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Abstract: While the prevalence of smoking has steadily declined over time, the absolute numbers
of lung cancer cases and deaths have continued to increase in Japan. We employed a simple
mathematical model that describes the relationship between demographic dynamics and smoking
prevalence to predict future epidemiological trends of lung cancer by age and sex. Never-smokers,
smokers, and ex-smokers were assumed to experience different hazard of lung cancer, and the model
was parameterized using data from 2014 and before, as learning data, and a future forecast was
obtained from 2015 onwards. The maximum numbers of lung cancer cases and deaths in men will be
76,978 (95% confidence interval (CI): 76,630–77,253) and 63,284 (95% CI: 62,991–63507) in 2024, while
those in women will be 42,838 (95% CI: 42,601–43,095) and 32,267 (95% CI: 32,063–32,460) in 2035 and
2036, respectively. Afterwards, the absolute numbers of cases and deaths are predicted to decrease
monotonically. Our compartmental modeling approach is well suited to predicting lung cancer in
Japan with dynamic ageing and drastic decline in smoking prevalence. The predicted burden is
useful for anticipating demands for diagnosis, treatment, and care in the healthcare sector.
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1. Introduction

In Japan, the absolute numbers of cases of and deaths from lung cancer have been increasing for
decades (Figure 1A,B) [1]. The numbers of newly diagnosed cases of lung cancer in men and women
increased from 12,701 in 1975 to 77,617 in 2014 and from 4971 in 1975 to 36,933 in 2014, respectively.
The increase is considered to have reflected demographic ageing and past exposure history to smoking
among older adults (Figure 1C,D) [1]. Similarly, the numbers of lung cancer deaths in men and women
increased from 10,711 in 1975 to 52,505 in 2014 and from 4048 in 1975 to 20,891 in 2014, respectively [1,2].
If diagnosed with lymph node or distant metastasis, the effectiveness of treatment for lung cancer is
known to be limited, and the overall five-year survival rate of patients diagnosed in 2006–2008 is as
small as 31.9 % [2,3]. Pathologically, different types of lung cancers occur at different anatomical sites
and have different characteristics. Squamous cell carcinoma and small cell carcinoma are common
among men, especially smokers aged 35 years or older. They often arise centrally in larger bronchi,
and small cell carcinoma is more rapidly metastatic than other types. Pulmonary adenocarcinoma is
the most common type of lung cancer, seen in both smokers and lifelong nonsmokers, but most cases
are associated with smoking, and it is common among women. These types of lung cancer share the
common characteristic of an established causal link to tobacco smoking [3].

J. Clin. Med. 2019, 8, 326; doi:10.3390/jcm8030326 www.mdpi.com/journal/jcm

http://www.mdpi.com/journal/jcm
http://www.mdpi.com
https://orcid.org/0000-0003-0941-8537
http://www.mdpi.com/2077-0383/8/3/326?type=check_update&version=1
http://dx.doi.org/10.3390/jcm8030326
http://www.mdpi.com/journal/jcm


J. Clin. Med. 2019, 8, 326 2 of 19

J. Clin. Med. 2019, 8, x FOR PEER REVIEW 2 of 19 

 

 
Figure 1. Incidence and mortality of lung cancer and the demographic dynamics and smoking 
prevalence in Japan. Published data of lung cancer incidence and mortality and the demographic 
dynamics and smoking prevalence in Japan. (A) Incidence of lung cancer by age group and sex per 
100,000 population, (B) Mortality due to lung cancer by age group and sex per 100,000, (C) Age 
distribution of the population by sex, and (D) Prevalence of smokers by age group and sex. 

In Japan, the population dynamics of smokers have dramatically changed over time (Figure 1D) [4]. 
In 1965, the smoking prevalence was 82.3% and 15.7% in men and women, respectively, and these 
figures have dropped to 29.7% and 9.7% in 2016, respectively [4]. In addition, interventions against 
secondhand smoking, including separation of smoking areas from public spaces and a total ban on 
smoking within buildings, are underway. Because of these drastic declines in exposure over time, it 
is anticipated that the epidemiological dynamics of lung cancer will also change dramatically in the 
future, reflecting the dynamic decline in the population at risk. However, the epidemiological 
dynamics of lung cancer are also regulated by demographic dynamics: Japan is a superaged nation, 
with a dependency ratio that will exceed 50% in the near future (Figure 1C) [5,6]. As the country still 
has ultralow fertility, the ageing is still expected to progress [6]. Then, the incidence of lung cancer 
per 100,000 persons could continue to increase, fueled by the inflow of older people who become 
increasingly aged and have an elevated risk of contracting lung cancer. Besides, as Japan’s population 
has started to decrease, the prevalence of smoking has also monotonically decreased, and thus, it is 
anticipated that the absolute number of lung cancer cases will eventually stop growing. 

Considering these two contradicting dynamic features, i.e., decreasing prevalence of smokers 
and ageing in declining population, predicting the epidemiological dynamics of lung cancer in 
Japan’s future require us to account for detailed underlying population dynamics, including time-
dependent changes in the population at high risk of lung cancer. While qualitative discussions on the 
eventual decline of lung cancer have taken place elsewhere [7], and although various modeling 
studies have been conducted in North America to explore the impact of anti-smoking measures on 
lung cancer epidemiology [8,9], we have yet to capture the dynamics in Japan or to fully grasp the 
outcomes using a mathematical model that explicitly describes the underlying population dynamics. 

The purpose of the present study is to devise a simple mathematical model that allows us to 
describe both demographic dynamics and prevalence of smoking to appropriately predict future 
epidemiological trends of lung cancer by age and sex in Japan. 

Figure 1. Incidence and mortality of lung cancer and the demographic dynamics and smoking
prevalence in Japan. Published data of lung cancer incidence and mortality and the demographic
dynamics and smoking prevalence in Japan. (A) Incidence of lung cancer by age group and sex
per 100,000 population, (B) Mortality due to lung cancer by age group and sex per 100,000, (C) Age
distribution of the population by sex, and (D) Prevalence of smokers by age group and sex.

