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Pyridoxal 5′-phosphate (PLP)-dependent enzymes are found ubiquitously in nature and
are involved in a variety of biological pathways, from natural product synthesis to amino
acid and glucose metabolism. The first structure of a PLP-dependent enzyme was
reported over 40 years ago, and since that time, there is a steady wealth of structural
and functional information revealed for a wide array of these enzymes. A functional
mechanism that is gaining more appreciation due to its relevance in drug design is
that of protein allostery, where binding of a protein or ligand at a distal site influences the
structure, organization, and function at the active site. Here, we present a review of current
structure-based mechanisms of allostery for select members of each PLP-dependent
enzyme family. Knowledge of these mechanisms may have a larger potential for identifying
key similarities and differences among enzyme families that can eventually be exploited for
therapeutic development.
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1 INTRODUCTION

Pyridoxal 5′-phosphate (PLP), the active form of vitamin B6, is a coenzyme that is required for the
activity of many proteins from bacteria to humans. These enzymes carry out a number of processes,
including amino acid metabolism and biosynthesis of antibiotic compounds (Schneider et al., 2000).
PLP-dependent enzymes typically bind the cofactor covalently via a conserved catalytic lysine
residue, forming an internal aldimine. After binding the amino acid substrate, the internal aldimine
is exchanged for an external aldimine Schiff base with the amino group of the substrate and the PLP
aldehyde, regenerating the free lysine (Schneider et al., 2000). The reaction then proceeds through a
quinonoid intermediate with the PLP cofactor providing an electron sink to stabilize the transient
reaction intermediates (Eliot and Kirsch 2004). After these initial steps, there is a diverse number of
reactions PLP-dependent enzymes mediate, including decarboxylation, transamination, and
racemization (Liang et al., 2019). In fact, PLP-dependent enzymes are known to mediate more
than 140 distinct activities (Percudani and Peracchi 2003).

To date, there are seven PLP-dependent protein families that are classified based on their 3-
dimensional folds (Figure 1). Although proteins within each family have little overall sequence
homology, they exhibit characteristic structures. Notably, a particular fold does not necessarily
dictate a particular reaction, as each fold type can mediate multiple types of reactions [for review see
(Eliot and Kirsch 2004)]. Fold Type I is the largest family typified by the enzyme aspartate
aminotransferase. These enzymes are homodimers with each protomer containing a large and
small subdomain; however, the PLP-binding sites are comprised of residues from both subunits.
Although structurally similar to Type I, Fold Type II, or the tryptophan synthase β family, typically
contains enzymes that catalyze β-elimination, β-replacement, and racemization reactions. They
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differ from Fold Type I in that the active sites are usually made up
of residues from only one protomer, and there may be additional
regulatory domains present. Fold Type III (alanine racemase)
enzymes, characterized by an α/β-barrel attached to a β-strand
domain, also function as dimers and include several amino-acid
decarboxylases. Fold Type IV enzymes include D-amino acid
aminotransferase and a few other enzymes that also function as
homodimers, but the PLP-binding mode differs from Folds I and
II. The Fold Type V group includes glycogen phosphorylase and
is atypical from other families in that this clade uses the PLP
phosphate group for catalysis (Eliot and Kirsch 2004). More
recently, two new PLP-dependent families were identified with
structural divergence from the other families, and they are
denoted Fold Type VI (lysine 5,6-aminomutase) and Fold
Type VII (lysine 2,3-aminomutase) (Percudani and Peracchi
2009).

In addition to structural diversity, PLP-dependent
enzymes also display a diverse repertoire of allosteric
mechanisms. Protein allostery is key for the modulation of

enzyme activity given a particular cellular context or binding
partner. Protein allostery, a term first coined 60 years ago
(Monod and Jacob 1961), is defined as the ability for ligand or
protein binding at one site to affect the binding or activity of
another distal site (Monod et al., 1965). A seminal example of
allostery is the Bohr effect, where factors affecting blood pH
cause a change in the binding affinity of hemoglobin for
oxygen. Since these early studies, allosteric control has
been identified for many proteins mediating nearly all
functions in the cell. Along with the expansion of our
understanding of allostery, the methods to determine and
study allostery have also grown. Regardless of the mechanism,
allostery presents a powerful tool for proteins to regulate their
own functions and can even be harnessed for drug design
(Nussinov and Tsai 2013). This review will focus on the
various allosteric mechanisms and their structural bases
invoked by members of each PLP-dependent enzyme
family. Although we focus on a set of key proteins, PLP-
dependent enzymes exhibit a broad range of allosteric

FIGURE 1 | PLP-dependent enzyme families. To date, PLP-dependent enzymes are categorized into seven different families based on structural homology to an
archetypal enzyme. These include Aspartate Aminotransferase (Fold Type I, PDB 8AAT), Tryptophan Synthase β-subunit (Fold Type II, PDB 1BKS), Alanine Racemase
(Fold Type III, PDB 1SFT), D-Amino Acid Aminotransferase (Fold Type IV, PDB 1DAA), Glycogen Phosphorylase (Fold Type V, PDB 1GPB), Lysine 5,6-Aminomutase
(Fold Type VI, PDB 1XRS), and Lysine 2,3-Aminomutase (Fold Type VII, PDB 2A5H). Protomers are colored orange and magenta with the PLP cofactor shown in
cyan.
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mechanisms in addition to these specific examples
(Supplementary Table S1). Future work in therapeutic
development will benefit from a thorough understanding of
these burgeoning principles.

