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Abstract

The COVID-19 pandemic poses a challenge in coming up with quick and effec-

tive means to counter its cause, the SARS-CoV-2. Here, we show how the key

factors governing cysteine reactivity in proteins derived from combined quan-

tum mechanical/continuum calculations led to a novel multi-targeting strategy

against SARS-CoV-2, in contrast to developing potent drugs/vaccines against a

single viral target such as the spike protein. Specifically, they led to the discov-

ery of reactive cysteines in evolutionary conserved Zn2+-sites in several SARS-

CoV-2 proteins that are crucial for viral polypeptide proteolysis as well as viral

RNA synthesis, proofreading, and modification. These conserved, reactive cys-

teines, both free and Zn2+-bound, can be targeted using the same Zn-ejector

drug (disulfiram/ebselen), which enables the use of broad-spectrum anti-virals

that would otherwise be removed by the virus's proofreading mechanism. Our

strategy of targeting multiple, conserved viral proteins that operate at different

stages of the virus life cycle using a Zn-ejector drug combined with other

broad-spectrum anti-viral drug(s) could enhance the barrier to drug resistance

and antiviral effects, as compared to each drug alone. Since these functionally

important nonstructural proteins containing reactive cysteines are highly con-

served among coronaviruses, our proposed strategy has the potential to tackle

future coronaviruses.
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1 | INTRODUCTION

The cell in all the complexity of its constituents and physiological processes can be thought of as a microcosm popu-
lated by various biological entities including organelles, proteins, lipids, and nucleic acids where the information flows
as chemical signals.1 Experimental methods generate a plethora of quantitative data on DNA/RNA/protein sequences,
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structures, and dynamics, revealing intricate patterns of the genome and protein universe.2 The vast and sheer complex-
ity of such data is quite overwhelming. Computational approaches can complement experimental data on complex bio-
logical processes by revealing their key underlying physical principles and elucidating recognition/reaction
mechanisms. For example, experimental methods are limited in describing short-lived transition states/intermediates
in enzyme-catalyzed reactions, whereas QM/MM methods can reveal how enzymes stabilize transition states/
intermediates and help inhibitor design as well as test hypotheses/mechanisms and identify new reaction pathways.3–7

As another example, computational approaches have elucidated the physical origins of noncovalent aromatic (π)
interactions,8 and the relationship between the sequences, structural properties, and functions of intrinsically disor-
dered proteins.9

At the atomic level, covalent, ionic, and metallic bonds as well as hydrogen-bonding and van der Waals interactions
in various dielectric environments form the “physicochemical language” of the cell.1 Dynamical/conformational
changes of large systems over long-time scales can be probed using Markov state models,10,11 coarse-grained,12,13 or
ultra-coarse-grained14 models, whereas those for smaller systems in the microsecond time scale are accessible by molec-
ular dynamics (MD) simulations.15,16 However, changes in the electron distribution during a chemical reaction, charge
transfer, and/or polarization effects are best described by quantum theory.17–19 Among the various quantum mechani-
cal methods, density functional theory (DFT) has become the method of choice because of its good trade-off between
accuracy and computational cost.20,21 DFT combined with molecular mechanics3 or continuum methods22 have proven
to be successful in revealing biophysical trends behind the secondary structure formation in proteins,23 and predicting
the ionization free energy (pKa) of metal-bound water molecules24 as well as amino acid (aa) residues and substrate/
drug-like molecules in proteins.25–27 They have helped to elucidate enzyme mechanisms,4,6,28,29 and the physicochemi-
cal principles underlying metal-binding affinity/selectivity in metalloproteins,30,31 including cation selectivity of ion
channel selectivity filters.32,33 They have also been used to investigate the effects of macromolecular crowding on pro-
tein aggregation and stability.34

In this focus article, we describe how studies of the physicochemical factors modulating cysteine (Cys) reactivity in
proteins by combined DFT and continuum dielectric approach led to a novel strategy to battle the ongoing COVID-19
pandemic caused by SARS-CoV-2. We first present an overview of Cys: (i) its importance, (ii) its various states, (iii) its
biological roles, and (iv) its applications in research and biotechnology. Next, we delineate the key factors governing
the reactivity of free and metal-bound Cys in proteins. We then present a multi-targeting strategy exploiting the key fac-
tors controlling the reactivity of Zn2+-bound Cys in combination with evolutionary principles to identify novel drug tar-
gets in the SARS-CoV-2. Finally, we discuss how this strategy may be beneficial for tackling new coronaviruses that
cause future epidemics/pandemics.