In Japan, the population dynamics of smokers have dramatically changed over time (Figure 1D) [4].
In 1965, the smoking prevalence was 82.3% and 15.7% in men and women, respectively, and these
figures have dropped to 29.7% and 9.7% in 2016, respectively [4]. In addition, interventions against
secondhand smoking, including separation of smoking areas from public spaces and a total ban on
smoking within buildings, are underway. Because of these drastic declines in exposure over time,
it is anticipated that the epidemiological dynamics of lung cancer will also change dramatically in
the future, reflecting the dynamic decline in the population at risk. However, the epidemiological
dynamics of lung cancer are also regulated by demographic dynamics: Japan is a superaged nation,
with a dependency ratio that will exceed 50% in the near future (Figure 1C) [5,6]. As the country still
has ultralow fertility, the ageing is still expected to progress [6]. Then, the incidence of lung cancer
per 100,000 persons could continue to increase, fueled by the inflow of older people who become
increasingly aged and have an elevated risk of contracting lung cancer. Besides, as Japan’s population
has started to decrease, the prevalence of smoking has also monotonically decreased, and thus, it is
anticipated that the absolute number of lung cancer cases will eventually stop growing.

Considering these two contradicting dynamic features, i.e., decreasing prevalence of smokers and
ageing in declining population, predicting the epidemiological dynamics of lung cancer in Japan’s
future require us to account for detailed underlying population dynamics, including time-dependent
changes in the population at high risk of lung cancer. While qualitative discussions on the eventual
decline of lung cancer have taken place elsewhere [7], and although various modeling studies have
been conducted in North America to explore the impact of anti-smoking measures on lung cancer
epidemiology [8,9], we have yet to capture the dynamics in Japan or to fully grasp the outcomes using
a mathematical model that explicitly describes the underlying population dynamics.



J. Clin. Med. 2019, 8, 326 3 of 19

The purpose of the present study is to devise a simple mathematical model that allows us to
describe both demographic dynamics and prevalence of smoking to appropriately predict future
epidemiological trends of lung cancer by age and sex in Japan.

2. Materials and Methods

2.1. Epidemiological and Demographic Data

To accomplish the goal of this study, we reconstructed the demographic and epidemiological
dynamics of smokers and patients with lung cancer. To do so, we extracted five pieces of information
as the input data: (i) lung cancer incidence, (ii) lung cancer mortality, (iii) smoking prevalence, (iv) age-
and sex-specific population size, and (v) mortality in general. For (i), we used the Cancer Registry and
Statistics from the Cancer Information Service, National Cancer Center, Japan by 5-year age groups
from 0 to 85 years and by sex from 1975 to 2014 [1]. The nationwide cancer registry system was fully set
up in Japan only recently, and for this reason, the estimated cancer incidence from 32 population-based
cancer registries was used as a substitute to represent the incidence of lung cancer in Japan [10]. For (ii)
and (v), we used cause-specific mortality, given as the yearly number of deaths by cause, by 5-year age
groups and sex from 1965 to 2014, from data publicly available from the Health, Labour and Welfare
Statistics Association [5,11]. The time series of smoking prevalence (i.e., dataset (iii)) from 1965 to 2016
was derived from the report by Japan Tobacco, Inc. by 10-year age groups from 20 to 60 years and by
sex [4,12]. Although the national survey (i.e., the National Health and Nutrition Survey in Japan) also
recorded similar datasets of smoking prevalence, the national survey data have only been available
since 1989, and because of the overall similarity between the two datasets, we decided to use the Japan
Tobacco dataset on account of its longer time series. Moreover, we rigorously fitted our model to the
age- and sex-specific population sizes in Japan (i.e., dataset (iv)) using census data from the Statistics
Bureau, Ministry of Internal Affairs and Communications, Japan to obtain the population size by age
(0–100 years) and sex [13]. Because the census is taken only every 5 years, and the population size in
gap years was extrapolated by the Ministry of Health, Labour and Welfare, we used the compensated
population estimates for every year. In addition, future population sizes from 2016 to 2065 were used
to obtain future predictions of lung cancer, and for this purpose, the projected population by age and
sex was extracted from the predictions of the National Institute of Population and Social Security,
Japan [6].

2.2. Mathematical Model

We used a compartmental mathematical model that describes the natural history of smoking
and the differential hazard rates of developing lung cancer according to different smoking statuses
(Figure 2). Every person is born as a never-smoker, but people experience the hazard of becoming a
smoker that depends on time and age. Smokers can quit smoking during the course of life to become
ex-smokers. Let t and a represent time and age, respectively. The population’s smoking status is
expressed by M(t, a), S(t, a), and E(t, a), representing the number of never-smokers, smokers, and
ex-smokers, respectively, in year t at age a. Never-smokers begin smoking at a rate of σ(t, a), and
smokers cease smoking at a rate of δ(t, a). For simplicity, we assume that ex-smokers do not restart
smoking again (i.e., we assume that purported ex-smokers who failed to quit smoking for a long
period were not truly ex-smokers and that they remained in the smokers’ compartment). All three
compartments experience two different hazards: the hazard of lung cancer and the mortality hazard
due to causes other than lung cancer. The hazard of lung cancer among never-smokers is time- and
age-dependent, λ(t, a), and smokers and ex-smokers experience kS and kE times greater hazard rates
of lung cancer, which causes the individual enter the compartment of patients with lung cancer L(t, a),
who die at a rate of µ(t, a) + ν(t, a), where µ(t, a) is the mortality rate of the general population due to
any cause other than lung cancer and ν(t, a) is the excess mortality due to lung cancer. To represent the
elevated risk of death by smoking status, we use 1 + qS and 1 + qE as the hazard ratios of death from
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any cause other than lung cancer among smokers and ex-smokers, respectively, as compared with
never-smokers. That is, never smokers, smokers, and ex-smokers die at the rates µ(a), (1 + qS)µ(a),
and (1 + qE)µ(a), respectively.J. Clin. Med. 2019, 8, x FOR PEER REVIEW 4 of 19 
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hazard rates of lung cancer at 𝜆, 𝑘ௌ𝜆, and 𝑘ா𝜆, respectively. Members of the population in each 
compartment die at given mortality rates. 
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Figure 2. Compartmental model of lung cancer. Compartment diagram of the proposed model to
predict lung cancer from the epidemiological, demographic, and smoking data. The population is
categorized by smoking and lung cancer status. Never smokers begin smoking at a transition rate σ

