

IDPs/IDRs of a given organism can provide important in-

formation of its biology. Indeed, IDPs content has been previously

proposed to be related to organismal complexity and its capacity to

adapt to different environments [12,23,24,25]. Thus, long (.30

residue) disordered segments are found to occur in 2.0% of

archaean, 4.2% of eubacterial and 33.0% of eukaryotic proteins

[12]. Similarly, proteomes of organisms adapted to low tempera-

tures or high salt conditions are more disordered than those from

thermophiles or non-adapted bacteria [26,27].

Specifically in the case of plants, being sessile organisms, they

are unable to escape from environmental challenges as animals

can do. As a consequence, phenotypic plasticity (the capacity to

adapt their phenotype to changing conditions) is particularly

important in plants to adapt to and survive in changing

environments. Phenotypic plasticity requires the integration of

external information with the basal genetic/developmental pro-

grams, and is achieved through complex signaling networks in

plants [28].

Bioinformatic and experimental analyses of a limited number of

proteins from plants have found disordered regions in proteins

involved in signaling and environmental adaptation, which, similar

to the trend in bacteria described above, could suggest a relation-

ship between protein disorder and phenotypic plasticity

[29,30,31]. However, a whole-proteome analysis of the functional

role of protein disorder in plants that could support this hypothesis

is still missing.

In this work, we performed the first large-scale functional study

of the repertoire of IDPs/IDRs in Arabidopsis thaliana, the most

widely used model organism in plant biology. The study includes

a systematic comparison of the role of protein disorder in A.

thaliana and H. sapiens. While the intrinsic disorder characteristics

of the human genome have been vastly characterized [32,33,34],

their role in Arabidopsis is just starting to be unveiled and remains

confined to specific biological functions [31,35,36]. Our large-

scale comparative analysis of protein disorder in these two

organisms provides insights on the specific functional roles that

this phenomenon plays in A. thaliana. In particular, IDPs/IDRs in

A. thaliana seem to be specifically related to certain functions within

this organism, such as hormonal and non-hormonal signaling,

response to external stimuli and post-translational protein

modifications (chaperon activity), processes which underlie phe-

notypic plasticity and adaptation to environmental stress. Our

results point to the hypothesis that plants might be using

disordered proteins as a simple mechanism, independent of

transcriptional control, for introducing versatility in the interaction

networks underlying certain biological processes in order to adapt

and respond to changing environmental conditions.

Results

Overall Disorder Content
The proteome of Arabidopsis was, on average, less disordered

than that of human. Table 1 shows a number of figures

representing different quantifications of ‘‘disorder’’ in A. thaliana

and H. sapiens. There were significantly more disordered proteins

in human (defining ‘‘disordered protein’’ as one with .= 50% of

disordered residues) with respect to A. thaliana: 35.9% vs. 29.5%

(Figure 1; Chi-square test; p-value: ,2.2E–16). The percentage of

proteins with at least one ‘‘long disordered region’’ (LDW) was also

higher in human (68.5% vs. 57.2%, Chi-square; p-value: ,2.2E–

16;) and so was the average number of LDWs per protein (1.46 vs

0.96; Wilcoxon raked sum test; p-value ,2.2E–16). Furthermore,

the average number of residues that fell into these LDWs was also

higher in human (27.0 vs 19.7; Wilcoxon raked sum test; p-value

,2.2E–16). Although these results are based on DISOPRED

predictions, the tendency was also maintained for the other

predictors (see Additional Data File S1, Table 1S) and so was its

statistical significance.

In order to assess whether this difference was only observed for

highly disordered proteins (.= 50%) or it was also evident for

other ranges of sequence disorder, proteins were grouped

according to the percentage of predicted disorder of their sequence

(Figure 2A). The distribution was shifted to lower percentages of

disorder (0–30%) in Arabidopsis, while in human it was shifted to

higher disorder content (30–100%). Again, these differences were

statistically supported and predictor-independent (see Additional

Data File S1, Figs. 1S, 2S, 3S), with the exception of the 30–50%

bin for the VSL2 predictor, for which there was not statistical

difference between both organisms.