2 DIVERSE PLP-DEPENDENT PROTEINS
AND THEIR ALLOSTERIC MECHANISMS
2.1 Fold Type I: 5-Aminolevulinic Acid
Synthase (ALAS)
PLP-dependent enzymes belonging to Fold Type I exhibit a
conserved structure typical of many aminotransferases,
decarboxylases, and enzymes that catalyze α-, β- or γ-
eliminations (Percudani and Peracchi 2003). 5-aminolevulinic
acid synthase (ALAS) is the first and rate-limiting enzyme for
heme biosynthesis in α-proteobacteria and the mitochondria of
non-plant eukaryotes. ALAS catalyzes the condensation of
glycine and succinyl-CoA to yield aminolevulinic acid (Gibson
et al., 1958; Kikuchi et al., 1958; Laver et al., 1958). ALAS is a
member of the α-oxoamine family of Fold Type I PLP-dependent

enzymes (Schneider et al., 2000; Eliot and Kirsch 2004) and exists
as a homodimer with the two PLP cofactor binding pockets
buried at the subunit interface (Figure 2A) (Astner et al., 2005).
Currently, there are several published structures of ALAS
enzymes from multiple organisms either bound covalently
(internal aldimine) or non-covalently to PLP. The crystal
structures of ALAS from Rhodobacter capsulatus were
captured with both the internal aldimine (PDB 2BWN) and
the glycine-bound external aldimine (PDB 2BWP) (Astner
et al., 2005). Subsequently, ALAS structures from
Saccharomyces cerevisiae and the erythroid-specific Homo
sapiens isoforms were also crystallized in the presence of PLP,
either bound covalently or non-covalently (Brown et al., 2018;
Bailey et al., 2020). Importantly, these structures revealed the
position and conformation of the eukaryote-specific ALAS
C-terminal extension—a region absent from bacterial ALAS
enzymes.

2.1.1 C-Terminal Extension
The eukaryotic ALAS C-terminal extension allosterically
communicates to the enzyme active site by controlling the

FIGURE 2 | Human 5-aminolevulinic acid synthase 2 of Fold Type I undergoes autoregulation via its C-terminal extension. (A) Human ALAS2 (PDB 6HRH) has a
C-terminal extension (CT-ext.; aa 545–587; green) that interacts with the active site loop (aa 500–517; pink) from the catalytic core to block access to the active site.
ALAS2 protomers are shown in white and gray. PLP and the active site lysine (K391) are shown in cyan. (B) The CT-ext. of ALAS2 exhibits an autoregulatory mechanism
by occluding the active site. Truncation of the CT-ext. disrupts the salt bridge network between the CT-ext. and active site loop, leading to gain of function.
Mutations of the CT-ext. may also cause loss of function by changing the active site conformation (figure created with BioRender.com).
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position of the ALAS active site loop (Fratz et al., 2015; Bailey
et al., 2020). The conformation and dynamics of this loop are
reported to control the overall rate of ALA product release, which
is the rate-limiting step of the ALAS reaction (Hunter and
Ferreira 1999; Astner et al., 2005; Hunter et al., 2007;
Lendrihas et al., 2010). In yeast ALAS, the extreme portion of
the C-terminus makes trans interactions with the neighboring
subunit via an interaction with a conserved arginine residue
located in the ALAS catalytic glycine-rich motif. Importantly,
mutation of this arginine in yeast or eukaryotic ALAS leads to a
decrease in enzyme activity (Gong and Ferreira 1995; Katsurada

et al., 2016; Brown et al., 2018). Thus, for yeast ALAS, the
C-terminus has two points of allosteric control—first by
regulating the position of the active site loop and second by
interacting with the ALAS glycine-rich loop adjacent to the
enzyme’s active site (Brown et al., 2018). The mammalian
C-terminal extension also allosterically regulates enzyme
activity of ALAS2, the erythroid-specific isoform (Figure 2B).
Notably, deletion or modification of this region in humans
underlies toxic hyperactivity leading to porphyrin
accumulation and the disease X-linked protoporphyria (XLP)
(Whatley et al., 2008; Bishop et al., 2013; Ducamp et al., 2013).

FIGURE 3 | Cystathionine β-synthase of Fold Type II involves each of its domains in allostery. (A) Human CBS contains three domains that are all implicated in
allostery. Heme binding occurs in a shallow pocket (aa 40–70; magenta) at the N-terminal domain. The catalytic core contains a CXXC oxidoreductase motif (aa
272–275; orange). The C-terminal regulatory domain has a Bateman module consisting of two tandem CBSmotifs, CBS1 (aa 412–471) and CBS2 (aa 477–551), which
fold to form Site S1 (M458, V459, Y484, F487, F508, and A509; red) and Site S2 (P422, L423, F443, A446, P447, V448, V533, and V534; blue) for AdoMet binding.
Basal CBS (PDB 4L0D) has little activity due to the regulatory domain of one subunit blocking access to the active site of a neighboring subunit. Activated CBS (PDB
4PCU) binds AdoMet (green) in Site S2, whichmoves the regulatory domain away from the active sites to allow access. CBS protomers are shown in white and gray. PLP
and the active site lysine (K119) are shown in cyan. (B) Formation of the CBS homotetramer is mediated by heme binding, in which the heme porphyrin scaffold facilitates
protein folding. AdoMet binds and activates the CBS homotetramer. CBS inhibition takes place via oxidation of the CXXC motif and/or gaseous signaling molecule
(i.e., NO, CO) binding to ferrous heme.
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The recent crystal structure of human ALAS2 identified key
interactions between the C-terminal extension and other
regulatory regions of the enzyme (Bailey et al., 2020). A short
helix in this extension (helix α15, Ser568-Phe575) forms a lid over
the active site but does not directly contact the non-covalently
bound PLP cofactor. Nonetheless, in vitro biochemical
experiments showed that disruption of the human C-terminal