1.1 | Importance of Cys

Despite being the second least abundant aa residue (only �1.9% of all aa residues in proteins),35 Cys is very versatile
with a myriad of functions. Cysteine reactivity has long been recognized as a key factor in the activity of many pro-
teins.36 Roughly 80% of Cys in proteins possess some functional importance.1 Furthermore, Cys point mutations in pro-
teins are associated with genetic diseases more often than expected, based on its occurrence frequency in protein
sequences.37,38 Conversely, point mutations to Cys in certain proteins can also lead to disease, as exemplified by the
cancer-causing mutation of the native Gly-12 to Cys in the K-Ras enzyme that catalyzes the hydrolysis of guanosine
triphosphate.39

1.2 | The diverse nature of cysteine: Free, bound, and derivatized

Cysteine is the most versatile aa building block in proteins, as it can exist as free, bound or derivatized in vivo.40,41

Being a “soft” ligand, Cys prefers binding to “borderline” (e.g., Fe2+, Co2+, Ni2+, Zn2+) or “soft” (e.g., Cu+, Cd2+, Hg2+)
metal ions.42,43 It can bind monodentately to a single cation or bridge two cations, as found in metallothioneins or FeS
proteins.44 The most common biogenic metal ion ligated by the Cys side chain is Zn2+,45 the second most abundant
transition metal ion in organisms.46 Binding to Zn2+ lowers the Cys pKa,

47 so Zn2+-bound Cys is generally deprotonated
under physiological conditions.48 Because S has an electron configuration of [Ne]3s 23p 4 and d-orbitals for bonding, Cys
can be readily oxidized to form derivatives with oxidation states ranging from �2 to +5 in vivo (Figure 1).42 As evident
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from Figure 1, the Cys S atom has a different oxidation state/number, depending on its surrounding atoms, unlike its
charge, which only depends on the number of electrons and protons in the S atom.

1.3 | Biological functions of cysteine

The Cys thiol shows a vast range of measured pKa values in proteins spanning from �3 to 13,49,50 reflecting its various
biological functions, which fall into three main roles: (i) catalytic, (ii) regulatory, and (iii) structure-stabilizing
(Figure 2).35 In enzymatic catalysis, Cys plays an essential catalytic role in nucleophilic substitution reactions catalyzed
by diverse enzymes including Cys proteases and thioredoxin reductase.43 Cysteine also participates in electron transfer
catalyzed by glutathione reductase as well as in oxygen-transfer, hydride-transfer, or thiol/thiyl hydrogen radical trans-
fer catalyzed by enzymes such as human peroxiredoxins, glyceraldehyde 3-phosphate dehydrogenase, and ribonucleo-
tide reductase, respectively.43 In most of these reactions, the Cys thiolate serves as a catalytic nucleophile and can
stabilize charges in the rate-limiting transition state of a reaction.51,52 Zn2+-bound Cys can facilitate alkyl transfer reac-
tions in enzymes (e.g., the DNA repair protein ADA,53 whose Zn2+-bound Cys removes methyl groups from the DNA
backbone) or promote conversion of ribonucleotides to deoxyribonucleotides catalyzed by ribonucleotide reductase.54

FIGURE 1 The various Cys(S) oxidation states found in vivo. The S corresponding to the indicated oxidation state is in bold (the

oxidation state of the second S, if present, is �1)