Figure 1. Overall predicted global disorder and disordered
binding regions in A. thaliana and H. sapiens proteins. Left:
percentages of disordered proteins (disordered proteins criterion: those
proteins containing at least 50% disordered residues based on Disopred
predictions). Right: average percentages of disordered residues in-
volved in binding (DBRs), as predicted by ANCHOR. The stars denote
significant differences evaluated with the same Chi-square tests
described in the Methods section and illustrated in Figure 1 but using
all proteins (i.e. not restricted to a particular GO functional class).
doi:10.1371/journal.pone.0055524.g001

Analysis of Protein Disorder in A. thaliana
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Similarly, human proteome was also more enriched in predicted

disordered regions potentially involved in protein-protein interac-

tions (Disorder Binding Regions, DBRs) (Figure 1 and Table 1).

While 50.7% of Arabidopsis proteins had at least one DBR, the

proportion for human was of 66.3% (Chi-square; p-value ,2.2E–

16). The average number of DBRs per protein was also higher in

human (5.11 vs 2.34, Wilcoxon raked sum test; p-value ,2.2E–

16). In the same manner, the average content of disordered-

binding residues was higher in human than in Arabidopsis: 13.8%

vs. 8.4% (Wilcoxon rank sum test; p-value ,2.2E–16) (Figure 1).

When proteins were grouped according to intervals of DBR

residues content, there was always statistical difference between

the number of DBR residues for both species, with more

disordered binding residues in H. sapiens (Figure 2B).

Disorder and Functional Categories
In the first part of this section we evaluated which functional

categories were significantly enriched in disordered proteins in A.

thaliana. In the second part, we performed a comparative analysis

to detect functional classes that were distinctively associated to

disorder in this organism with respect to human. Functional classes

found in both evaluations would correspond then to those being

significantly enriched in disorder in Arabidopsis while being also

more disordered in this organism respect to human. Similarly,

a GO term appearing in the first evaluation but not in the second

one would represent a functional class significantly disordered in

Arabidopsis but with a similar level of disorder in human. Finally,

a GO term showing up in the second test but not in the first one

would correspond to a function that, while not being specially

enriched in disordered in Arabidopsis, it was still much more

disordered than in human. The complete sets of GO terms found

in the two evaluations are shown in Additional Data File S2

(Arabidopsis) and Additional Data File S3 (Arabidopsis vs.

human). To facilitate the biological interpretation of these large

sets of GO terms, we analyzed the lists with REVIGO, which

summarizes long lists of GO terms into a slimmer list of statistically

significant terms (see Methods).

Functional categories significantly disordered in A.

thaliana. Figure 3 shows the REVIGO representation summa-

rizing GO biological processes that were detected by DAVID as

overrepresented (p-value ,= 0.05) in the set of disordered

proteins of Arabidopsis (those with at least one LDW according

to DISOPRED predictions; see Methods). The complete list of

145 terms is available in the Additional Data File S2.

Functional categories enriched in disordered proteins in

Arabidopsis (Figure 3) included ‘‘post-translational protein mod-

ification’’ (comprising nucleic acid metabolism, gene expression,

protein synthesis and maturation) and a category labeled by

Table 1. Summary of intrinsic disorder metrics for A. thaliana
and H. sapiens.

A. thaliana H. sapiens

Mean content of disorder 29.5% 35.9%

Proteins with at least one LDWs 57.2% 68.5%

Mean number of LDWs 0.96 1.46

Mean number of residues belonging to LDW 19.67% 27.04%

Proteins with at least one DBR 50.7% 66.3%

Mean DBR per protein 2.34 5.11

Mean resides belonging to DBR 8.4% 13.8%

Results shown for Disopred (disorder prediction) and ANCHOR (Disorder
binding regions, DBRs). For results with other predictors see Additional Data File
S1, Table 1S.
doi:10.1371/journal.pone.0055524.t001

Figure 2. Fraction of proteins with different degrees of predicted disorder and disordered binding regions in A. thaliana and H.
sapiens. While the left panel of Figure 1 shows the content of highly disordered proteins (.50%), this is intended to evaluate this for different
degrees of disorder. A) Protein disorder (as the percentage of disordered residues with respect to the sequence length) is binned into different
ranges. Data based on Disopred predictions. B) The same for disordered residues involved in binding, as predicted by ANCHOR. The significance of
the differences is evaluated as in Figure 1.
doi:10.1371/journal.pone.0055524.g002

Analysis of Protein Disorder in A. thaliana
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REVIGO as ‘‘response to red or far red light’’. The latter, in

addition to light signaling, included ‘‘response to endogenous and

abiotic stimulus’’ and most of the hormonal signaling pathways.

