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Abstract: The study aimed to investigate the roles of gold nanoparticles (GNPs) and graphene oxide
flakes (GOFs) as phagocytosis enhancers against cancer cells. The nanomaterials were characterized
through SEM and UV-VIS absorptions. The GNPs and GOFs increased the macrophages’ phagocyto-
sis ability in engulfing, thereby annihilating the cancer cells in both in vitro and in vivo conditions.
The GNPs and GOFs augmented serine protease class apoptotic protein, granzyme, passing through
the aquaporin class protein, perforin, with mediated delivery through the cell membrane site for the
programmed, calibrated, and conditioned cancer cells killing. Additionally, protease inhibitor 3,4-
dichloroisocoumarin (DCI) significantly reduced granzyme and perforin activities of macrophages.
The results demonstrated that the GOFs and GNPs increased the activation of phagocytic cells
as a promising strategy for controlling cancer cells by augmenting the cell mortality through the
granzyme-perforin-dependent mechanism.

Keywords: graphene oxide flakes; GOFs; gold nanoparticles; GNPs; phagocytosis; SKOV-3; granzyme;
perforin; cancer cells

1. Introduction

Macrophages are cells of the immune system that are characterized by plasticity and
heterogeneity [1]. In the resting state, macrophages experience different functional varia-
tions to adapt to alterations in the residing microenvironment [2]. Resting macrophages
have, before stimulation, a primary phenotype that is known as M0 macrophage. When
activated, these cells mainly exert the phenotypes of M1 and M2 [3]. Environmental signals
can drive or polarize M0 macrophages into M1 or M2 states [4]. During emergent responses,
macrophages show one of the most potent reactions characterized by their effective roles
in host defense modulation, inflammation, and homeostasis [5]. These cells can control the
initiation and resolution phases for innate and adaptive immune responses due to their
potent capabilities to engulf bacterial cells, present antigens, and secrete cytokines [6]. The
function of these cells is critically dependent on their polarization and reprogramming
states. M0 macrophages can polarize into an M1 macrophage (pro-inflammatory) or M2
macrophage (anti-inflammatory) in response to various micro-milieu conditions. However,
a reversal of the phenotype can also lead to the already polarized cell’s reprogramming [4].
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Immune regulatory, inflammatory, and proliferative functions, in addition to activities
in cellular metabolism and remodeling of tissues, are among the most prominent roles
of macrophages from different polarization states. For instance, the M1 macrophages are
crucial effector cells during the resistance responses against intracellular pathogens and
tumor growth [7,8]. In contrast, the M2 macrophages are more involved in reactions such
as immunosuppression and induction of tissue remodeling and tumor progression [9].
Moreover, the immune system’s homeostasis is influenced by the polarization and re-
programming of macrophages [5], which can confer solutions in treating the associated
diseases [2]. Increased animal-based evidence demonstrated that they could cause im-
mune system perturbation [10] and influence the course of diseases, including those of
inflammation [11], allergy, and tumor [12]. As nanoparticles (NPs) are foreign to the body,
macrophages have the in vivo critical roles to recognize, process, and clear them [13]. M1
or M2 macrophages show different capacities of the uptake of these particles [14]. In
parallel, NPs can join the micro-milieu stimuli and contribute to prime the macrophages to
polarize into one stage or another [15–17]. Various NPs types can affect the polarization
and reprogramming of macrophages differentially [18,19], and their interaction brought
much attention in both fields of toxicology research and medical application [20]. Modulat-
ing the in vivo biological influences of NPs and designing therapies that are NPs-based
require a deeper understanding of the roles that these particles play in the polarization
of macrophages [21,22]. The macrophages, through phagocytic engulfment, are also sup-
ported by anti-cancer preparations, i.e., trastuzumab [23] which is known to increase
infiltration of macrophages into the tumor tissue with enhanced anti-cancer efficacy, have
been suggested to serve as a therapeutic strategy toward enhanced killings of cancer cells.
The gold nanoparticles (GNPs) were also reported [24] for cellular uptake, significantly