extension alters the PLP microenvironment and changes the
tautomeric equilibrium of the cofactor (Fratz et al., 2015).
Additionally, it was determined that the orientation of the
internal aldimine in the XLP variants is different from wild-
type ALAS2 in the presence of bound succinyl-CoA substrate.
The ALAS2 crystal structure reveals a direct interaction between
an arginine in the active site loop and the C-terminal extension,

FIGURE 4 | Eukaryotic ornithine decarboxylase of Fold Type III is targeted for proteasomal degradation by interaction with Antizyme 1. (A) Human ODC (PDB
1D7K) binds AZ1 at the antizyme binding element (AZBE; aa 117–140; green) to form an ODC-AZ1 heterodimer (AZ1 in yellow; PDB 4ZGY). Two basal degradation
elements (aa 376–427; blue) are subsequently exposed to allow ubiquitin-independent, proteasomal degradation of ODC. A protease-sensitive loop (aa 158–168;
magenta) positions active site residues for catalysis. ODC protomers are shown in white and gray. PLP and the active site lysine (K69) are shown in cyan. (B) ODC
dimerization is blocked by Antizyme 1 binding, leading to ODC-AZ1 heterodimer formation. This inactive form of ODC is then targeted by the 26S proteasome for
degradation.
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leading to the hypothesis that the conformation and flexibility of
the active site loop are coupled to changes in the C-terminus, thus
controlling overall ALAS2 activity (Bailey et al., 2020). Finally, the
ALAS2 C-terminal extension may auto regulate enzyme activity
by acting as a signal for degradation (Kadirvel et al., 2012). Thus,
the eukaryote-specific ALAS C-terminal extension acts as a
homo-allosteric regulator of enzyme activity at multiple nodes.

2.2 Fold Type II: Cystathionine
β-Synthase (CBS)
Fold Type II (also known as the tryptophan synthase β family)
encompasses numerous allosteric enzymes (Liang et al., 2019),
including the tryptophan synthase α2β2 complex (Hyde et al.,
1988), threonine deaminase (Eisenstein 1995), threonine

synthase (Curien et al., 1998), and O-acetylserine sulfhydrylase
(Burkhard et al., 2000). Although enzymes in this fold have active
sites composed of residues from one subunit, they are active in
various oligomeric states (usually dimers or tetramers) that also
accommodate allosteric regulation (Gallagher et al., 1998;
Garrido-Franco et al., 2002; Fatmi and Chang 2010). For
example, fungal threonine synthase functions as a monomer
and is not subject to allosteric regulation, whereas plant
threonine synthase is found as a homodimer and is activated
by S-adenosyl-L-methionine (AdoMet) (Garrido-Franco et al.,
2002). Cystathionine β-synthase (CBS) is involved in the initial
step of sulfur-containing amino acid biosynthesis (Gerritsen and
Waisman 1964) where it catalyzes the condensation of serine and
potentially toxic homocysteine to yield cystathionine. It
assembles as a tetramer (a dimer of dimers), with each subunit

FIGURE 5 | Human mitochondrial branched-chain amino acid aminotransferase of Fold Type IV uses a CXXC motif for preventing overoxidation. (A) Human
mitochondrial BCAT (PDB 1EKF) has a CXXC motif (aa 315–318; orange) in which one cysteine (C315) acts as an oxidative sensor and the other (C318) is a “resolving
cysteine” to prevent overoxidation of hBCATm. BCAT protomers are shown in white and gray. PLP and the active site lysine (K202) are shown in cyan. (B) BCAT is
inhibited via oxidation of the CXXC motif.
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FIGURE 6 |Glycogen phosphorylase of Fold Type V utilizes diverse modes of allostery. (A)One protomer of human liver GP homodimer (PDB 1FA9) is shown as a
surface representation (white) and the second as a cartoon representation (gray). GP is phosphorylated at Ser14 (orange), which causes the phosphorylation peptide (aa
1–13; orange) to stabilize the active conformation. Ligand binding may occur at three sites: the AMP site, the indole site, and the inhibitory site. AMP binding at the AMP
site (D42 of one subunit; Y75, F195, D227, R242, R309, and R310 of the other subunit; dark pink) is coordinated by the adenine loop (aa 315–324; light pink). The
indole site (human liver GP, PDB 1XOI; R60, and K191; yellow) is located at the dimer interface. The inhibitory site (humanmuscle GP, PDB 1Z8D; F285, Y613; purple) is a
shallow pocket at the entrance of the active site. The inhibitory site is also part of the 280s loop (aa 280–289; blue), which forms a gate for the active site. The glycogen
storage site (R426, E433, E434, and G435; green) is part of the tetrameric interface (not shown). PLP and the active site lysine (K202) are shown in cyan. (B)GP is active
as a homodimer and can be further activated via phosphorylation at Ser14 and/or AMP binding. Phosphorylation and AMP binding triggers GP tetramerization, which
inactivates GP, but tetramerization can be blocked by glycogen binding. GP can also be inhibited by ligand binding at the indole and inhibitory sites.
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consisting of a catalytic N-terminal domain that binds PLP and
heme and a regulatory C-terminal domain (Figure 3A) (Taoka
et al., 2002). In addition to PLP, CBS uses heme as a cofactor and
is further activated by AdoMet. CBS distinguishes itself from
other family members in how both the N-terminal and
C-terminal domains participate in allostery (Meier et al., 2001).