Therefore, in spite of the GO term chosen by REVIGO to label it,

this category could be better summarized as ‘‘response to

stimulus’’. Other significantly enriched terms were ’’pattern

specification’’, ‘‘transport’’/’’secretion’’, ‘‘cation homeostasis’’,

‘‘cellular compartment organization’’ (mostly referring to chro-

matin and nucleosome assembly), ‘‘cell cycle’’, and ‘‘reproduc-

tion’’. Very similar results were obtained with other disorder

predictors and other disorder criteria (See Additional Data File

S1). In summary, these functional classes could be summarized as

‘‘signaling’’, ‘‘development’’, ‘‘cell cycle’’ and ‘‘response to stress’’

(light, abiotic, etc.), and they were represented, among others by

proteins belonging to hormonal signaling pathways or transcrip-

tion factors.

Functional categories more disordered in A. thaliana

than in H. sapiens. Figure 4 shows the REVIGO representa-

tion summarizing the GO biological processes with a significantly

higher proportion of disordered proteins in Arabidopsis as

compared to human (p-value ,= 0.05). As in the previous

section, disordered proteins corresponded to those with at least

one LDW according to DISOPRED predictions (see Methods).

The complete list of terms is available in the Additional Data File

S3. While 145 GO terms were significantly enriched in disorder in

Arabidopsis (previous section), there were only 88 terms for which

the disorder degree was significantly higher than in human.

Again, we found enrichment in categories associated to

‘‘detection and response to stimulus’’. In this case, however, most

of such categories were related to external stimulus (Figure 4).

Figure 5 shows a detailed view of the ‘‘response to stimulus’’

GO:BP subgraph, highlighting the terms which are enriched in

disorder in Arabidopsis (previous point), as well as those more

enriched in Arabidopsis when compared to human. It can be seen

that the latter terms were more related to external stimulus.

The fact that the terms ‘‘response to endogenous stimulus’’,

‘‘cell cycle’’, etc. were no longer enriched indicates that proteins of

these particular categories had similar disorder content in human

and Arabidopsis. In contrast, ‘‘Protein folding’’ (including nucleic

acid metabolism, gene expression, protein synthesis and matura-

tion) was again present, indicating that these processes were more

disordered in Arabidopsis than in human. Other functional

Figure 3. Representation of the GO ‘‘Biological Processes’’ significantly enriched in disordered proteins in A. thaliana. Disordered
proteins here correspond to those with one or more ‘‘long disordered windows’’ (LDW) based on Disopred predictions. Figure adapted from REVIGO,
a system for summarizing and visualizing lists of GO terms. Each rectangle represents a cluster of related terms labeled according to a representative
term. Rectangles are grouped in ‘‘superclusters’’ (identified with the same color) based on SimRel semantic similarity measure.
doi:10.1371/journal.pone.0055524.g003

Analysis of Protein Disorder in A. thaliana
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categories with significant disorder included those related to

nitrogen metabolism and other molecules (flavonoids, glycerol,

isoprenoids, cofactors, pigments). Using other disorder predictors

and disorder criteria provided similar results (See Additional Data

File S1, Figs. 4S, 5S, 6S), especially for those processes related to

the response to external stimulus, which repeatedly appeared as

more disordered in Arabidopsis than in human, independently of

the predictor and criteria used.

In summary, GO functional classes that were more disordered

in Arabidopsis compared to human can be divided into two major

related functions: ‘‘detection and signaling of external stimulus’’

(including chaperone activity induced by stress, related to ‘‘protein

folding’’) and ‘‘secondary metabolism’’. In the case of plants, the

latter is intrinsically related to the response to external stimulus,

because plants have developed secondary metabolites as major

tools to cope with environmental stress.

Among proteins annotated under ‘‘detection of external

stimulus’’ and ‘‘nucleotide-excision repair’’, it was remarkable

the high amount of those involved in perception and signaling of

light quality, which is the most influential external stimulus in

plant development.

To discard that the differences in disorder observed for these

GO terms are due to biases or peculiarities of the GO annotations

of these two model organisms, we took the subsets of orthologous

proteins within these classes and calculated their average disorder

in Human and Arabidopsis (using four different disorder metrics).