and move to the compartment of smokers. Smokers cease smoking at a transition rate δ and become
ex-smokers. For simplicity and because of the absence of data over long time series, we assume that
ex-smokers do not restart smoking. Never-smokers, smokers, and ex-smokers experience different
hazard rates of lung cancer at λ, kSλ, and kEλ, respectively. Members of the population in each
compartment die at given mortality rates.

The dynamics is governed by the following partial differential equations:(
∂
∂t +

∂
∂a

)
M(t, a) = −(µ(t, a) + σ(t, a) + λ(t, a))M(t, a),(

∂
∂t +

∂
∂a

)
S(t, a) = σ(t, a)M(t, a)− ((1 + qS)µ(t, a) + δ(t, a) + kSλ(t, a))S(t, a),(

∂
∂t +

∂
∂a

)
E(t, a) = δ(t, a)S(t, a)− ((1 + qE)µ(t, a) + kEλ(t, a))E(t, a),(

∂
∂t +

∂
∂a

)
L(t, a) = λ(t, a)(M(t, a) + kSS(t, a) + kEE(t, a))− (µ(t, a) + ν(t, a))E(t, a),

(1)

with the initial conditions and the boundary conditions

M(t0, a)= M0(a),
S(t0, a)= S0(a),
E(t0, a)= E0(a),
L(t0, a)= L0(a),
M(t, a0)= B(t),
S(t, a0)= 0,
E(t, a0)= 0,
L(t, a0)= 0.

where t0 is the initial time, a0 is the youngest age of the target population, B(t) is the number
of population members aged a0 at time t, and M0(a), S0(a), E0(a), and L0(a) are the initial age
distributions of the population. To fit the continuous model to discrete data, the abovementioned model
was rewritten as ordinary differential equations, the details of which are available in the Appendix.

2.3. Statistical Estimation

We quantified the system (1) without imposing excessively unnecessary assumptions.
Only parameters kS, kE, qS, and qE, i.e., the hazard ratios of lung cancer among smokers and
ex-smokers and excess hazard ratios of mortality for reasons other than lung cancer among smokers



J. Clin. Med. 2019, 8, 326 5 of 19

and ex-smokers, respectively, were extracted from the literature and fixed: kS = 4.94, kE = 2.20,
qS = 0.49, qE = 0.20 for men and kS = 4.25, kE = 2.19, qS = 0.51, qE = 0.46 for women [14].
Other published studies from Japan yielded similar estimates [15–19]. All remaining rates were
estimated via the following fitting procedure. As mentioned above, we used five different datasets,
including the (i) incidence, (ii) mortality of lung cancer, (iii) smoking prevalence, (iv) population size,
and (v) mortality other than lung cancer. Smoking prevalence was assumed to have been the result
of binomial sampling, while other data-generating processes were each approximated as Poisson
processes (see the Appendix for a detailed description of the likelihood function). We employed
the maximum likelihood method to estimate parameters and derived the 95% confidence intervals
(Cis) of model estimates (e.g., intervals of projected numbers of patients with lung cancer) using a
parametric bootstrap method. During the bootstrapping exercise, model parameters were resampled
from a multivariate normal distribution with mean θ and variance-covariance matrix Σ, where θ is the
estimate obtained by maximum likelihood estimation and Σ is the inverse of the Hessian matrix of
− log L(θ) at θ = θ. We obtained the model solution for each set of parameters and performed 1000
parameter resampling simulations to obtain a distribution for each model solution. We then computed
the 95% CI by taking the 2.5th and 97.5th percentiles of the simulated distribution.

2.4. Ethical Considerations

The present study analyzed data that are publicly available. As such, the datasets used in our
study were de-identified and fully anonymized in advance, and the analysis of publicly available data
without identity information does not require ethical approval.

2.5. Data Sharing Policy

The major data source (i.e., the datasets on lung cancer incidence and mortality) is available in
references [1,2] via the linked URLs.

3. Results

Figure 3 compares the observed and predicted incidence and mortality rates of lung cancer per
100,000 population along with forecasts for 2015–2050. Incidence and mortality were forecasted jointly
by age and sex. Observed patterns were qualitatively captured very well for all the observed rates,
indicating that both incidence and mortality rates per 100,000 population for the entire population as
well as by gender will continue to steadily grow overall (also, see Appendix Figure A1). However,
the incidence and mortality of older men aged 75 years or older are expected to have already peaked
by 2015 (Figure 3A,C) and are predicted to decrease over time, whereas those among women will
steadily increase over time in the future (Figure 3B,D). The predicted incidence and mortality among
men aged 65–74 years will slightly decrease with time in men and will probably peak around 2045 in
women. Long-term decline in the incidence and mortality in men’s age groups other than those aged
75 years or older is smaller, because there is ageing within age groups, and thus, the risk of lung cancer
is elevated over time within the same age group.