FIGURE 2 Catalytic, regulatory, or structural role of free, metal-bound, or modified Cys
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Apart from serving a direct catalytic role, Cys also plays a regulatory role in enzyme catalysis by changing its S oxi-
dation state (Figure 1). For example, Cys oxidation, resulting in disulfide bond formation, can modulate protein struc-
ture and function,41 and serve as regulatory functional switches.55 It deactivates redox-sensitive enzymes including
caspases-3/9, glyceraldehyde 3-phosphate dehydrogenase, or protein tyrosine phosphatase that employ a catalytic
Cys.40 Zn2+-bound Cys oxidation inhibits alcohol dehydrogenase by releasing the catalytic Zn2+, but activates matrix
metalloproteases by freeing a coordination site for a nucleophilic water molecule/substrate to bind.40

Cysteines, as part of nonprotein redox pairs such as glutathione disulfide/glutathione, regulate the reduction poten-
tial of the cell.50,56,57 Post-translationally modified Cys can regulate cellular signaling pathways: Cys palmitoylation reg-
ulates protein localization and trafficking.58 Cysteine lipoxidation (modification by lipid-derived electrophiles) triggers
signaling pathways leading to stress adaptation.59 Methylation of Zn2+-bound Cys in the zinc finger domains of human
TAB2 and TAB3 during bacterial infection disrupts the NF-κB pathway, which mediates innate immune defense against
microbial infection.60 Another regulatory role of Cys is in ligand or cation transport: Cysteine thiols present on the cell
surface mediate cell entry of molecules or proteins via thiol/disulfide exchange reactions followed by membrane
fusion.61–63 In metallothioneins, Cys thiolates regulate intracellular Zn2+ homeostasis, as their oxidation triggers release
and transfer of Zn2+ ions to other proteins.64,65

Cysteines are often employed to stabilize protein structure by forming disulfide bonds.66–69 Notably, cysteine-rich peptide
toxins from animal venom secretions possess multiple disulfide bonds, resulting in exceptional thermal and chemical stabil-
ity.70 Thermophilic prokaryotes also employ structural disulfides in their proteins to protect them from thermal denaturation
in high-temperature environments.71,72 Apart from forming covalent disulfide bonds, cysteines can form bonds with metal
cations and stabilize specific folds in proteins such as Zn•Cys4, Zn•Cys3His, Zn•Cys2His2, and Zn2•Cys6 zinc fingers, zinc-
sensing proteins, zinc transport proteins, and metallothioneins.73–75 By coordinating the catalytic metal cofactor in enzymes
such as oxidoreductases76 and zinc-β-lactamases II,77 Cys helps to ensure the correct positioning of the active-site residues
and maintain enzyme catalytic efficiency/stability. By itself, Cys can also stabilize protein structure by interactions with aro-
matic amino acids, as evidenced by the Cys52–Phe65 interaction in SUMO-1 where mutation of Cys52 to Ala significantly
perturbed the SUMO-1 secondary structure and thermal stability.78

1.4 | Applications of reactive cysteines

Due to its unique physicochemical properties, Cys is utilized in biochemical research. Based on the Cys thiolate reactiv-
ity, Cys scanning mutagenesis has been used to probe the structure and function of ion channels.79 Cys thiol reactivity
has also been exploited to design specific probes to investigate protein structure and functionality.80,81 Cys, incorporated
into lysine to form γ-thialysine, has been proposed for studying methylation processes on intact histones and the nucle-
osome assembly,82 as histone peptides containing native lysine and the unnatural γ-thialysine are equally good sub-
strates for methylation catalyzed by histone lysine methyltransferases. The ability of thiols to undergo via thiol/
disulfide exchange on the cell surface (Section 1.3) has been exploited to enhance cellular uptake of a wide variety of
cargos (e.g., small molecules, oligonucleotides, peptides/proteins, and synthetic constructs).61 Structural motifs con-
taining two Cys; for example, CXC where X denotes any aa, can enhance cellular uptake efficiency of cationic peptides,
as the two Cys in the motif can form disulfide bonds with cell-surface components.83,84