The results are shown in Additional Data File S4. 80 out of the 88

classes present some degree of orthology. For all these 80 classes

the Arabidopsis orthologs are more disordered than their Human

counterparts (except one, when evaluated with two of the four

disorder metrics). Both, the difference in disorder and the bias in

favor of Arabidopsis of this difference are statistically supported

(see Additional Data File S4). For example, the average percentage

of disordered residues for the orthologs within these 80 classes is

27.2% for A. thaliana and 19.9% for Human (P-value of one-

tailed t-test: 2.6E–4).

Finally, we conducted the same comparative analysis of

Arabidopsis vs. human for disordered binding regions (DBRs).

In this case, the functional categories we found are also related to

‘‘detection/response to external stimulus’’, ‘‘defense against

bacteria’’, ‘‘multi-cellular processes’’, and number of metabolic

processes (See Additional Data File S1, Fig. 7S).

Discussion

The success of evolution in generating organism complexity has

been paralleled by the increase in complexity in the underlying

biological processes. One can conceive two main ways for

increasing the plasticity and complexity of a biological process

supported by a network of protein-protein interactions: either

increasing the number of proteins or increasing the number of

interactions (‘‘wiring’’). Protein-protein interactions mediated by

unstructured regions are recognized as a way of conferring

plasticity to protein interaction networks [5,6,21]. Additionally,

due to the physico-chemical characteristics of the interactions

Figure 4. Representation of the GO ‘‘Biological Processes’’ comparatively enriched in disordered proteins in A. thaliana respect to H.
sapiens. Disordered proteins here are again those with 1 or more LDWs based on Disopred predictions. Same REVIGO representation adaptation as in
Figure 3.
doi:10.1371/journal.pone.0055524.g004

Analysis of Protein Disorder in A. thaliana
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mediated by flexible/disordered regions, they are frequently

involved in transient interactions with multiple partners [37].

Accordingly, increasing the disorder content of a particular

subnetwork (biological process) of the interactome is a way to

increase its ‘‘wiring’’, the possible connections between the

proteins and, consequently, the plasticity of the system, all without

increasing the number of proteins involved. In fact, disorder

content has been proposed to positively correlate with what one

intuitively recognizes as ‘‘organism complexity’’ [12,25,38]. This

could be explained by the fact that higher organisms use disorder

as a means (among others) to obtain more complex and

‘‘sophisticated’’ interactomes. Our results show that the human

proteome is, globally, more disordered than the one of

Arabidopsis. This trend is supported regardless of the predictor

and criterion used for defining disorder. At the same time, both

human and Arabidopsis, as complex eukaryotes, are also much

more disordered than bacteria.

In concordance with previous observations [6,18,19,20], we

found that disorder in Arabidopsis is involved in biological

processes rich in transient interactions with multiple partners (e.g.

cell cycle, signaling, DNA and RNA metabolism –including

splicing–). These processes, which are generally more complex in

eukaryotes than in prokaryotes or that may even represent new

acquisitions of evolution (e.g. splicing), are the prototypical

processes that have been previously related to disorder in higher

organisms. At the protein level, the characteristic example is

cancer-related p53, a key protein for cell cycle control, which is

disordered in almost half of its length [37].

Taken together, our results on the overall disorder content in

Arabidopsis and on its disorder enriched processes are consistent

with the previously hypothesized correlation between organism/

process complexity and protein disorder.

It is striking, however, that despite the fact that all intrinsic

disorder criteria evaluated in this study point to higher disorder

levels for human, we find some functional classes for which

disorder is significantly higher in Arabidopsis. This difference in

disorder is also evident when considering only the ‘‘comparable’’

(orthologous) proteins between both organisms, discarding that it

could be an artifact due to biases in the GO annotations of these

two genomes. It has been shown that such biases can cause

problems for some studies involving GO annotations of different

organisms if certain cautions are not taken [39].

These GO classes are related to processes such as environmen-

tal perception and response –for which plants have developed

more complexity– and are fundamental for their adaptation. The

ability to accommodate its phenotype to changing environmental

conditions, or phenotypic plasticity, is very important for adaptation

and survival of any organism. In the case of plants, plasticity is

particularly relevant since these sessile organisms cannot escape

from environmental challenges as animals can do [28]. Specifi-

cally, plant plasticity depends on the capacity to identify the

challenge, integrate the external information through signaling

Figure 5. Subgraph of biological process ‘‘Response of stimulus’’ (GO:0050896). Green nodes correspond to those GO:BP terms
significantly enriched in disorder in Arabidopsis. Blue nodes correspond to those GO terms enriched in disorder in Arabidopsis compared to human.
The red node represents the only common term between these two sets.
doi:10.1371/journal.pone.0055524.g005

Analysis of Protein Disorder in A. thaliana

PLOS ONE | www.plosone.org 6 February 2013 | Volume 8 | Issue 2 | e55524



pathways, and finally change the basal developmental programs to

stress programs (which include the production of secondary

metabolites) to adapt and survive to those threats.