When the absolute numbers of lung cancer cases and deaths are examined by age group and
sex (Figure 4), the predicted patterns are more counterintuitive than those of the rates per 100,000
population. The number of new lung cancer cases will start to wane starting in the mid-2020s in
men and around 2035 in women (Figure 4A,B), and these overall patterns also hold for the predicted
numbers of lung cancer deaths (Figure 4C,D). The maximum numbers of new cases and deaths due to
lung cancer in men will be 76,978 (95% CI: 76,630–77,253) and 63,284 (95% CI: 62,991–63507) in 2024,
while those in women will be 42,838 (95% CI: 42,601–43,095) and 32,267 (95% CI: 32,063–32,460) in
2035 and 2036, respectively. The absolute numbers of lung cancer cases and deaths among older adults
aged 65–74 years and 75 years or older will both fluctuate because of the underlying demographic
dynamics (i.e., the visible impact of the baby boom in Japan), and for both men and women, the
predicted numbers of cases and deaths will have mostly plateaued by 2030. Reflecting a decreased
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population and its overall ageing, the numbers of lung cancer cases and deaths among those aged
15–64 years will steadily decrease among both men and women (see Appendix Figure A2).
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Figure 3. Comparison between observed and predicted lung cancer incidence and mortality per
100,000 population in Japan. Comparisons between observed and predicted lung cancer incidence and
mortality per 100,000 population are made by age group and sex. (A) Lung cancer incidence in men,
(B) Lung cancer incidence in women, (C) Mortality in men, and (D) Mortality in women. Bold dashed
line represents working-age population aged 15–64 years, thin dashed line corresponds to those aged
65–74 years, uneven dashed line represents those aged 75 years or older, and solid line represents
the entire population. Grey dots before 2014 were used to estimate model fitting parameters via the
maximum likelihood method, and lines for 2015 and later are predictions calculated using maximum
likelihood estimates at the latest time. The 95% confidence intervals are omitted from predictions
because of the narrow uncertainty bounds.
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Figure 4. Comparisons between observed and predicted absolute numbers of lung cancer cases and
deaths in Japan. Comparisons between observed and predicted absolute numbers of lung cancer
cases and deaths are shown by age group and sex. (A) Lung cancer incidence in men, (B) Lung
cancer incidence in women, (C) Mortality in men, and (D) Mortality in women. Bold dashed line
represents working-age population aged 15–64 years, thin dashed line corresponds to those aged
65–74 years, uneven dashed line represents those aged 75 years or older, and solid line represents
the entire population. Grey dots before 2014 were used to estimate model fitting parameters via
the maximum likelihood method, and lines for 2015 and later indicate predictions calculated using
maximum likelihood estimates at the latest time. The 95% confidence intervals are omitted from
predictions because of the narrow uncertainty bounds.

Figure 5 shows the age-dependent dynamics and forecast of smoking prevalence.
Smoking prevalence has drastically decreased in men over time, and the declining trend in the working
age population is expected to continue until around 2030 (Figure 5A). Because of Japan’s quickening
rate of demographic decline, the decrease in smoking prevalence is expected to plateau among those
aged 15–64 years. The prevalence in women is lower than that of men, and women’s overall prevalence
of smoking should eventually be close to or slightly lower than that of men (Figure 5B). As time passes,
in terms of prevalence, ex-smokers will increasingly dominate the older adult population (Figure 5C,D).
Especially, among men, more than 50% were predicted to be ex-smokers by 2015, and this increase will
continue even after 2030. A similar increasing trend of ex-smokers is also expected among women
by 2030.

Because the hazard ratio ks of lung cancer among smokers compared with never-smokers is one
of the most important but uncertain quantities that could influence our forecast, sensitivity analysis of
the predicted values was conducted by varying the relative value of ks (Figure 6). When we varied
the hazard ratio from 0.5 to 1.5 times the original value, both lung cancer incidence and mortality
per 100,000 population changed only slightly. Among men, the incidence and mortality increased
with 1.5 times the original ks, but we did not observe any abrupt decline by employing 0.5 times ks,
perhaps because of the greater impact of smokers and ex-smokers on the demographic dynamics of
the population of patients with lung cancer (Figure 6A). Among women, a monotonic increase in both
incidence and mortality was observed when the multiplier of the hazard ratio was increased from 0.5
to 1.5 (Figure 6B).
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Figure 5. Smoking prevalence in Japan. Comparisons between observed and predicted smoking
prevalence in Japan. (A) Smoking prevalence in men, (B) Smoking prevalence in women,
(C) Ex-smokers’ prevalence in men, and (D) Ex-smokers’ prevalence in women. Solid line represents
the estimated prevalence among those aged 15–64 years, dotted line represents the prevalence among
those aged 65–74 years, and dashed line shows the estimate among people aged 75 years or older.
Lines for 2015 and later indicate predictions calculated using maximum likelihood estimates at the
latest time.
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Figure 6. Sensitivity of lung cancer incidence and mortality to the relative hazard ratio among smokers.
Predicted incidence and mortality of lung cancer are examined according to the different relative
hazard ratios of lung cancer among smokers. (A) Incidence and mortality in men and (B) Incidence and
mortality in women. Black marks show the incidence, while grey marks represent mortality. Circles,
triangles, and squares represent those aged 15–64 years, 65–74 years, and 75 years or older, respectively.
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4. Discussion

The present study parameterized a mathematical model that governs the demographic dynamics
and population dynamics of smokers, allowing us to examine the time-dependent epidemiological
dynamics of lung cancer in the future of Japan. The model was parameterized using data from
2014 and before as learning data and offered future predictions of lung cancer incidence and deaths,
showing that the absolute numbers of new cases and deaths from lung cancer will increase until the
mid-2020s in men and mid-2030s in women, respectively. Afterwards, the absolute numbers of cases
and deaths were predicted to decrease monotonically, reflecting the decline in smoking prevalence
and future population decline in Japan [20]. However, the incidence and mortality predictions per
100,000 persons continued to increase slightly, contradicting the overall decreasing trends in Western
countries. The predicted burden of lung cancer is likely useful for anticipating future demands for
diagnosis, treatment, and care in the healthcare sector. To our knowledge, except for individual
risk-based prediction using cohort epidemiological data [21], the present study is the first to have
offered an explicit prediction of lung cancer rates at a population level in Japan.