Cysteines have also been used in biotechnology and in drug design. They have been used to conjugate antigen-specific
antibodies to potent small-molecule drugs, creating antibody–drug conjugates.85 Importantly, reactive Cys have become
important drug targets for developing specific covalent inhibitors to treat various human diseases including cancers, arthritis,
and bacterial/viral infections.86–89 This is exemplified by one of the most frequent cancer-causing mutations of the GTPase
KRas enzyme, whereby the wild-type G12 is mutated to Cys (G12C). By designing an inhibitor that covalently bonded specif-
ically to the mutant C12 sulfur, KRasG12C is locked in the inactive GDP-bound state and cannot switch to the active GTP-
bound state, hence oncogenic KRasG12C cell proliferation is blocked.90 This strategy for inhibiting KRasG12C has been used
successfully to develop the new anti-cancer drug, Sotorasib (brand name: Lumakras), which was approved in May 2021 to
treat metastatic nonsmall cell lung cancer patients with the KRas G12C mutation. As another example, reactive cysteines
have also been chosen as targets in the battle against the COVID-19 pandemic. Specific covalent inhibitors targeting the cata-
lytic cysteines of the SARS-CoV-2 proteases (Mpro or PLpro) have been developed in silico91 and in vitro,92–94 and the inhibi-
tion mechanisms of several inhibitors have been investigated.95,96

Apart from free Cys, reactive Cys bound to Zn2+ ions that play a structural role in stabilizing the protein (termed
labile Zn2+-site) can also serve as drug targets for retroviral or cancer therapy.97–100 They react with electrophilic agents,
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resulting in the loss of structural Zn2+ cations and thus protein structure and function (Scheme 1). Such reactive Zn2+-
bound Cys has been found in the Zn fingers of several viruses including the HIV nucleocapsid p7,101 herpes simplex
virus,102 and Junín virus,103 as well as the human estrogen receptor DNA-binding domain, which is essential for breast
cancer growth.104

2 | PHYSICAL PRINCIPLES UNDERLYING REACTIVE CYSTEINES

How can a simple amino acid such as Cys fulfill such diverse functional roles in proteins? The answer lies in the high
reactivity of its side chain and its ability to interconvert between various oxidation states in vivo (Section 1.2).43 Whether a
Cys in a protein is reactive or inert depends on its environment, which modulates its pKa and consequently its reactiv-
ity.105 For example, hydrogen bonds to metal-bound Cys help to stabilize/protect the metal complex and enhance metal-
binding affinity/specificity, enzyme–substrate recognition, and enzyme activation.106 Since anionic thiolates (S�) are more
reactive/nucleophilic than neutral thiols (SH), a protein microenvironment that reduces the Cys pKa would enhance its
reactivity.49,107 Below, we summarize the key factors determining the reactivity of free or metal-bound Cys in proteins
from our previous studies, relying on the original references to provide details of the methodology.35,51

2.1 | Factors governing reactivity of free cysteine

Free Cys can be reactive as a catalytic or noncatalytic nucleophile in the Cys-dependent enzymes. The reactivity of the
free Cys side chain is dictated by its (i) solvent accessibility and (ii) hydrogen-bonding interactions.35 This is because
the Cys thiolate is stabilized/destabilized to varying degrees depending on its hydrogen-bonding partner and dielectric
environment.35,49,107,108 In peroxiredoxin enzymes, for example, Cys is stabilized in its reactive thiolate form by
hydrogen-bonding interactions with conserved Thr and Arg residues.109 In thioredoxins, the number of hydrogen bonds
to the catalytic Cys correlates with the decrease in the Cys pKa.