There are processes for which plants have developed particu-

larly complex mechanisms. Light, for instance, is probably the

most influential external clue for plant development, and plants

have developed complex perception (photoreceptors) and signal

transduction mechanisms to finely tune their growth and de-

velopment according to light quality and intensity [40,41,42,43].

Indeed, a recent study highlights the importance of intrinsic

disorder in plant chloroplasts [36]. Remarkably, in our results

terms related to ‘‘response to light stimulus’’ appear as disordered

in Arabidopsis and also in the comparison to human. Other GO

term enriched in disordered proteins in Arabidopsis as compared

to human is ‘‘nucleotide-excision repair’’, which includes (among

others) proteins involved in UV light perception and response.

Thus, processes for which plants have developed mechanisms

more complex than humans appear more disordered, further

supporting the hypothesized correlation between complexity and

disorder.

Another example of complexity in plant development/function

is their ability to adapt to abiotic stress, such as drought, salinity or

the cell desiccation that occurs during seed development.

Consistent with this complexity, several GO terms enriched in

disordered proteins (compared to human) are related to protein

folding or abiotic-stress related signaling. Moreover, among the

plant proteins for which disorder has been previously studied in

detail, ERD10 and ERD14 are examples of chaperones whose

structural disorder provides the flexibility to interact with many

different partners and prevent their denaturation and aggregation

[30].

An additional set of GO terms significantly disordered in

Arabidopsis as compared to human is related to secondary

metabolism (‘‘flavonoid’’, ‘‘isoprenoid’’, ‘‘pigment’’, ‘‘nitrogen’’,

‘‘vitamin’’, ‘‘cofactor’’, etc.), which, in many cases, are evolution-

ary acquisitions of plants to cope with environmental stress and

adaptation. Some flavonoids and anthocyanins, for instance, are

produced by plants to protect from UV radiation (another GO

term more disordered in Arabidopsis, as pointed above), whereas

other secondary metabolites are involved in attracting pollinators

or defending from predators [44,45,46]. In the case of nitrogen, it

is often a limiting factor for plant growth. Multiple nitrogenous

compounds are involved in different functions in plants, including

storage of nitrogen, but they are also related to defense and

signaling [46].

Our systematic comparative study shows that while human

proteome is globally more disordered than that of Arabidopsis,

there are some particular GO functional classes that are more

enriched in disordered proteins in Arabidopsis when compared to

human. Interestingly, these functional classes are related to

processes for which plants have developed particularly complex

mechanisms, such as adaptation to the environment. The general

relationship between disorder and processes related to the

response to environmental stimuli had been previously discussed

[25] and our results add support to that.

It has been already proposed that ‘‘increasingly integrating

protein disorder into the toolbox of a living cell was a crucial step

in the evolution from simple bacteria to complex eukaryotes’’ [24].

Our results add support to this hypothesized correlation between

organism/process complexity and protein disorder, and suggest

that plants have used disorder as an evolutionary tool to increase

complexity in their biological/protein networks. This increased

complexity is particularly evident in those networks underlying

phenotypic plasticity and adaptation to environmental stress.

Materials and Methods

An overview of the methodology is shown in the Figure 6.

Figure 6. Schematic representation of the methodology used for the comparative study of protein disorder in A. thaliana and H.
sapiens. For each organism (Arabidopsis (green) and human (blue)) protein sequences and their corresponding Gene Ontology annotations are
retrieved from Uniprot. For each protein, disordered regions (pink) are calculated using 3 different methods (Iupred, VSL2 and Disopred), and
disordered-binding regions (DBRs) are predicted using ANCHOR. Proteins are assigned to GO:BP functional classes. For each GO functional class,
a comparative analysis of the disorder levels of the proteins of each organism is performed, using different criteria for quantifying disorder in that
given GO class. For those disorder criteria that assign a ‘‘yes/no’’ label to a given protein, contingency tables are constructed with the counts of
disordered and not-disordered proteins in both organisms and a Chi-squared test is applied to them. For those criteria that quantify the disorder of
a given protein, the tables contain the average values of that figure for both organisms, and a Wilcoxon rank sum test is applied.
doi:10.1371/journal.pone.0055524.g006