affecting the cell proliferation activity in ovarian cancer cells, including SKOV3, and others,
OVCAR5, OVCAR8. The pristine carbon quantum dots and their metal composite are also
known to mediate through ovarian cancer SKOV3 cells by targeting cytokines, metallopro-
teinases, and cytoskeleton [25]. The role of the granzyme and its T-cell mediated releases
in tumor-bearing responsive and muted-response mice models have been studied [26]
regarding its immunomodulation. The CD11b, a macrophages biomarker that functionally
regulates the leukocyte adhesion and migration in the inflammatory response, has been
studied to show that the CD11b integrin family protein is also involved in cellular adhesion.
The CD11b antibodies have been suggested with possible roles in cell-mediated cytotoxic-
ity, chemotaxis, and phagocytosis [27]. The GNPs have reached the greatest attention in
biomedical applications, with extensive research in oncology. Consequently, GNPs have
become an exciting research area for cancer theranostics. Due to the unique physicochem-
ical properties of GNPs, they have been investigated for various applications related to
cancer, such as gene therapy, targeted drug delivery, radiotherapy tumor detection, and
cellular bioimaging [28,29]. Graphene family materials (GFM) include several nanopar-
ticles such as graphene oxide (GO), reduced/functionalized graphene oxide (rGO), and
graphene quantum dots. Other GFM such as graphene nanoribbons, three-dimensional
graphene foam, and graphene nanopores exert enormous potential in different biomedical
applications. This potential arose from the exceptional physical, chemical, mechanical, and
biological characteristics of these particles, along with the larger surface area that they
have, the simplicity of surface functionalization, and the remarkable colloidal stability in
aqueous media compared to pristine graphene [30–32]. The GO and rGO possess different
physical and chemical characteristics, including differences in solubility, dispensability,
lateral dimensions, sheet size, and the degrees and extents of their participation in redox
reactions. The capacity of cellular uptake and biodegradation of these nanoparticles can
be manipulated easily by using different reagents for carrying out the oxidation and re-
duction reactions. The differences in bioactivities levels of GO and rGO are reported in
several types of bacteria and various cancer and non-cancerous cells [30–32]. Graphene
nano-flakes or graphene nano-dots are the zero-dimensional (0-D) form of graphene while
the 1-D and 2-D graphenes, carbon nanotubes, and graphene single-layer sheet, differ
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from each other. The graphene family materials (GFM) have interesting properties with
great potential for various applications as electronic and magnetic devices. These potential
applications arise because GOFs have edge states and corner states and may also be cut
into a much larger variety of different shapes. GOFs can range in size from molecular to
semi-infinite 2-D structures; thus, their electronic structures vary from discrete molecular
levels to being band-like due to an increase in dimensions [33]. Various articles have
demonstrated potential application of the GFM including the limitations [34,35]. GO and
rGO demonstrate variability in batch reproducibility in addition to varying quantity of
oxide, hydroxide, and epoxide thereby limiting to control the chemo- and regioselectivity
of functionalization reactions. GOFs demonstrate high solubility in water, negative zeta
potential, and relative ease of functionalization using carboxylate chemistry. Function-
alized GOFs have demonstrated rapid blood pool clearance and renal excretion, hence
can be considered as ideal candidate for theranostic drug development thus leading to its
selection in the current study [35]. This study aimed to measure phagocytic cells’ activity
against cancer cells, mediated by gold and graphene oxide flakes. This study proves that
GNPs and GOFs induce a strong tumoricidal activity against cancer cells through the
granzyme-perforin-dependent mechanism.

2. Materials and Methods
2.1. Preparation and Characterization of Nanoparticles

For preparation, procurement, and characterization of nanoparticle materials known
methodology and spectro-analytical and morphology observation technique, UV-visible
and scanning electron microscope (SEM) were used to measure and study the GNPs and
GOFs [36].

2.2. Bone Marrow-Derived Macrophages

Male C57/BL6 mice (7–8 weeks old) were used as the source for the isolation of
primary bone marrow-derived macrophages (BMDMs) as previously reported [37].