49 However, hydrogen-bonding contacts to Cys alone do
not suffice to determine the reactivity of free Cys. Protein conformational changes that position different hydrogen-
bonding partners to the Cys side chain and/or alter solvent access can modulate the nucleophilicity/reactivity of free
Cys. Even two slightly different conformations of the same protein may differ greatly in their Cys reactivities due to

SCHEME 1 Proposed reaction mechanism for a reactive Zn2+-bound Cys in a labile Zn2+-finger to react with a Zn-ejecting agent,

causing loss of Zn2+ and protein structure
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differences in the Cys hydrogen-bonding partners.108 Along the same vein, mutations that alter the Cys hydrogen-
bonding partner and dielectric environment could change the degree of thiolate stabilization and thus Cys pKa. For
example, in the disulfide-binding protein A, mutation of His-32 to Gly results in a loss of a strong hydrogen bond with
the catalytic Cys-30, whose unusually low pKa of 3.5 becomes elevated to 4.9, thus decreasing its reactivity.110

2.2 | Factors governing reactivity of Zn-bound cysteines

In contrast to free Cys, which can exist as a neutral thiol (SH) or anionic thiolate depending on its pKa in the protein, Cys is
deprotonated when bound to Zn2+,48 thus Zn2+-bound Cys serves as a nucleophile. The reactivity of a Zn2+-bound thiolate
towards an electrophile that can access the Zn2+-site depends on whether (1) the thiolate S� can keep its negative charge,
and (2) the positive charge on the cation is attenuated to free the Cys to undergo reaction. The negative charge on the Zn2+-
bound thiolate would be maintained if it is (i) not shared with a second Zn2+ or (ii) not withdrawn to the more electronega-
tive carbonyl O via backbone hydrogen bonds to the Zn2+-bound thiolate. Thus, whereas hydrogen bonds to free Cys stabi-
lize the thiolate form, enabling it to serve as a nucleophile, hydrogen bonds to the Zn2+-bound thiolate suppress
nucleophilicity of the metal-bound Cys (Figure 3). As for free Cys, conformational changes can affect the reactivity of the
Zn2+-bound thiolate due to changes in the hydrogen-bonding interactions and/or solvent exposure of the structural Zn2+-
site. As negatively charged Cys� transfers much more charge to Zn2+ than neutral histidine ligands,111 the positive charge
on Zn2+ in Zn-finger cores with >2 Cys would be reduced compared to that in Zn•Cys2His2 sites, where the higher positive
charge on the cation would prohibit the two Cys from undergoing reaction.51

3 | APPLICATION OF PHYSICAL PRINCIPLES IN THE COVID-19
PANDEMIC

3.1 | Guidelines to identify labile Zn2+-sites given the protein structure

The above factors controlling the Zn2+-bound Cys reactivity in structural Zn2+-sites have helped to establish guidelines
to identify labile (druggable) Zn2+-sites given the protein structure. Since neutral Zn2+-bound ligands, or a second
Zn2+, or hydrogen bonds to Zn2+-bound Cys would suppress the reactivity of the Zn2+-bound Cys, structural Zn-Cys4
or Zn-Cys3His, denoted collectively as Zn-Cys4/(Cys3His) sites, with no hydrogen bond to any of the Zn2+-bound Cys
were predicted to be labile.51 These guidelines were first used to identify putative labile Zn-sites in human proteins that
are promising drug targets, but whose Zn2+-sites have not been considered to be drug targets.112 Subsequently, they
were used to predict labile Zn-sites in the hepatitis C virus—the structural Zn2+-Cys4 sites in NS5A, a multifunctional
nonstructural protein (nsp), was predicted and subsequently verified to be labile.113

FIGURE 3 NH S hydrogen bonds enhance nucleophilicity of free Cys (left), but suppress the nucleophilicity of Zn2+-bound Cys (right)
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3.2 | How to target a viral labile Zn2+-site without deadly cytotoxic effects

Since putative labile Zn-sites are found in both human and viral Zn-finger proteins, how can a Zn-ejector selectively tar-
get the labile Zn2+-site of a viral protein without affecting cellular Zn-finger proteins? Instead of screening/designing a
Zn-ejecting compound that ejects Zn2+ from only the drug target viral protein, but not from essential human proteins,
we had proposed using Zn-ejecting agents that have passed safety tests in clinical trials or have been approved by the
Food and Drug Administration. Although such Zn-ejecting agents are generally not highly specific unlike antibody
drugs that target a specific protein, they have been found to be clinically safe when used according to their rec-
ommended dosage.114 The non-specificity of clinically safe Zn-ejector drugs can be exploited to target multiple viral pro-
teins containing reactive Cys (see below).