As an important lesson, we have successfully quantified the impact of decline in smoking rate and
decreasing population on the epidemiology of lung cancer in an objective manner. Forecasted absolute
numbers of cases and deaths are critical to plan future healthcare services, including estimations of
required medical services (e.g., demand for screening) and hospital beds at facilities. In particular,
we have shown that the dramatic increase in demand will peak in the mid-2030s among women, and
subsequently, the demand is expected to wane drastically because of a decreasing population at high
risk of lung cancer. Rather than the absolute value, the overall social burden of lung cancer might be
better measured by the rate per 100,000 population. It is critical that the rate is expected to increase
steadily over time, although breakthroughs in prevention or treatment of lung cancer might occur
in the future. Our finding contradicts the ongoing epidemiological trends in other industrialized
countries where both the incidence and mortality are in declining trend: the impact of rapid ageing
has been very influential in Japan. The good news is that the absolute numbers of cases and deaths are
expected to start to wane from the 2030s, and Japan may have already experienced its peak incidence
rate of lung cancer in older men. Different trends between the absolute number and the estimate per
100,000 indicate a critical importance to account for the demographic dynamics (e.g., a flat or slight
increase in the incidence among elderly aged 75 years or older in Figure 3C).

In addition to the value of overall prediction of epidemiological trends and medical demand
related to lung cancer, the use of the proposed mathematical model has two remarkable advantages.
First, our model appropriately offers predictions by age and sex, and thus would be useful for
anticipating demands for diagnosis, treatment, and care. For instance, one of our long-term forecasts
indicates that the absolute numbers of cases and deaths among those aged 75 years or older will
increase again starting in the 2040s, while those among the working-age population will continue
to decrease steadily (Figure 4). This is alarming for the treatment of patients over the next 30 years.
Such fluctuating patterns were appropriately captured because our predictions were firmly supported
by the tightly predicted demographic dynamics, including ageing, and this feature is well suited to the
Japanese setting with its fast demographic changes over time. Second, the present study successfully
obtained future trends of smoking prevalence using a simplistic structure of the natural history of
smoking. Reflecting the trend of smoking prevalence, the decline in absolute number of cases in
women was shown to be smaller than that in men (Figure 4). Moreover, smoking prevalence was
firmly predicted to decrease monotonically in the future. However, the prevalence of ex-smokers will
continue to grow, and this will be a remarkable characteristic among older adults in the future, putting
a substantial number of people at risk of lung cancer.

By employing the proposed modeling scheme, public health insights into the effectiveness of
anti-smoking measures could potentially be gained while appropriately accounting for the underlying
demographic dynamics and smoking prevalence. Published modeling methods that employ statistical
modeling techniques, including survival analysis and individual-based (micro)simulations, can also
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be used for similar assessments [8,9,22–46], but manual control of the population at risk is required
in these simplistic approaches. Our proposed model does not have to involve such manual input
of the population size at risk because we explicitly model the demographic dynamics and examine
the future course of smoking prevalence within our model directly when predicting the numbers of
lung cancer cases [25,26,28,31,32,45]. Another direction of possible application would be to explore the
effectiveness of additional screening, including regular or non-regular screening with chest X-rays or
computed tomography, which is our area of ongoing future study [27,29–31,37,42,44].

While our model appears to be practically useful, the proposed modeling study involved a
number of limitations that must be described here. First, our model does not account for future
improvement in prevention and treatment. Presently, lung cancer remains one of the leading causes of
death (i.e., it has a severe prognosis), but gene therapy for lung cancer and other novel approaches
could drastically change case outcomes in the future. Second, risk factors other than smoking were not
explicitly considered. Genetic predisposition and well-known carcinogenic exposures could be used to
attain earlier diagnosis and improve prognosis [47,48]. In fact, the relative risk of smoking in causing
lung cancer among Japanese is known as smaller than those in the United States and Europe, referred
to as the smoking paradox [49]. Third, we did not have substantial datasets to incorporate the impact of
smoking dose (e.g., pack-years) into our model, although the dose is known to be influential in clinical
settings. Fourth, we ignored the impact of secondhand smoking on lung cancer, while it has been
documented that secondhand exposure in households acts as a cause [50]. Incorporating secondhand
smoking might require modeling and data at greater spatial precision (e.g., household-level data). Fifth,
to obtain future forecasts, we have used the projected population in Japan and ignored the mortality
rate and other demographic parameters [51]. If a drastic change happens in other diseases (e.g., certain
types of cancers become not lethal at all someday) [52], the epidemiological structure of mortality
would change and mortality due to lung cancer would also be influenced. Lastly, it has been pointed
out that early initiation of smoking has become more and more common in Japan [20]. Although our
model accounted for time-dependent hazard rate to start smoking, the future prediction had to assume
a time-dependent hazard which was derived from the most recent observed time [53–55].

Despite these limitations, we believe that the present study successfully captured the demographic
and population dynamics of smokers in Japan, yielding appropriate estimates and forecasts of lung cancer.
We are open to criticisms or comments for future collaborations, hoping to expand the proposed modeling
schemes to other types of cancer and extend the lung cancer model to scenario analysis of interventions.