Analysis of Protein Disorder in A. thaliana
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Sequence Datasets
The dataset for the analysis was constructed taking the

proteome sequences of A. thaliana and H. sapiens from the Protein

Knowledgebase (UniProtKB, release 2011 04) [47]. We used the

search engine of this resource to look for ‘‘A. thaliana’’ and ‘‘H.

sapiens’’, and selected the ‘‘complete proteome’’ option, resulting

in two sets of 32.764 and 35.346 sequences including both

canonical proteins and isoforms. This dataset was filtered out for

repeated, fragmented and proteins containing non-standard

residues (such as Selenocysteine) and ambiguous residues (e.g. B,

X, Z), that may not be tractable by certain disorder prediction

algorithms.

This final dataset contains 32.398 proteins for A. thaliana

(coming from 31.304 genes) and 35.244 proteins for H. sapiens

(from 20.154 genes).

Functional Annotations
In order to associate functional terms to the protein sequences

described above, we use the functional vocabulary defined by the

Gene Ontology Consortium (release 2011 04) [48]. These Gene

Ontology (GO) terms describe different functional aspects of gene

products and are divided into three independent categories

(subontologies): ‘‘biological process’’, ‘‘cellular component’’ and

‘‘molecular function’’. The GO annotations for our sequences

were also retrieved from UniprotKB. Terms that were labeled by

the GO Consortium as ‘‘obsolete’’ were not included in the

analysis. Arabidopsis genes were annotated with a total of 4.278

GO functional terms from the three subontologies and human

genes were annotated with a total of 8.836 GO terms.

The Gene Ontology is structured as a directed acyclic graph

where the terms are related by parenthood relationships, in such

a way that it can be navigated from very general (e.g. ‘‘enzyme’’) to

more specific functions (e.g. ‘‘coenzyme F390-G hydrolase

activity’’). In general, the original GO annotations contain only

the most specific terms that can be assigned to a given protein. We

expanded the original set of GO terms associated to a given

protein (see above) by including all the ancestors of these GO

terms. In this way, we ensured that any pair of proteins can be

functionally compared at the GO level at which they have the

common ancestor. For example, two proteins annotated re-

spectively with the two GO terms mentioned above would be

compared as ‘‘enzymes’’. This expansion resulted in 6.410 GO

terms for A. thaliana and 12.690 GO terms for H. sapiens. 4.380 of

these terms were used to annotate both A. thaliana and H. sapiens

proteins, and hence those are the ones used for the comparative

analysis.

Protein Disorder Prediction
The prediction of intrinsic protein disorder was carried out

using three different tools: Disopred v2.4 [49], VSL2 [50] and

Iupred [14]. The first two disorder predictors are based on linear

support vector machines. The later is based on the pairwise energy

content estimated from residue composition. All three of them take

a single protein sequence as input and provide as output a disorder

probability in the 0.0–1.0 range for each residue. For converting

these values into a binary (‘‘ordered’’ vs. ‘‘disordered’’) prediction

at the residue level we used for all the predictors their default

thresholds (0.5 for VSL2, and Iupred and 0.05 for Disopred).

For every protein in the two datasets (A. thaliana and H. sapiens),

we defined two disorder metrics: a) relative disorder content (i.e.

percentage of disordered residues in whole protein), and b)

number of long disordered windows, LDW (i.e. number of protein

regions with at least 30 consecutive disordered residues). These

two metrics represent two different disorder criteria and have been

previously used in the literature.

Additionally, we extract the disordered regions predicted to be

involved in protein-protein interactions, given the important role

protein disorder plays in binding. We used the ANCHOR tool

[51], which is based on the IUPred program mentioned above.

This method takes an amino acid sequence as an input and

predicts binding regions that are disordered in isolation and may

go under a disorder-to-order transition upon binding. The output

of this method is the same as those of the methods described above

and hence it was transformed in the same manner.

Evaluating the Disorder in Gene Ontology Functional
Classes

We want to evaluate i) the GO classes enriched in disorder in

Arabidopsis, and ii) those differentially enriched in Arabidopsis

respect to Human.