3.3 | Multi-targeting of conserved, vital SARS-CoV-2 nonstructural proteins

The SARS-CoV-2 that is responsible for the current pandemic employs multiple conserved Cys and Zn2+, which play
crucial roles in the virus life cycle. Its main protease (Mpro) and papain-like protease (PLpro) employ catalytic Cys to
cleave the large viral polyproteins into its constituent nonstructural proteins. In addition to the catalytic Cys, structures
of SARS-CoV-2 and the closely related SARS-CoV viral proteins reveal conserved Zn2+-bound Cys in (i) the PLpro

enzyme of nsp3, (ii) the nsp10 zinc-finger domain, (iii) the nsp12 RNA-dependent RNA polymerase (RdRp), (iv) the
nsp13 helicase, and (v) the nsp14 N-terminal 30!50 exoribonuclease (ExoN) domain (see Table 1). Using the guidelines
outlined in Section 3.1, each structure was checked to see if the Zn-Cys4/(Cys3His) site lacks hydrogen bonds to the
Zn-bound thiolates. However, the cryo-electron microscopy structure of SARS-CoV-2 nsp12 and the ≥3.2 Å crystal
structures of SARS-CoV nsp14 (5c8s, 5c8t, and 5c8u) have poor resolution, which prohibited reliable hydrogen-bond
analyses of these Zn-sites. The other SARS-CoV or SARS-CoV-2 structures in Table 1 show no hydrogen bonds to the
Zn-Cys4/(Cys3His) sites. Subsequently, the Zn-sites in the SARS-CoV-2 PLpro, the nsp10 zinc-finger, the nsp13 helicase,
and the nsp14 ExoN domains were experimentally verified to be labile: clinically safe Zn-ejector drugs, disulfiram/
ebselen, can release Zn2+ from these four viral proteins and decrease their functional activities in vitro as well as inhibit
SARS-CoV-2 replication in Vero E6 cells.115,116

These labile Zn2+-sites are attractive drug targets, as they play important functional roles in the SARS-CoV-2 life
cycle: The Zn-Cys4/(Cys3His) sites play important structural roles in nsp3 PLpro domain,117 nsp10 zinc-finger,118

nsp12,119 and nsp14,120 whereas they play vital catalytic roles in the nsp13 helicase activity,121 and the nsp14 30!50

exoribonuclease activity.120 Furthermore, the viral proteins hosting these Zn2+-sites are constituents of a large
replication-transcription complex that plays a critical role in viral (i) RNA synthesis, (ii) RNA proofreading, and
(iii) RNA modification to evade the human immune response, as follows:122,123 First, the nsp12 C-terminal RdRp
domain catalyzes viral RNA synthesis with the help of nsp7 and nsp8 cofactors.119,124,125 Next, the nsp14 N-terminal
ExoN domain proofreads the viral RNA by recognizing erroneous nucleotides and catalyzing their excision, thereby
maintaining the integrity of the SARS-CoV-2 genome.122 Subsequently, the nsp13 helicase, as well as the nsp14 and
nsp16 methyltransferase domains, are involved in modifying the newly synthesized viral RNA, enabling its efficient
translation by host cell ribosomes. Without this modification, the viral RNA molecules would be degraded and may be
detected as foreign, triggering innate immune responses.126 The nsp10 zinc-finger protein activates the nsp14 and
nsp16 methyltransferase enzymatic activities and boosts the nsp14 ExoN nucleolytic activity.118 Furthermore, it stabi-
lizes the conserved domains involved in RNA proofreading (nsp14) and modification (nsp13–16).122,126