2.2.1 C-Terminal Regulatory Domain
Alignment of Fold Type II enzymes show a highly conserved
catalytic core and minimally conserved N- and C-terminal
extensions (Miles and Kraus 2004). A key feature of allosteric
enzymes in this fold is the C-terminal regulatory domain, which is
usually involved in effector binding (Gallagher et al., 1998;
Garrido-Franco et al., 2002). In CBS, truncation of this
domain yields the “active core” that is not activated by
AdoMet, has twice the enzymatic activity of full-length CBS,
and forms dimers instead of tetramers (Meier et al., 2001).
Available CBS crystal structures only represent mutant CBS
dimers, whereas native wildtype CBS exists as tetramers
(Ereno-Orbea et al., 2013).

The C-terminal regulatory domain of human CBS has two
tandem β-α-β-β-α secondary structure motifs known as “CBS
domains” that can be found in other proteins (Bateman 1997;

Ignoul and Eggermont 2005). These motifs interact to form
intramolecular structures known as Bateman modules or CBS
pairs. PLP is deeply buried in a cleft between the N-terminal and
C-terminal domains of a subunit (Meier et al., 2001). The CBS1
(amino acids 415–468) and CBS2 (aa 511–531) domains from
one subunit associate to block the narrow active site channel of a
neighboring subunit and form AdoMet binding clefts called Site
S1 and Site S2 (Figure 3A). Site S1 is blocked by hydrophobic
residues, leaving Site S2 as the effective AdoMet binding site
~10 Å from the active site. Site S2 is therefore known as an
autoinhibitory region, where AdoMet binding displaces the
regulatory domain of one subunit from the catalytic cavity of
another subunit. Rotation of Site S2 occurs and weakens
interactions with the loops of the catalytic cavity. The active
site thus becomes less sterically hindered and is kinetically
stabilized (Ereno-Orbea et al., 2013). Because of its effect on
active site accessibility, AdoMet is known as a V-type allosteric
activator (which increases Vmax) and can bind to each subunit to
cause a 2- to 3- fold increase in activity (Taoka et al., 1999a).

2.2.2 Heme Binding Domain
CBS is one of few PLP-dependent enzymes that binds heme for
regulatory purposes. Heme is not essential for catalysis in yeast

FIGURE 7 | Lysine 5,6-aminomutase of Fold Type VI and Lysine 2,3-aminomutase of Fold Type VII are involved in the samemetabolic pathway but are differentially
regulated. (A) 5,6-LAM (Fold Type VI) is active as an α2β2 tetramer (known as the E1 component), but reactivation and ATP regulation are possible through interaction with
another protein referred to as the E2 component. (B) 2,3-LAM (Fold Type VII) uses three cofactors, PLP, AdoMet, and [4Fe-4S]+, for catalysis. AdoMet and [4Fe-4S]+

work together for adenosyl radical formation, but this step is limited by 4Fe-4S cluster formation and reduction to the +1 state. Interaction between 2,3-LAM and a
reducing protein (e.g., flavodoxin NADP+ reductase, flavodoxin, or ferredoxin) activates 2,3-LAM.
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and parasitic CBS as they are active but do not bind heme (Jhee
et al., 2000; Nozaki et al., 2001). However, alterations in heme
binding modulate human CBS activity and stability (Badawy
2021). The N-terminal domain of CBS comprises two distinct
regions. The first few residues contain an intrinsically disordered
region (IDR) that may play a part in heme binding. The IDR has a
canonical cysteine-proline (CP) motif that is found in other
heme-binding proteins such as human ALAS enzymes, but the
function of this site in CBS is unknown (Kumar et al., 2018). The
remaining residues in the N-terminal domain fold into a shallow,
hydrophobic pocket known to non-covalently bind heme ~20 Å
from the active site (Figure 3A) (Meier et al., 2001).

The mechanism of heme regulation is not fully understood,
but the components of heme may play different roles. The
porphyrin moiety of heme acts as a scaffold to facilitate
protein folding and maintain stability (Majtan et al., 2008).
Alternatively, the heme iron may be involved in oxido-
reducing reactions that allow for proper enzyme function
(Figure 3B) (Taoka et al., 1998). Redox sensitivity is an
important property in determining CBS activity since the
metabolism of homocysteine is directly related to cellular
redox homeostasis (Weiss et al., 2002; Prudova et al., 2006).
The heme iron can exist in two redox states, Fe(III)-CBS (ferric
heme) and the reduced Fe(II)-CBS (ferrous heme) (Carballal
et al., 2013). Ferrous heme binds available gaseous signaling
molecules (e.g., NO or CO) with relatively high affinity (Taoka
et al., 1999b; Vicente et al., 2014), which inhibits CBS activity by
up to 2-fold compared to ferric CBS (Taoka et al., 1998). A
possible pathway for allosteric regulation by heme is through the
formation of salt bridges, a mechanism that has been shown to be
important in conformational changes of other heme proteins. In
CBS, Arg266 is located at the distal end of a helix that makes
hydrogen bonds with the phosphate moiety of PLP. This same
arginine forms a salt bridge with Cys52, a heme-binding residue,
which allows for conformational changes to propagate to the
active site (Taoka et al., 2002).