2.3. Macrophages In Vitro Tumoricidal Activity
2.3.1. Immunofluorescent Assay

For this assay, phagocytic cells (BMDMs) were cultured on 4-well chamber slides
for 24 h at 37 ◦C. Ovarian cancer cells (SKOV-3) (kindly provided by the Iraqi Center for
Cancer and Medical Genetic Research, Mustansiriyah University, Baghdad, Iraq) labeled
with eFluor 670–labeled were added to the BMDMs in the absence and presence of GNPs,
and GOFs alone and combined at concentration 10 µg/mL. The samples were incubated
for 1 h at 37 ◦C, the media was removed, and fresh media was added to cultured cells
for 30 min, and cells were washed three times with sterile PBS. Cells were fixed using
4% formaldehyde for 30 min at 4 ◦C followed by staining with primary antibody using
FITC–anti-CD11b at concentration 1 µg/mL for 60 min at 4 ◦C. Cells were washed three
times using PBS for removing the unbound primary antibody. The cells were treated with
secondary antibody Alexa 488-labeled anti-mouse IgG and Alexa 568-labeled anti-goat IgG
Abs (Invitrogen Life Technologies, Gibco, Waltham, MA, USA) concentration 2 µg/mL at
room temperature for 2 h. Finally, the phagocytic and cancer cells were examined using a
confocal microscope. The SKOV-3 was stained in red color and localized in the green color
of phagocytic cells (BMDMs). Finally, the samples were viewed using Meta 510 software on
an LSM510 Meta Confocal microscope (Carl Zeiss, Oberkochen, Germany). The percentage
of phagocytosis was calculated by phagocytic index using the following formula:

Phagocytic index =
[( a

b
∗ c

b

)
∗ 100

]
(1)

where, a refers to the total number of engulfed cells, b refers to the total number of counted
macrophages, and c refers to the number of macrophages containing engulfed cells. For
this experiment, 100 cells were counted, and each experiment was performed in triplicates.
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2.3.2. Flow Cytometry Assay

SKOV-3 ovarian cancer cells labeled with cell proliferation dye eFluor 670 were used
to identify SKOV-3 cells. The cells were then incubated with phagocytic cells at a 1:2 ratio
in the presence and absence of 10 µg/mL of GNPs, and GOFs for 60 min at 37 ◦C. The cells
were then stained with FITC–anti-CD11b for 2 h at 4 ◦C. A flow cytometry assay program
was used to analyze the results [38].

2.4. Tumoricidal Activity of Macrophage Cells In Vivo

The tumoricidal activity of macrophages in the peritoneal cavity was performed
according to [39]. Briefly, GNPs and GOFs were given at a dose of 500 µg/kg for three
days. Ehrlich cancer cells were injected intraperitoneally into mice at (2 × 106/mice). The
negative group was injected with 250 µL of PBS, and the positive control was injected with
Ehrlich cancer cells at a concentration of 2 × 106/mice. Mice were sacrificed on day 14.
The external abdominal region was inoculated with 3 mL of sterile saline. After collecting,
the peritoneal cells were counted and fixed using 4% paraformaldehyde, followed by
Romanowski staining after cytocentrifugation [40].

2.5. Isolation of Splenic Macrophage

Ten-week-old mice were immunized with the adjuvant containing killed tuberculosis
germs. After 7 days, phagocytic cells were isolated from the spleen using Histopaque-1083
and incubated in plastic dishes for 1 h at 37 ◦C. Then, adherent cells were collected for the
next experiment [41]. For granzyme activity, the phagocytic cells were pre-treated with
GNPs, and GOFs at a concentration 10 µg/mL in the presence and absence of 100 µM DCI.
Cells were washed two times with PBS then stained with rabbit anti-mouse granzyme B
APC conjugated monoclonal antibody. Cells were fixed with a flow cytometry fixation
buffer then permeabilized by permeabilization buffer. A flow cytometry assay program
was used to analyze the results.

2.6. Statistical Analysis

Graph-Pad Prism was applied to analyze the data (three replicates). The results are
represented as mean ± S.E.M. Differences were regarded as significant at p ≤ 0.05 [42].

