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The lack of effective differential diagnostic methods for active tuberculosis (TB) and latent
infection (LTBI) is still an obstacle for TB control. Furthermore, the molecular mechanism
behind the progression from LTBI to active TB has been not elucidated. Therefore,
we performed label-free quantitative proteomics to identify plasma biomarkers for
discriminating pulmonary TB (PTB) from LTBI. A total of 31 overlapping proteins with
significant difference in expression level were identified in PTB patients (n = 15),
compared with LTBI individuals (n = 15) and healthy controls (HCs, n = 15). Eight
differentially expressed proteins were verified using western blot analysis, which was
100% consistent with the proteomics results. Statistically significant differences of six
proteins were further validated in the PTB group compared with the LTBI and HC groups
in the training set (n = 240), using ELISA. Classification and regression tree (CART)
analysis was employed to determine the ideal protein combination for discriminating
PTB from LTBI and HC. A diagnostic model consisting of alpha-1-antichymotrypsin
(ACT), alpha-1-acid glycoprotein 1 (AGP1), and E-cadherin (CDH1) was established
and presented a sensitivity of 81.2% (69/85) and a specificity of 95.2% (80/84) in
discriminating PTB from LTBI, and a sensitivity of 81.2% (69/85) and a specificity of
90.1% (64/81) in discriminating PTB from HCs. Additional validation was performed by
evaluating the diagnostic model in blind testing set (n = 113), which yielded a sensitivity
of 75.0% (21/28) and specificity of 96.1% (25/26) in PTB vs. LTBI, 75.0% (21/28) and
92.3% (24/26) in PTB vs. HCs, and 75.0% (21/28) and 81.8% (27/33) in PTB vs. lung
cancer (LC), respectively. This study obtained the plasma proteomic profiles of different
M.TB infection statuses, which contribute to a better understanding of the pathogenesis
involved in the transition from latent infection to TB activation and provide new potential
diagnostic biomarkers for distinguishing PTB and LTBI.

Keywords: active tuberculosis, latent tuberculosis infection (LTBI), label-free quantitative proteomics, plasma
protein, diagnostic model, ACT, AGP1, CDH1
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INTRODUCTION

Tuberculosis (TB) is a major global infectious disease causing
high mortality and morbidity, with 1.7 million deaths and 10.4
million new cases worldwide in 2016. About 95% cases were PTB,
which is mainly caused by M.TB transmission (WHO, 2017).
Besides the active TB patients, about one-third of the world’s
population is infected with M.TB, but remains asymptomatic,
which is known as LTBI. It has been reported that 5–15% of LTBI
individuals will eventually develop active TB (Getahun et al.,
2015). Thus, the LTBI population may be a seedbed of TB in the
community. Early diagnosis and prompt treatment of TB, not
only for active TB but also for LTBI, are critical strategies for
TB control. However, the current routine methods demonstrate
some limitations in identifying TB, especially in discriminating
active TB from LTBI. M.TB culture is the gold standard
method for TB diagnosis but require 4–8 weeks for results
(Brodie and Schluger, 2005). The microscopic examination of
sputum allows recognition of the bacilli, but only if sputum
contains at least 5 × 103 bacilli/mL (Kumar et al., 2014). The
interferon gamma release assays (IGRAs) are now a promising
method to diagnose M.TB infection but cannot distinguish active
TB from LTBI, especially in the suspected TB patients with
clinical respiratory symptoms (Sester et al., 2011). Therefore,
aforementioned methods do not satisfy the requirement to
definitively diagnose patients with early-stage active pulmonary
TB. Consequently, a panel of easily measured biomarkers with
high diagnostic accuracy is of paramount importance for global
TB control.

In recent years, great efforts have been made to address this
problem. Since peripheral blood is easy to collect, screening and
identifying biomarkers in plasma or serum is an effective method
of disease diagnosis. Proteins are the ultimate players in biological
activities. Pathogenic mechanisms between TB and host during
M.TB invasion are based on protein expression and protein–
protein or protein–nucleic acid interactions. These TB-associated
proteins may be used as potential diagnostic markers for
identifying active TB. High-throughput spectrometric techniques
have advanced rapidly and provide a broad platform for TB
research and biomarker discovery (Liu et al., 2013; Xu et al.,
2014, 2015). The label-free proteomics technique could be a
promising method to discover protein markers in cancers (Fan
et al., 2015; Gamez-Pozo et al., 2015). However, few studies have
used this technique to examine the plasma proteomic profile of
PTB and LTBI individuals. Furthermore, most studies have failed
to establish a simple visual model to distinguish active TB from
LTBI, especially a model with high diagnostic performance in a
blind testing set.