To evaluate whether a given GO class was significantly

associated to disordered proteins in Arabidopsis (taking into

account the average disorder of all classes) we conducted an

‘‘enrichment analysis’’ test [52] as implemented in the DAVID

tool [53]. We used the number of proteins with at least one ‘‘long

disordered window’’ (LDW) based on DISOPRED predictions as

the quantification of the disorder of a given GO class, and the

following parameters as input for DAVID: Background: ‘‘Arabi-

dopsis thaliana’’. Gene Ontology subontologies ‘‘GOTERM BP

ALL’’, ‘‘GOTERM MF ALL’’, and ‘‘GOTERM CC ALL’’. A

‘‘Functional Annotation Chart’’ was generated listing all the

annotation terms and their associated genes. They were filtered by

p-value (correction by Benjamini, p-val ,= 0.05) and by

minimum number of genes belonging to each annotation term

(count = 2).

To perform a comparative analysis of the disorder of the GO

classes common to Arabidopsis and human, we quantified the

‘‘disorder’’ of a given GO class in each organism with the criterion

described above. Then, a 262 contingency table was constructed

containing the disordered proteins (d) for each of the two

organisms (A. th. and H. sa.) and the complementary figures

(number of ‘‘non-disordered’’ proteins according to that criteria, �dd )

(Figure 6). We measured the significance of the difference between

the observed and the expected frequencies of disordered proteins

in A. thaliana and H. sapiens with a Pearson’s Chi-squared test with

Yates’ continuity correction [54]. We consider only the classes for

which the number of disordered proteins in Arabidopsis is higher

(5% or more) than the ‘‘expected’’ value reported by the Chi-

squared test, in order to take only the classes for which the

difference in disorder is positive for Arabidopsis.

With this procedure, each GO functional class was assigned a p-

value, which was corrected using the Benjamini & Hochberg

multiple testing correction [55]. GO classes with low p-values

correspond to those significantly enriched in disordered proteins in

Arabidopsis when compared with human.

For these GO classes, we additionally calculated the average

disorder of the orthologous proteins in both organisms. This was

done in order to verify that the eventual differences in disorder are

maintained when considering only the ‘‘comparable’’ proteins,

and discard that these differences might be due to biases in the GO

annotations of these two genomes. Orthology relationships

between A. thaliana and H. sapiens proteins were taken from

the InParanoid database v.7 [56]. InParanoid provides a collection

of intra-organism paralog groups for most sequenced eukaryotic

genomes, related by inter-organism orthology relationships. The

differences in disorder content for these subsets of orthologous

proteins were statistically assessed with a two-tailed t-test (to check
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the null hypothesis that there is no difference between the average

disorder values) and a one-tailed t-test (null hypothesis that the

disorder of the Arabidopsis orthologs is not higher than that of

Human).

A given GO term can show up in the first test (disordered in

Arabidopsis) but not in the second one (comparison with human)

if, for example, the ‘‘amount’’ of disorder is similar in both

organisms. Conversely, a term could appear in the second test but

not in the first one, meaning that, while the disorder content of

that functional class is not especially high in Arabidopsis, it is still

significantly higher than in human. The third possibility is a term

showing up in both tests: this would be a class which is significantly

enriched in disorder in Arabidopsis and that it is also more

disordered than in human. The complete set of GO terms in each

of these three categories is shown in Table 1S (Additional Data

File S1).

In both cases, the set of significant GO terms reported by each

test was used as input for the ReviGO tool [57] in order to reduce

the number of terms to a smaller meaningful set. This

computational approach ‘‘collapses’’ a set of GO terms based on

several measures of semantic similarity by removing functional

redundancies. The result is a smaller number of representative

terms, easier to handle and interpret. These resulting terms

correspond to the cluster representatives (each represented as

a single rectangle), and their choice is unaffected by whether the

terms are more general or more specific. The size of each rectangle

(cluster representative) represents the ‘‘uniqueness’’ of the term.

This measure assesses whether the term is an outlier when

compared semantically to the whole list, that is, the frequency of

the GO term in the underlying GO database. The clusters

representatives are automatically joined into ‘‘superclusters’’ of

loosely related terms visualized with different colors. Each

supercluster is given a broader name that represents a generic

function common to all clusters. This representation allows

a multidimensional visualization of the terms, while discarding

any overrepresentation of similar functional terms.

All statistical analyses to estimate significance were implemented

in the statistical analysis programming language R (www.r-project.

org). All data processing performed in this study was done with ad-

hoc scripts written in the Perl programming language. All datasets

are available upon request.
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