3. Results and Discussion
3.1. Characterization of GNPs and GOFs

The current study demonstrates phagocytic cells’ activity against cancer cells, me-
diated by GNPs and GOFs (Figure 1). The GNPs and GOFs were analyzed by using
UV-visible (UV-VIS) spectroscopic analysis between 200 and 1100 nm wavelengths for their
absorption values and were found to exhibit the λmax absorption values at almost 525 nm
for GNPs, and 310 nm for GOFs. The morphology of GNPs and GOFs was studied using
SEM (Figure 2) and was found to be spherical for the GNPs with a size range of 20–30 nm
and almost 9–13 nm and flakes for the GOFs.
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3.2. Evaluation of GNPs and GOFs Role in BMDMs Phagocytic Activity on SKOV-3 Cells

Phagocytic cells are a part of the immune system characterized by plasticity and
heterogeneity. We tested whether GNPs and GOFs could enhance ovarian cancer SKOV-3
cells killing using BMDMs as effector cells and the SKOV-3 cells as target cells. Fluorescent
dye eFluor 670–labeled SKOV-3 cells were used as target cells and incubated with BMDMs
cells as effector cells at a ratio of 2:1 effector: target (E: T) cells in the presence of GNPs and
GOFs at concentration 10 µg/mL. The BMDMs were stained with CD11b-FITC. Cells with
dual colors were detected by confocal fluorescence imaging. First, BMDMs and SKOV-3
cells images were captured separately. Secondly, in the presence of GNPs and GNPs at a
concentration of 10 µg/mL, red SKOV-3 cells were observed clearly inside the green-labeled
BMDMs cells (Figure 3).
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Figure 3. GNPs and GOFs increase the tumoricidal activity of bone marrow-derived macrophages (BMDMs) cells.
(A) Control untreated BMDMs. (B) Ovarian cancer cells (SKOV-3) cells. (C) BMDMs engulf cancer cells. (D) BMDMs
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An increase in phagocytosis of cancer cells (SKOV-3) by BMDMs was demonstrated
in the presence of GNPs and GOFs as an enhancer for phagocytic cells. Then, the phago-
cytic index of BMDMs was measured in the presence and absence of GNPs, and GOFs
(Figure 4). The BMDMs showed more potent phagocytosis of SKOV-3 cells in the presence
of nanoparticle materials.
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Figure 4. GNPs and GOFs increased the phagocytic index of cancer cells by BMDMs. (A) BMDMs engulfment of cancer
cells. (B) BMDMs engulfment of cancer cells in the presence of GNPs at concentration 10 µg/mL. (C) BMDMs engulfment
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of both GNPs and GOFs at concentration 10 µg/mL. The data are represented as mean ± S.E.M. * p < 0.05, ** p < 0.01,
*** p < 0.001 compared to the untreated BMDMs cells.

To investigate and study the population of BMDMs with SKOV-3 phagocytosis, we
gated CD11b+ cells and then measured the percentage of BMDMs with double staining
(Figure 5). The results showed a significant increase in the CD11b+/eFlour 670+ cell
population in BMDMs pre-treated with GNPs and GOFs compared with the control group,
BMDMs alone without nanoparticles, taken together, the results demonstrated that the
GNPs and GOFs increased ovarian cancer cells (SKOV-3) phagocytized by BMDMs.