5. Conclusions

The present study parameterized a mathematical model that governs the demographic and
population dynamics of smokers, predicting the epidemiological dynamics of lung cancer in Japan.
The model was parameterized using data from 2014 and before as learning data, and offered future
predictions of lung cancer incidence and deaths, showing that the absolute numbers of new lung cancer
cases and deaths will increase until the mid-2020s in men and the mid-2030s in women. The model can
potentially be further applied to elucidate the effectiveness of anti-smoking measures and screening
procedures at reducing lung cancer mortality.
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Appendix A Derivation of Likelihood Function

To transform these partial differential equations to ordinary differential equations, we define

M(t) = M(t + t0, t + a0),
S(t) = S(t + t0, t + a0),
E(t) = E(t + t0, t + a0),
L(t) = L(t + t0, t + a0),

where t0 and a0 are some fixed time and age. Then, we derive the following ordinary differential
equations:

dM
dt (t) = −(µ(t + t0, t + a0) + σ(t + t0, t + a0) + λ(t + t0, t + a0))M(t),

dS
dt (t) = σ(t + t0, t + a0)M(t)− ((1 + qS)µ(t + t0, t + a0) + δ(t + t0, t + a0) + kSλ(t + t0, t + a0))S(t),
dE
dt (t) = δ(t + t0, t + a0)S(t)− ((1 + qE)µ(t + t0, t + a0) + kEλ(t + t0, t + a0)), E(t)
dL
dt (t) = λ(t + t0, a + a0)

(
M(t) + kSS(t) + kEE(t)

)
− (µ(t + t0, t + a0) + ν(t + t0, t + a0))E(t).

These ordinary differential equations describe the time evolution of a number of populations
aged a0 at t0.

Transition rates depending on t and a are assumed to be products of a step function of a and a
step function of t. Spliting intervals of a and t to subintervals whose lengths are IA

λ and IT
λ for the

transition rate λ(t, a), we consider parameters λT
i for i ∈ Z and λA

j for j ∈ Z so that

λ(t, a) = λT
i λA

j ,

when t ∈
[
t0 + IT

λ (i− 1), t0 + IT
λ i
)

and a ∈
[
a0 + IA

λ (j− 1), a0 + IA
λ j
)
. Here, letting NT

λ be a number
of time intervals and NA

λ be a number of age intervals, we also assume that λT
i = λT

NT
λ

if i > NT
λ and

λA
j = λA

NA
λ

if j > NA
λ .

Similarly, for interval lengths IT
µ and IA

µ and numbers of intervals NT
µ and NA

µ , we define
parameters µT

i and µA
j for i, j ∈ Z so that

µ(t, a) = µT
i µA

j ,

when t ∈
[
t0 + IT

µ (i− 1), t0 + IT
µ i
)

and a ∈
[

a0 + IA
µ (j− 1), a0 + IA

µ j
)

. Here, if i > NT
µ , then we let

µT
i = µT

NT
µ

, and if j > NA
µ , then we let µA

j = µA
NA

µ
. For interval lengths IT

ν and IA
ν and numbers of

intervals NT
ν and NA

ν , we define parameters νT
i and νA

j for i, j ∈ Z so that

ν(t, a) = νT
i νA

j

when t ∈
[
t0 + IT

ν (i− 1), t0 + IT
ν i
)

and a ∈
[
a0 + IA

ν (j− 1), a0 + IA
ν j
)
. Here, if i > NT

ν , then we let
νT

i = νT
NT

ν
, and if j > NA

ν , then we let νA
j = νA

NA
ν

.
As for transition rates related to smoking status, we assume that people start smoking between

ages 15 and 35 years and that people aged less than 20 years and those aged 20 years or older each
start smoking at constant rates. We also assume that there is no smoking cessation among people aged

www.edanzediting.com/ac
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less than 20 years and that people aged 20 years or older stop smoking at a constant rate. Therefore,
for a size of time interval Is, σ(t, a) and δ(t, a) are defined as

σ(t, a) =


σAσi (a < 20)
σi (20 ≤ a < 35)
0 (a ≥ 35)

and

δ(t, a) =

{
0 (a < 20)
δi (a ≥ 20)

when t ∈ [t0 + Isi, t0 + Is(i + 1)) for parameters σA, σi, and δi. Here, letting Ns be a number of time
intervals, we define σi = σNs and δi = δNs if i > Ns.

Because of data availability, our model has the time range [1975, 2015] and the age range [15, 100].
We also let

Iv
u = 5 for u = λ, µ, ν and v = A, T

NT
u = 8 for u = λ, µ, ν

NA
λ = NA

ν = 15, NT
µ = 18, Is = 10, Ns = 4.

The ordinary differential equations are solved numerically by the fourth-order Runge-Kutta
method. For a0 = 15 and t0 = 1975, . . . , 2014, the initial values are given by M(0) = B(t) and
S(0) = E(0) = L(0) = 0. For a0 = 16, . . . , 100 and t = 1975, we need to determine the initial values
M(0) = M0(a0), S(0) = S0(a0), E(0) = E0(a0), and L(0) = L0(a0). We assume that these initial
values are derived from the situation where parameters at t = 1975 do not change for a long period.
We consider the equations

d
∼
M

da (a) = −(µ(1975, a) + σ(1975, a) + λ(1975, a))
∼
M(t),

d
∼
S

da (a) = σ(1975, a)
∼
M(a)− ((1 + qS)µ(1975, a) + δ(1975, a) + kSλ(1975, a))

∼
S(a),

d
∼
E

da (a) = δ(1975, a)
∼
S(a)− ((1 + qE)µ(1975, a) + kEλ(1975, a))

∼
E(a)

d
∼
L

da (a) = λ(1975, a)(
∼
M(a) + kS

∼
S(a) + kE

∼
E(a))− (µ(1975, a) + ν(1975, a))

∼
E(a)

with initial values
∼
M(15) = 1 and

∼
S(15) =

∼
E(15) =

∼
L(15) = 0. Let nt,a be the actual number of

members of the population aged a at year t. From the solutions
∼
M(a),

∼
S(a),

∼
E(a), and

∼
L(a), we let

L0(a) = n1975,a
∼
L(a)

∼
M(a)+

∼
S(a)+

∼
E(a)+

∼
L(a)

M0(a) = (n1975,a−L0(a))
∼
M(a)

∼
M(a)+

∼
S(a)+

∼
E(a)

S0(a) =
(n1975,a−L0(a))

∼
S(a)

∼
M(a)+

∼
S(a)+

∼
E(a)

E0(a) =
(n1975,a−L0(a))

∼
E(a)

∼
M(a)+

∼
S(a)+

∼
E(a)

.