Certain data questions the existence of the ferrous form of CBS
in vivo because of the low redox potential of heme in wild-type
CBS (Singh et al., 2009). However, it was reported that
methionine synthase reductase can indeed reduce the CBS
heme in an NADPH-dependent manner, supporting the
biological relevance of ferrous CBS (Kabil et al., 2011).
Another potential site for redox sensing is an oxidoreductase
motif, CXXC, located ~20 Å away from the active site.
Mutagenesis of either cysteine within the motif affects CBS
activity, but overall structural changes have not yet been
elucidated due to the lack of a structure for full-length,
oxidized CBS (Niu et al., 2018).

2.3 Fold Type III: Ornithine
Decarboxylase (ODC)
Fold Type III, or the alanine racemase family, is characterized by a
mixed α/β barrel structure found in certain amino-acid
decarboxylases (Percudani and Peracchi 2003). L-Ornithine
decarboxylase (ODC), a member of the Group IV family of
decarboxylases, catalyzes the first and rate-limiting step of

polyamine biosynthesis, which is the formation of putrescine
from ornithine (Sandmeier et al., 1994). Putrescine is ultimately
converted into the polyamines spermidine and spermine (Gale
1940; Tabor and Tabor 1976; Cohen 1998; Pegg 2006). There are
structures of ODC enzymes from multiple organisms, including
bacteria and mammals. Each ODC subunit contains an
N-terminal PLP-binding domain with a TIM-like α/β-barrel
fold and a C-terminal β-sheet domain (Figure 4A) (Kern
et al., 1999; Almrud et al., 2000). The active sites, which
accommodate PLP and L-ornithine, are formed at the dimer
interface between the N-terminal domain of one subunit and the
C-terminal domain of the partner subunit (Almrud et al., 2000;
Jackson et al., 2004). Wild-type ODC dimers are weakly-
interacting and exist in equilibrium with the monomeric form
(Pegg 2006).

2.3.1 Antizyme Binding
Antizyme is a non-competitive protein inhibitor of ODC that is
produced in response to an increase in cellular polyamine levels
(Heller et al., 1976). Antizyme binds to the free ODC monomer,
forming an inactive heterodimer (Fujita et al., 1984) that sterically
blocks the ODC homodimerization interface (Figure 4B) (Wu
et al., 2015). Antizyme also abrogates ODC function by increasing
the interaction of ODC with the proteasome in a ubiquitin-
independent manner (Murakami et al., 1992). The crystal
structure of human ODC in complex with a portion of
antizyme isoform 1 indicates a conformational rearrangement
in ODC which may reveal a structural feature that is then
recognized by the proteasome (Wu et al., 2015) (Figure 4A).
The C-terminal extension of ODC, which is absent from
Trypanosoma brucei ODC (Persson et al., 2003), represents
another point of allosteric control via serving as a signal for
degradation by the 26S proteasome. Experiments using murine
ODC showed deletion of the C-terminal 37 amino acids prevents
proteasomal degradation (Ghoda et al., 1989). Additional work
showed this peptide serves as a protein degron as appending it to
T. bruceiODC leads to degradation (Zhang et al., 2003). Although
not required for proteasome binding, the ODC C-terminus is
necessary for degradation as a truncated version was stable even
in the presence of antizyme (Wu et al., 2015). Unfortunately,
there is no structural information pertaining to this region since it
remains disordered in knownmammalian ODC crystal structures
(Almrud et al., 2000; Wu et al., 2015). How this region is
recognized by the proteasome remains an outstanding
question in the field.

2.3.2 Allosteric Inhibitors
In addition to homo-allostery, much work is focused on
developing direct and allosteric ODC inhibitors since it
promotes cell transformation and is overexpressed in many
cancers (Pegg 1988; Auvinen et al., 1992; O’Brien et al., 1997).
Additionally, T. brucei ODC is a validated drug target to treat
African Sleeping Sickness (trypanosomiasis) (Barrett et al., 2007;
Smithson et al., 2010). Difluoromethylornithine (DFMO) is a
structural analog of L-ornithine that works as an irreversible
suicide ODC inhibitor by binding at the active site and forming a
covalent adduct between the PLP cofactor and the conserved
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Cys360 (Metcalf et al., 1978; Poulin et al., 1992; Grishin et al.,
1999); this same residue is also affected by S-nitrosylation via
nitric oxide treatment (Bauer et al., 2001). Unfortunately, DFMO
exhibits a low affinity for ODC and high doses of DFMO can
result in permanent hearing loss (Lao et al., 2004), so ongoing
work is targeted toward finding inhibitors with lower toxicity. To
this end, multiple groups have located allosteric inhibitory sites
on both T. brucei and human ODC. For example, Geneticin is a
weak, non-competitive inhibitor that binds at the interface
between the ODC N- and C-terminal domains, inducing an
order-to-disorder transition in a key catalytic loop located at
the dimer interface (Jackson et al., 2003). Herbacetin is a natural
product that was shown through computational modeling and
in vitro studies to bind at an allosteric site on ODC (comprised of
residues Asp44, Asp243, and Glu384) to inhibit ODC activity
(Kim et al., 2016). Another natural product, allicin, reversibly
S-thioallylates accessible ODC cysteines, causing reduced
polyamine levels and cell proliferation (Schultz et al., 2020) It
is unclear whether the allicin-induced deactivation of ODC is due
to thioallylation of the conserved Cys360, disruption of ODC
dimerization, or some other unknown mechanism. More recent
work is directed toward characterizing multipurpose inhibitors
that might inhibit ODC’s activity, target the ODC-Antizyme1
interaction, and enhance non-functional ODC dimerization
(Chai et al., 2020)