3.4 | Advantage of using Zn2+-ejecting drugs to target cysteines

Because the large nsp12–nsp13–nsp14–nsp10–nsp16 complex is indispensable for SARS-CoV-2 replication, using clini-
cally safe Zn-ejecting drugs such as disulfiram/ebselen to target labile Zn2+-sites in the constituent proteins would
reduce viral load, as shown in Vero E6 cells. By reacting with Zn2+-bound Cys and ejecting “structural” Zn2+ cations
from the multi-functional nsp10 cofactor,115 disulfiram/ebselen can destabilize the nsp10 zinc-finger itself as well as its
partner proteins, nsp14 and nsp16. The same Zn-ejecting drug can not only affect protein stability, but also inhibit the
enzyme activities of nsp3 PLpro,115 nsp13, and nsp14, and probably nsp12 RdRp. In addition to Zn2+-bound Cys, disulfi-
ram/ebselen can also target catalytic Cys,115 and thereby inhibit SARS-CoV-2 Mpro,127 which does not possess a Zn2+-
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site. By impeding Mpro- and PLpro-catalyzed viral proteolysis, disulfiram/ebselen can prevent efficient cleavage of the
replicase polyproteins into components.

Hence, these Zn-ejecting drugs work against coronaviruses at various stages: First, they inhibit viral polypeptide
proteolysis; then, they cripple the functions of several proteins that are crucial for viral RNA synthesis, proofreading,
and modification. Targeting multiple viral proteins at different stages would create a high barrier to drug resistance. In
contrast, drugs targeting a specific viral protein may lose their effectiveness if a lineage appears with mutations leading
to drug resistance. For example, a popular SARS-Cov-2 drug target is the spike protein that mediates entry of the virus
into the host cell. Numerous mutations are found in the genomic region corresponding to the spike protein that alters
host cell entry. Some mutations lead to enhanced transmission,128 and may, as a by-product, evade neutralizing anti-
bodies targeting the spike protein.129 On the other hand, the number of mutations observed in the regions containing
catalytic or reactive Zn2+-bound Cys is much lower than that for the rest of the genome (https://nextstrain.org/ncov/
global). Hence, the spontaneous occurrence of lineages with mutations conferring resistance to disulfiram/ebselen
would be unlikely. Furthermore, mutations of the conserved catalytic or reactive Zn2+-bound Cys would likely disrupt
their vital catalytic/structural roles in the respective viral protein functions, incurring a destructive cost for the virus.

Combining disulfiram/ebselen with other broad-spectrum anti-viral drugs that target other viral regions/pathways
could further enhance the barrier to drug resistance. It can also enhance antiviral effect compared to each drug alone.
For example, disulfiram/ebselen combined with remdesivir exhibited synergistic inhibition of SARS-CoV-2 in cell-based
assays.116 This is because remdesivir A stops viral RNA synthesis by the nsp12 RdRp domain, and can escape removal
by the proofreading nsp14 ExoN, as disulfiram/ebselen inhibits nsp14 exoribonuclease activity and destabilizes its
allosteric activator nsp10. Disulfiram/ebselen combined with the zinc ionophore, hydroxychloroquine, could also syner-
gistically inhibit SARS-Cov-2,115 as these drugs may increase the local Zn2+ concentration and inhibit nsp12
RNA-dependent RNA polymerase.130

Finally, the SARS-CoV-2 caused the current pandemic in less than two decades after the SARS-CoV caused out-
breaks in several countries in 2003. Hence, we should prepare for new emergent coronaviruses even after the current
pandemic is over. Analysis of genomes for different bat and human coronaviruses belonging to the same family as