We define the vector of unknown parameters

θ = (λT
1 , . . . , λT

NT
λ

, λA
1 , . . . , λA

NA
λ

, νT
1 , . . . , νT

NT
ν

, νA
1 , . . . , νA

NA
ν

, µT
1 , . . . , µT

NT
µ

, µA
1 , . . . , µA

NA
µ

,

σA, σ1, . . . , σNs , δ1, . . . , δNs),

which is estimated by maximum likelihood estimation.
To define the likelihood function, smoking prevalence is assumed to follow a binomial distribution.

We assume that the total number of samples at each year is 10,000, and the number of samples
for each age group is calculated by dividing the total number by the population of the age
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group. The probabilities of the binomial distribution are calculated by our model. We assume
that numbers of members of the population, deaths, lung cancer cases, and lung cancer deaths follow
a Poisson distribution.

Let N(t, a) = M(t, a) + S(t, a) + E(t, a) + L(t, a), which is the number of members of the
population obtained from our model. The likelihood function for the number of members of the
population is defined as follows.

l1(θ, t)=
100

∏
a=15

N(t, a)nt,a e−N(t,a)

(nt,a)!
.

Note that N(t, a) depends on θ. Let P(t, a1, a2) be the smoking prevalence aged from a1 to a2 at
year t calculated by our model, that is,

P(t, a1, a2) =
∑a2

a=a1 S(t, a)
∑a2

a=a1(M(t, a) + S(t, a) + E(t, a))

L(t, a) is excluded from the calculation of P(t, a1, a2) because L(t, a) does not contain information
about smoking status. The likelihood function for smoking prevalence is defined by

l2(θ, t) =
(

rt,60,100
qt,60,100

)
P(t, 60, 100)qt,60,100(1− P(t, 60, 100))rt,60,100−qt,60,100

× ∏
a∈{20+10i | i=0,...3}

(
rt,a,a+9
qt,a,a+9

)
P(t, a, a + 9)qt,a,a+9(1− P(t, a, a + 9))rt,a,a+9−qt,a,a+9

where qt,a1,a2 is number of smokers among rt,a1,a2 samples from the population aged from a1 to a2 at
year t.

The expected values for the rest of data are obtained from additional compartments that signify
cumulative numbers of deaths and lung cancer cases. For given values of ts and a0, the cumulative
numbers of lung cancer cases Ua0,t0(t), the lung cancer deaths Va0,t0(t), and deaths for reasons other
than lung cancer Wa0,t0(t) corresponding to M(t), S(t), E(t), and L(t) are determined by

dUa0,t0
dt (t) = λ(t + t0, t + a0)

(
M(t) + kSS(t) + kEE(t)

)
dVa0,t0

dt (t) = ν(t + t0, t + a0)E(t)
dWa0,t0

dt (t) = µ(t + t0, t + a0)
(

M(t) + (1 + qS)S(t) + (1 + qE)E(t) + L(t)
)

U(0) = 0, V(0) = 0, W(0) = 0.

Therefore, the expected numbers of lung cancer cases U(t, a), lung cancer deaths V(t, a), and
overall number of deaths W(t, a) among the population aged a in year t are calculated by

U(t, a) = Ua0,t0(t− t0 + 1)−Ua0,t0(t− t0)

V(t, a) = Va0,t0(t− t0 + 1)−Va0,t0(t− t0)

W(t, a) = Wa0,t0(t− t0 + 1) + Va0,t0(t− t0 + 1)−Wa0,t0(t− t0)−Va0,t0(t− t0),

where a = a0 + t − t0. We note that U(t, a), V(t, a), and W(t, a) depend on θ. We introduce the
following notations:

∼
U(t, a1, a2)=

a2
∑

a=a1

U(t, a)

∼
V(t, a1, a2)=

a2
∑

a=a1

V(t, a)

∼
W(t, a1, a2)=

a2
∑

a=a1

W(t, a).
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Let ut,a1,a2 , vt,a1,a2 , and wt,a1,a2 be the actual numbers of lung cancer cases, lung cancer deaths, and
total deaths for the population aged from a1 to a2 at year t. The likelihood function for these data is
defined by

l3(θ, t) =
∼
U(t,85,100)ut,85,100 e−

∼
U(t,85,100)

(ut,85,100)!
∏

a∈{15+5i | i=0,...,14}

∼
U(t,a,a+4)ut,a,a+4 e−

∼
U(t,a,a+4)

(ut,a,a+4)!

l4(θ, t) =
∼
V(t,100,100)vt,100,100 e−

∼
V(t,100,100)

(vt,100,100)!
∏

a∈{15+5i | i=0,...,14}

∼
V(t,a,a+4)vt,a,a+4 e−

∼
V(t,a,a+4)

(vt,a,a+4)!

l5(θ, t) =
∼
W(t,100,100)wt,100,100 e−

∼
W(t,100,100)

(wt,100,100)!
∏

a∈{15+5i | i=0,...,14}

∼
W(t,a,a+4)wt,a,a+4 e−

∼
W(t,a,a+4)

(wt,a,a+4)!
.

Finally, we have the likelihood function for all data

l(θ) = ∏
t

(
5

∏
i=1

li(θ, t)

)
.

Appendix B Population Size Adjustment

1. The population data [5] contain 1-year age groups up to age 85 years from 1975 to 1979, up to age
90 years from 1980 to 2004, and up to age 100 years from 2005 onward. A census was held every
5 years, and the census data contain 1-year age groups up to age 100 years from 1975 onward. We
interpolated the population data by census data as follows.