3.3. GNPs and GOFs Increase the In Vivo Tumoricidal Activity

The tumoricidal activity was confirmed using an animal model. Figures 6 and 7
demonstrate the distribution of peritoneal macrophages pre-treated with GNPs and GOFs
containing many cytoplasmic vacuoles. Pre-treatment with nanoparticle materials induced
the biological, physiological, and functional activities of BMDMs against Ehrlich ascites
tumor cells. This study showed that GNPs and GOFs as phagocytosis inducer materials
could be the most potent effector and significantly increased the anti-cancer mechanism
in vivo model. Nanomaterials’ ability to induce phagocytic cell activation could be related
to their ability to induce and increase reactive oxygen species release (ROS). ROS can enter
mitochondria, leading to macrophages’ activation and induction and stimulation of some
biological and inflammatory pathways.
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Figure 6. GNPs and GOFs increase the in vivo tumoricidal activity of macrophages. (A) Control untreated peritoneal
macrophages. (B) Peritoneal macrophages injected with Ehrlich cancer cells. (C) Peritoneal macrophages injected with
Ehrlich cancer cells in the presence of GNPs at concentration 10 µg/mL. (D) Peritoneal macrophages injected with Ehrlich
cancer cells in the presence of GOFs at concentration 10 µg/mL. (E) Peritoneal macrophages injected with Ehrlich cancer
cells in the presence of GNPs and GOFs at concentration 10 µg/mL. The blue arrow indicates macrophage cells, while the
black arrow indicates Ehrlich ascites tumor cells. Magnification power 100×.
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Nevertheless, the mechanism of tumor cell death that is associated with cytokine
production is not clearly understood. Taken together, the results showed that the treatment
with GOFs and GNPs alone or as combined lead to an increase in the tumoricidal activity
of macrophages in the mice against Ehrlich ascites tumor cells compared with the control
group. The augment of macrophage activity may refer to nanoparticles’ ability to reduce
the growth of tumor cells. Thus, GOFs and GNPs may directly or indirectly affect tumor
cells by stimulating the host cells, such as macrophages, which lead to induced production
of cytokines such as IL-1 (interleukin-1), IL-6, and TNF (tumor necrosis factor). Some of
these cytokines directly affect tumor cells or have the ability to induce cytotoxic and natural
killer cells. Besides, these cytokines may induce CRP (C-reactive protein) production
and complement factor C3 that would act as opsonins factor against tumor cells [43].
An additional experiment involving the granzyme perforin pathway complemented the
anti-tumor activities.

3.4. GNPs and GOFs Augmented Macrophages Kill Tumor Cells through a Granzyme-Perforin Pathway

This study showed that the granzyme B was spread in the cytoplasm of splenic
macrophages, as seen in Figure 8. Splenic phagocytic cells that are pre-treated with GNPs
and GOFs exhibited more granzyme B signaling. Cytolytic enzymes are critical medi-
ators of anti-tumor immunity. Combination of granzymes and perforin expressed by
various immune cells alongside markers of αβ and γδ T-cell maturation is indicative of
the immunological involvements. The expression of CD68 (Cluster of Differentiation 68, a
protein) in macrophages, and the use of antagonistic, 3,4-dichloroisocoumarin (DCI), as
protease inhibitors for granzyme, and degranulation process of the cytolytic granules, was
confirmed for the antagonistic action of inhibiting cytotoxic activities of the chosen splenic
macrophages. The granzymes trigger apoptotic pathways while perforin protects the mice
against developing B-cell lymphoma and another carcinogens-induced sarcoma. The path-
way can influence immunopathology, though, in an organ-specific manner, reduced antigen
has been observed for malignant cells. Many alternate pathways can be involved; however,
the immune cells’ effective pathway choice involves interferon-γ, perforin-granzyme, and
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FasL, a type-II transmembrane protein belonging to the family [44,45]. To investigate if
granzyme B and perforin play an unimportant role in tumor cells’ killing mechanism, we
used DCI as protease inhibitors to inhibit granzyme activities in the cytolytic granules’
degranulation process. The results show the ability of DCI to inhibit cytotoxic activities of
splenic macrophages. The results showed very clear weak signaling of granzyme in GNPs
and GOFs pre-treated macrophages in the presence of 100 µM of DCI.
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4. Conclusions

In the present study, GNPs and GOFs were used as phagocytosis inducers, and the
role of these nanomaterials as phagocytosis inducer agents was investigated using in vitro
and in vivo models. The GNPs and GOFs were up-regulated and mediated the phagocy-
tosis killing of the cancer cells. The present work proves the GNPs and GOFs mediated
and increased macrophages tumoricidal activity through granzyme-perforin dependent
mechanism, a viable option for cancer cell killing. The study has prospects to develop as
immunotherapy against cancers, and the role of nanoparticles is important to investigate
the immunological aspects involved in the process. Moreover, the molecular roles of per-
forin and granzyme, separately, need to be understood. The molecular mechanistic details
the trigger for the choice of the granzyme-perforin pathway, and nanomaterials induction
to the cancer cell killings need to be explored.
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