2.4 Fold Type IV: Branched-chain L-amino
Acid Aminotransferase (BCAT)
Unlike other fold types, the D-amino acid aminotransferase
family is not yet reported to contain enzymes that display
clear allostery. Fold Type IV consists of four broad categories:
(S)-selective branched-chain L-amino acid aminotransferases
(BCATs) (Taylor and Jenkins 1966; Grishin et al., 1995), (R)-
selective D-amino acid aminotransferases (DAATs) (Peisach
et al., 1998), (R)-amine:pyruvate transaminases (R-ATAs)
(Iwasaki et al., 2012), and 4-amino-4-deoxychroismate lyases
(ADCLs) (Nakai et al., 2000). Out of these four protein types,
the first three are transaminases. Although Fold Type I also
contains transaminases that use similar enzymatic
mechanisms, those of Fold Type IV have strict (R)- or (S)-
stereospecificity and orient PLP differently in the active site
(Okada et al., 1997; Bezsudnova et al., 2020).

Generally, most Fold Type IV enzymes form homodimers for
catalysis (Sugio et al., 1995; Bezsudnova et al., 2020), but some
BCATs and R-ATAs form tetramers or hexamers (Inoue et al.,
1988; Iwasaki et al., 2012; Isupov et al., 2019). It is not known if
these different oligomeric states are important for function. In an
active dimer, one subunit comprises two domains connected by
an interdomain loop (Figure 5A). The small N-terminal domain
has an α/β structure. The large C-terminal domain has a pseudo
β-barrel structure. The active site exists at the bottom of the
subunit interface cleft formed by residues from both domains of
one subunit and the small domain of a neighboring subunit
(Okada et al., 2001). Although the active site is geometrically
similar within proteins of this family, strict stereospecificity is
based on different amino acid compositions (Bezsudnova et al.,

2020). Another important note is that most enzymes belonging to
this family are bacterial, archaeal, or plant proteins, and only
BCATs have mammalian homologs (Ichihara and Koyama 1966;
Taylor and Jenkins 1966). There has been a focus on industrial,
antibiotic, and herbicidal applications because of the unique
stereospecificity that can be exploited with Fold Type IV
enzymes (Nakai et al., 2000; Pavkov-Keller et al., 2016).
Therefore, much industrial research has focused on using the
differences in active sites to obtain stereoselective products.

Excluding antibiotic development, therapeutic efforts have
only extended toward BCATs. In humans, branched-chain
amino acids are nutrient signals, so BCATs are important
facets in cancer and metabolic diseases (Lynch and Adams
2014; Hattori et al., 2017). BCAT inhibitor design has
concentrated on obstructing reaction mechanisms, leading
mainly toward irreversible, competitive inhibitors (Deng et al.,
2015). Studies have shown that mammalian BCATs have an
oxidoreductase CXXC motif that could be further investigated
as a potential allosteric site as found in CBS in Fold Type II
(Figure 5B). Humans have two BCAT isozymes, a mitochondrial
form (hBCATm) and a cytosolic form (hBCATc). In hBCATm,
the two cysteines of 315CXXC318 participate in thiol-thiolate
interaction and are responsible for redox sensitivity. Cys315
acts as a sensor for redox regulation and helps in substrate
orientation (Yennawar et al., 2006). Cys318 is a “resolving
cysteine” that forms a reversible disulfide bond to prevent
overoxidation or irreversible oxidation to sulfinic or sulfonic
acid (Conway et al., 2004). Oxidation of the CXXC motif
located ~10 Å from the active site disrupts the hydrogen-
bonding network necessary for PLP coordination and substrate
channeling, thus inhibiting hBCATm (Yennawar et al., 2006).
This motif also allows hBCAT to play a potential role as a redox
chaperone in protein misfolding of neurodegenerative diseases
like Alzheimer’s disease (El Hindy et al., 2014). There are
currently no therapeutics that target the CXXC motif of
mammalian BCATs, but further exploration into its function
and role may provide new avenues for drug discovery.

2.5 Fold Type V: Glycogen
Phosphorylase (GP)
This fold type contains only glycogen phosphorylase (GP), which
is the first PLP-dependent enzyme to be structurally determined
(Weber et al., 1978). Fold Type V enzymes use the phosphate
moiety of PLP for proton transfer, whereas Fold Types I through
IV use PLP as an electrophilic sink. As a result, the active site is
completely divergent from other folds and binds PLP in a unique
way (Schneider et al., 2000). GP is a well-known allosteric enzyme
that, with the help of inorganic phosphate, catalyzes the
phosphorolytic cleavage of α-1,4-glycosidic bonds to liberate
the terminal glucose (glucose 1-phosphate; G1P) of a glycogen
molecule in glycogenolysis (Hestrin 1949; Sprang et al., 1991). In
mammals, glycogen is the main carbohydrate source and is found
throughout the body, however, its function is tissue-dependent.
GP has three isozymes, liver GP (lGP), muscle GP (mGP), and
brain GP (bGP) (David and Crerar 1986; Newgard et al., 1988).
Although they are encoded by separate genes, they are highly
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similar in sequence and differ mostly in expression and
regulation.