2. Let T and T + 5 be years in which the census was held and p(t, a) be the population size at year t
and age a for t = T, T + 5, and a = 0, . . . , 100. Note that p(t, 100) is the population size aged over
100 years. Let q(t, a) be the population size at year t and age a for t = T + 1, . . . , T + 4 in which
the census was not held. We assume that A < 100 so that q(t, a) are given for a = 0, . . . , A and
q(t, A) is the population size aged over A.

3. The population size p(t, a) for t = T + 1, . . . , T + 4 and a = 0, . . . , A− 1 is q(t, a). Distributing
q(t, A) into 1-year age groups using p(T, a) and p(T + 5, a), the population size p(t, a) for
t = T + 1, . . . , T + 4 and a = A, . . . , 100 was calculated by

r(t, a) =
(

1− t−T
5

)
p(T,a)

∑100
a=0 p(T,a)

+ t−T
5

p(T+5,a)
∑100

a=0 p(T+5,a)

p(t, a) = q(t, A)
r(t,a)

∑100
a=A r(t,a)

.

4. We obtained the interpolated population size p(t, a) for all ages up to 100 years. Let d(t, a1, a2)

be mortality at year t and age from a1 to a2. d(t, 100, ∞) is assumed to be the mortality of the
population aged over 100 years. Mortality values are given by 5-year age groups, that is, a1 = 5n
and a2 = 5(n + 1) for n ∈ Z. We corrected the population size so that the difference between
p(t, a) and p(t− 1, a− 1) is equal to mortality. s(t, a) is defined as

s(t, a) = p(t, a)− p(t− 1, a− 1) (0 ≤ a < 100)
s(t, 100) = p(t, 100)− p(t− 1, 99)− p(t− 1, 100).

5. The difference u(t, a1, a2) between mortality and s(t, a) is calculated by

u(t, a1, a2) = d(t, a1, a2)−
a2
∑

a=a1

s(t, a) (a1 < 100)

u(t, 100, ∞) = d(t, 100, ∞)− s(t, 100).

6. If u(t, a1, a2) > 0, that is, the decline in population is less than mortality, we increase the

population size at year t− 1. Let
∼
p(t, a) represent a corrected 1-year age group. Distributing

u(t, a1, a2) according to the proportions of population sizes, we have
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∼
p(t− 1, a) = p(t− 1, a) + u(t, a1, a2)

p(t− 1, a)

∑a2−1
a=a1−1 p(t− 1, a)

7. for a1 − 1 ≤ a < a2. If u(t, a1, a2) < 0, that is, the decline in population is larger than mortality,
we decrease the population size at year t− 1. Distributing u(t, a1, a2) according to the proportions
of s(t, a), we have

∼
p(t− 1, a) = p(t− 1, a) + u(t, a1, a2)

s(t− 1, a)

∑a2−1
a=a1−1 s(t− 1, a)

8. for a1 − 1 ≤ a < a2. For a = 99 and 100,

∼
p(t− 1, a) = p(t− 1, a) + u(t, 100, ∞)

p(t−1,a)
∑100

a=99 p(t−1,a)
ifu(t, a1, a2) > 0

∼
p(t− 1, a) = p(t− 1, a) + u(t, 100, ∞)

s(t−1,a)
∑100

a=99 s(t−1,a)
ifu(t, a1, a2) < 0.
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Figure A1. Comparison between observed and predicted lung cancer incidence and mortality per 
100,000 population in Japan. Note that the vertical axis is in logarithmic scale. Comparisons between 
observed and predicted lung cancer incidence and mortality per 100,000 population are made by age 
group and sex. (A) Lung cancer incidence in men, (B) Lung cancer incidence in women, (C) Mortality 
in men, and (D) Mortality in women. Bold dashed line represents working-age population aged 15–
64 years, thin dashed line corresponds to those aged 65–74 years, uneven dashed line represents those 
aged 75 years or older, and solid line represents the entire population. Grey dots before 2014 were 
used to estimate model fitting parameters via the maximum likelihood method, and lines for 2015 
and later are predictions calculated using maximum likelihood estimates at the latest time. The 95% 
confidence intervals are omitted from predictions because of the narrow uncertainty bounds. 

Figure A1. Comparison between observed and predicted lung cancer incidence and mortality per
100,000 population in Japan. Note that the vertical axis is in logarithmic scale. Comparisons between
observed and predicted lung cancer incidence and mortality per 100,000 population are made by age
group and sex. (A) Lung cancer incidence in men, (B) Lung cancer incidence in women, (C) Mortality
in men, and (D) Mortality in women. Bold dashed line represents working-age population aged
15–64 years, thin dashed line corresponds to those aged 65–74 years, uneven dashed line represents
those aged 75 years or older, and solid line represents the entire population. Grey dots before 2014
were used to estimate model fitting parameters via the maximum likelihood method, and lines for 2015
and later are predictions calculated using maximum likelihood estimates at the latest time. The 95%
confidence intervals are omitted from predictions because of the narrow uncertainty bounds.
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Lung cancer incidence in men, (B) Lung cancer incidence in women, (C) Mortality in men, and (D) 
Mortality in women. Bold dashed line represents working-age population aged 15–64 years, thin 
dashed line corresponds to those aged 65–74 years, uneven dashed line represents those aged 75 years 
or older, and solid line represents the entire population. Grey dots before 2014 were used to estimate 
model fitting parameters via the maximum likelihood method, and lines for 2015 and later indicate 
predictions calculated using maximum likelihood estimates at the latest time. The 95% confidence 
intervals are omitted from predictions because of the narrow uncertainty bounds. 
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(D) Mortality in women. Bold dashed line represents working-age population aged 15–64 years, thin
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or older, and solid line represents the entire population. Grey dots before 2014 were used to estimate
model fitting parameters via the maximum likelihood method, and lines for 2015 and later indicate
predictions calculated using maximum likelihood estimates at the latest time. The 95% confidence
intervals are omitted from predictions because of the narrow uncertainty bounds.
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