TABLE 1 Labile Zn-sites in SARS-CoV and/or SARS-CoV-2 nsp proteins

SARS-CoV SARS-CoV-2

Protein
name Structuresa Zn-ligands Structuresa Zn-ligands

Experimentally
confirmed
labile Zn-sites

PLpro

subdomain
of nsp3

4m0w, 3e9s, 5tl7 C190, C193,
C225, C227

6wrh, 6wrz, 6wuu, 6wx4,
6wzu, 7e35, 7jit, 7jn2, 7lbr,
7lbs, 7llf, 7llz, 7los

C189, C192, C224, C226 Lin, 2018117

Sargsyan, 2020115

nsp10 2fyg, 2ga6, 2xyq,
2xyr, 2xyv, 3r24

5c8s, 5c8t,
5c8u, 5nfy

C74, C77, C90,
H83

C117, C120,
C128, C130

6xkm, 6wjt, 6wvn, 6wrz, 6zpe,
7c2i, 7jib, 7jpe, 7jyy, 7jz0,
7krx

C74, C77, C90, H83
C117, C120, C128, C130

Sargsyan, 2020115

nsp12 6nus, 6nur
(EM)

C487, C645,
C646, H642

6xez, 6yyt, 7aap, 7b3b, 7b3c,
7b3d, 7btf, 7bv1, 7bv2,
7bw4, 7bzf, 7c2k, 7ctt,
7cxm, 7cyq (EM)

C301, C306, C310
H295
C487, C645, C646, H642

None

nsp13 6jyt C50, C55, C72,
H75

6zsl, 5rl7, 5rlb, 5rlc, 5rlg, 5rlz,
5rm1, 5rm4, 5rmc, 5rmd,
5rme, 5rml, 5rmm, 5rob,
7nio, 7nng

C5,
C8,
C26, C29
C50, C55, C72, H75

Chen, 2021116

nsp14 5c8s,
5c8t,
5c8u,
5nfy

C207, C210,
C226, H229

C477, C452,
C484, H487

7diy, 7mc5, 7mc6 (nsp14
ExoN domain)

C207, C210, C226, H229 Chen, 2021116

aThe Zn-ligand residues are taken from the first PDB highlighted in bold; e.g., the Zn-ligand numbers for SARS-CoV-2 nsp10 were taken from PDB 6xkm.
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SARS-CoV-2 shows the highest conservation in regions encoding the viral targets revealed herein.131 This suggests the
possibility of targeting the multiple conserved reactive free/Zn2+-bound Cys in emergent coronavirus pathogens indis-
pensable for the coronavirus replication using a cocktail of Zn2+-ejecting drugs and other broad-spectrum antivirals.

4 | CONCLUSION AND FUTURE OUTLOOK

Reactive Cys is of widespread interest, as they can serve as important drug targets among many other applications
(Section 1.4). Herein, we have delineated the key physicochemical principles underlying their reactivity in proteins:
The strength of the hydrogen bond stabilizing the Cys thiolate, which depends on the solvent accessibility and
hydrogen-bonding partner of the Cys, dictate the reactivity of free Cys. On the other hand, the negative charge on the
thiolate S� and the positive charge on the cation dictate the reactivity of Zn2+-bound Cys. These principles have pro-
vided guidelines to identify labile Zn2+-sites given the protein structure, which have been used to reveal novel
druggable Zn2+-sites in multiple SARS-CoV-2 proteins. These predicted SARS-CoV-2 druggable sites have been vali-
dated in in vitro and cell-based experiments using clinically safe Zn2+-ejector drugs, which target not only reactive
Zn2+-bound Cys, but also catalytic Cys. The importance of the multiple SARS-CoV-2 targets revealed herein is under-
scored by their evolutionary conservation and crucial functions in viral polypeptide proteolysis as well as viral RNA
synthesis, proofreading, and modification (Figure 4).

Because of the threat of another pandemic caused by a novel coronavirus, studying the best combination of Zn-
ejecting drugs and other broad-spectrum antivirals targeting the multiple conserved viral regions/pathways in cor-
onaviruses would be useful. Furthermore, since it takes time to solve structures of proteins for new infections,
predicting which Cys are reactive and which are inert from sequence alone would also be useful.

FIGURE 4 Viral drug targets and their functions
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