2.5.1 Ser14 Phosphorylation
One of the main allosteric mechanisms of glycogen
phosphorylase is phosphorylation at Ser14 located ~45 Å from
the active site (Figure 6B) (Krebs and Fischer 1956; Sprang et al.,
1991). Unphosphorylated GP is dependent on adenosine
monophosphate (AMP) for activity and inhibited by glucose-
6-phosphate (G6P) and adenosine triphosphate (ATP). However,
phosphorylation causes the 22 amino-terminal residues of GP to
become ordered, which induces the rotation of subunits within
the functional dimer to activate the enzyme and further enhance
AMP activation (Barford and Johnson 1989; Newgard et al.,
1989). Since phosphorylation occurs because of physiological
changes communicated by hormonal or neuronal signals, the
three tissue-specific isozymes respond differently to this mode of
regulation (Agius 2015). In lGP, phosphorylation is the main
regulatory mechanism because of the function of lGP in
maintaining plasma glucose levels (Wolf et al., 1970). In mGP,
phosphorylation helps activate the enzyme with the onset of
exercise, but modulator binding (e.g., AMP, ATP, glucose,
glycogen, and caffeine) provides another level of control based
on cellular energy levels (Howlett et al., 1998). Lastly, since brain
glycogen is an emergency glucose store, bGP is tightly regulated
solely by modulator binding to respond to hypoxic stress and
support high cognitive processes (Mathieu et al., 2016).

2.5.2 AMP-Binding Site
All three isozymes have a well-conserved AMP-binding site that
is formed by a bundle of helices located at the interface between
dimer subunits (Figure 6A) (Sprang et al., 1991; Rath et al.,
2000a). However, isozyme-specific amino acid substitutions
within the site lead to differential binding affinity, thus
affecting allosteric control (Hudson et al., 1993; Mathieu et al.,
2016). This site is also known as the allosteric site because it
contains three subsites (sugar, nucleotide base, and phosphate)
that allows for promiscuous effector binding (e.g., AMP, ATP,
and G6P). Because of the low level of specificity, the nature of the
bound effector determines whether it exerts inhibition or
activation of enzyme function (Wang et al., 1970). Since the
position of the AMP site allows for effectors to bind between
subunits, they are often associated with quaternary structural
changes (Sprang et al., 1991).

The function of the AMP site corresponds with intracellular
energy demands. As energy needs increase, the intracellular
concentration of AMP increases because of ATP hydrolysis.
AMP binds in this site to stabilize the active relaxed state of
GP (R state) that allows for access to the catalytic site (Barford
and Johnson 1989). ATP and G6P can then displace AMP and
destabilize quaternary interactions to switch the enzyme
conformation back to the less active tense state (T state)
(Kasvinsky 1982; Sprang et al., 1987; Gaboriaud-Kolar and
Skaltsounis 2013). Importantly, Ser14 phosphorylation
complements AMP site binding by inducing conformational
changes that bury the AMP site and increase effector

binding through additional intermolecular forces (Barford
et al., 1991).

2.5.3 Glycogen-Binding Site
The GP oligomeric state is an important facet in mediating GP
activity. Homodimeric GP is the active form of the enzyme, but
activation by AMP or Ser14 phosphorylation causes a change in
the tertiary and quaternary structures of the enzyme to promote
pairs of dimers to form tetramers. Tetramerization partially
blocks access to the active site, thus decreasing enzyme activity
to 12–33% of the fully active dimers (Huang and Graves 1970).
Furthermore, formation of the tetrameric interface leads to global
structural changes that affect the propagation of other allosteric
effects (Barford and Johnson 1992). The glycogen storage site is
located ~30 Å from the catalytic site and is situated at the
entrance of the catalytic tunnel (Figure 6A). This site forms a
contact for the tetrameric interface, so binding of glycogen
discourages further oligomerization and leaves the enzyme as
an active homodimer (Figure 6B).

2.5.4 Inhibitory Site and Indole-Binding Site
Two additional effector binding sites have been described, the
inhibitory site (also known as the nucleoside site or the purine
site) and the indole site. Both sites inhibit glycogen phosphorylase
by stabilizing the T state and working synergistically with other
GP inhibitors (Kasvinsky et al., 1978a; Martin et al., 1998). The
inhibitory site is a hydrophobic binding pocket ~10 Å from the
active site (Figure 6A). Its low specificity allows for binding to a
diverse set of ligands, including purines, nucleosides, nucleotides,
and other related heterocyclic compounds (Oikonomakos et al.,
2000a). Inhibitory site ligands interact with a loop called the 280s
loop that forms a gate to block substrate access to the active site.
Communication with the AMP-binding site decreases AMP
binding to hinder GP activation (Kasvinsky et al., 1978b;
Buchbinder and Fletterick 1996; Ekstrom et al., 2002). The
indole site was first discovered in human lGP during a
screening of antidiabetic agents targeting GP (Rath et al.,
2000b). The natural ligand is unknown, but synthetic effector
binding forms a bridge between dimeric subunits, thus stabilizing
the less active conformation and inhibiting GP. Without ligand
binding at the indole site, the cavity is instead solvent-filled,
which allows for the necessary rotation of subunits during
activation (Ercan-Fang et al., 2005).

2.6 Fold Types VI and VII
Homology searches identified many PLP-dependent enzymes
belonging to the above five fold types. However, other PLP-
dependent enzymes that do not resemble the archetypal enzymes
were also discovered and subsequently categorized into new fold
types (Percudani and Peracchi 2003). Fold Types VI and VII are
sparsely populated but contain examples of allostery. Lysine
fermentation in anaerobic bacteria uses two analogous PLP-
dependent enzymes, lysine 5,6-aminomutase (5,6-LAM) and
lysine 2,3-aminomutase (2,3-LAM), to catalyze non-classical,
free radical reactions (Ballinger et al., 1992; Chang and Frey
2000). Although both aminomutases have similar reaction
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mechanisms and analogous intermediates, their structures differ
enough to organize into Fold Types VI and VII.

2.6.1 Fold Type VI: Lysine 5,6-Aminomutase (5,6-LAM)
Lysine 5,6-aminomutase (5,6-LAM) catalyzes the reversible 1,2
rearrangement of the terminal amino group of DL-lysine and
L-β-lysine. Unlike other PLP-dependent enzymes, 5,6-LAM
requires radical propagation from another cofactor,
adenosylcobalamin (AdoCbl; vitamin B12), to the external
aldimine for its reaction mechanism to occur. This protein
forms an α2β2 tetramer (a dimer of αβ units) (Berkovitch
et al., 2004), and the complete holoenzyme is composed of the
tetramer in addition to an auxiliary activating protein
(Figure 7A). The 5,6-LAM tetramer is known as the active
core enzyme E1 that uses the coenzymes PLP and AdoCbl.
The other component, a sulfhydryl protein E2, is responsible
for the reactivation and ATP-dependent allosteric regulation of
E1 (Baker et al., 1973; Chang and Frey 2000). The function of E2
may be tied to the exchange of free AdoCbl with bound
cobalamins to reactivate the holoenzyme (Toraya and Mori
1999). The PLP- and AdoCbl-dependent D-ornithine 4,5-
aminomutase (4,5-OAM) is structurally similar and has a
similar reaction mechanism to 5,6-LAM (Barker 1981). 4,5-
OAM is an α2β2 heterotetramer made of the catalytic β
subunit and the α subunit necessary for folding (Chen et al.,
2001; Wolthers et al., 2008). The α subunit can form a complex
with the 5,6-LAM heterotetramer to restore ATP regulation and
may work together with E2 to reactivate E1 (Tseng et al., 2007;
Wolthers et al., 2008).

2.6.2 Fold Type VII: Lysine 2,3-Aminomutase (2,3-LAM)
Lysine 2,3-aminomutase (2,3-LAM) was the first aminomutase to
be discovered (Chirpich et al., 1970). It is a homotetramer (a
dimer of dimers) that catalyzes the interconversion of L-α-lysine
and L-β-lysine using PLP, AdoMet, and a [4Fe-4S]+ cluster as
coenzymes (Lepore et al., 2005). Most isomerization reactions
require the use of AdoCbl as a coenzyme, but 2,3-LAM uses
AdoMet and a [4Fe-4S]+ cluster to mediate hydrogen transfer by
radical propagation. Since AdoMet is not as easily cleaved as
AdoCbl, the iron-sulfur cluster is needed as an electron source to
convert AdoMet into methionine and an Ado radical (Baraniak
et al., 1989; Ballinger et al., 1992). Because of the essential nature
of the iron-sulfur cluster, 2,3-LAM is catalytically limited by
cluster formation and reduction to the +1 state. Previous work
showed reducing proteins (e.g., flavodoxin NADP+ reductase,
flavodoxin, and ferredoxin) can help activate 2,3-LAM by
facilitating cluster reduction (Figure 7B) (Brazeau et al., 2006).

3 DISCUSSION

Pyridoxal 5′-phosphate is a coenzyme involved in a number of
essential cellular processes within nearly all organisms. The
diversity of reactions catalyzed by PLP-dependent enzymes is

not fully realized solely by examination of their 3-D structures
and active site architectures. Rather, this review provides an
overview of the diverse mechanisms of protein allostery
utilized by members of PLP-dependent enzyme families. It is
through allostery that PLP-dependent activities are tuned to meet
a particular cellular need. Although there are some reoccurring
themes, such as oxidation of a CXXC motif or regulation via an
N-terminal or C-terminal extension, there are also many
divergent mechanisms. These mechanisms include binding of
diverse protein or small molecule effectors at distal sites which
induce conformational changes that alter oligomerization or
active site accessibility and architecture. Here, we present
allosteric mechanisms from various members of each fold
type. However, as structural and biochemical investigations
continue, it is likely that more allosteric routes will be discovered.

A common approach in drug development is the design of
competitive inhibitors that directly disrupt catalysis by active
site interference. This concept proves difficult with PLP-
dependent enzymes because of the common reaction
mechanisms within fold types. How can we target a
particular enzyme without affecting a litany of other
biological processes? Nature surmounts this problem by the
evolution of allosteric regulation, where structural changes
distal to the active site induce conformational changes to fine-
tune catalysis. Allostery does not center around a certain
mechanism but rather encompasses a multitude of means.
By exploiting the natural phenomenon of allostery, the issue of
active site similarity can be circumvented, and PLP-dependent
enzymes that have been previously structurally characterized
can be reexamined for novel therapeutic development. Not
only will this expand drug discovery opportunities, but it will
also aid in exploring novel structure-based means of allosteric
regulation.
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