Abbreviations: ACT, alpha-1-antichymotrypsin; AGPI, alpha-1-acid glycoprotein
1; APOCIII, apolipoprotein CIII; AUC, area under the ROC curve; BP, biological
process; CART, classification and regression tree; CC, cellular component; CDH1,
E-cadherin; CFH, complement factor H; CP, ceruloplasmin; EMT, epithelial
to mesenchymal transition; GO, gene ontology; HCs, healthy controls; KEGG,
Kyoto Encyclopedia of Genes and Genomes; LC, lung cancer; LFQ, label-
free quantification; LTBI, latent tuberculosis infection; M.TB, Mycobacterium
tuberculosis; MF, molecular function; PTB, pulmonary TB; RBP4, plasma retinol
binding protein 4; ROC, receiver–operator characteristic; SD, standard deviation;
TB, tuberculosis; TF, transferrin; TST, tuberculin skin test.

In this study, we applied a label-free quantitative proteomics
technique to identify candidate plasma biomarkers associated
with PTB. A new proteomic profile for distinguishing PTB from
LTBI and HCs was generated, and an effective diagnostic model
with a relatively high accuracy for distinguishing PTB from LTBI
and HC was constructed and further validated. Furthermore,
this diagnostic model showed a relatively good sensitivity and
specificity in distinguishing PTB and LC. These results also
provide a new database of proteins that can be used to understand
the pathogenesis from latent infection to TB reactivation.

MATERIALS AND METHODS

Study Population
This study was carried out in accordance with the
recommendations of the Helsinki Declaration and its later
amendments or comparable ethical standards, the Ethics
Committee of Beijing Chest Hospital, Capital Medical University.
The protocol was approved by the Ethics Committee of Beijing
Chest Hospital, Capital Medical University. All subjects gave
written informed consent in accordance with the Declaration of
Helsinki.

The PTB patients were recruited from Beijing Chest Hospital
between December 2012 and October 2014. All PTB patients
exhibited typical TB clinical symptoms, TB lesion revealed
by chest radiograph, at least two consecutive positive sputum
smears, and/or a positive sputum culture. The PTB patients
enrolled in the discovery set for proteomics analysis had not
received anti-TB treatment. The majority of the PTB patients
in the training set and blind test set had received anti-TB
treatment for no more than 14 days; only 7 patients had
received anti-TB treatment for 14–26 days. LTBI individuals
and HC were recruited from a large TB screening campaign
in Beijing between November 2012 and December 2014. LTBI
individuals satisfied the following criteria: positive TST and
T-SPOT.TB results, normal chest radiograph, and without any
clinical evidence of active TB and other diseases. Since most
of the participants in our study were BCG vaccinated, the
TST/T-SPOT.TB two-step strategy was used in accordance with
previous studies (Berry et al., 2010; Zak et al., 2016) because
confirmatory T-SPOT.TB can highly reduce the false positive
rate due to BCG vaccination or NTM infection in the initial
TST. HCs were people with negative TST and T-SPOT.TB
tests, normal chest radiograph and no clinical symptoms of
diseases. Histologically or cytologically methodology proven LC
patients were recruited from Beijing Chest Hospital between
October 2013 and December 2014. Individuals with positive
human immunodeficiency virus (HIV), positive hepatitis B
virus (HBV) or hepatitis C virus (HCV), diabetes, or severe
autoimmune diseases; those who took immunosuppressive or
immunopotentiator agents; and those who were pregnant or
lactating were excluded.

Blood Sample Collection
Whole blood samples were collected in heparin-containing
vacutainer tubes, and then centrifuged at 2,000 rpm for 10 min
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at 4◦C to obtain the fresh plasma. The plasma was immediately
aliquoted into sterile centrifuge tubes and frozen at −80◦C for
future research. No samples were frozen and thawed repeatedly.

Sample Preparation for Mass
Spectrometry
In the discovery set, a total of three biological replicates for each
of the groups were used for proteomics analysis. Each biological
sample comprised five individual plasma samples, which were
equally mixed. High-abundance plasma proteins were depleted
using the Human 14 Multiple Affinity Removal System Column
(Agilent Technologies, Santa Clara, CA, United States) according
to the manufacturer’s instructions. Low-abundance proteins were
concentrated, freeze dried, and redissolved in 8 M UA buffer
(8 M urea, 150 mM Tris HCl, pH 8.0). Protein concentrations
of all three groups were determined through the Bradford
assay. Subsequently, a total of 200 µg of samples from each
group was lysed with 2 µg Lys-C at room temperature for
3 h. After dilution in a solution of 25 mM NH4HCO3
(Sigma, St. Louis, MO, United States) and 1.5 M urea,
the protein mixture was digested by 2 µg sequencing-grade
modified trypsin (Promega, Madison, WI, United States) at
37◦C for 20 h.

LC-MS/MS Analysis
The nano liquid HPLC system EASY-NLC1000 was applied
for separation of the 5 µg tryptic peptide mixtures. In this
system, mobile phase A was 0.1% formic acid in acetonitrile
(2% acetonitrile), and mobile phase B was 0.1% formic acid
in acetonitrile (84% acetonitrile). Chromatographic column
Thermo EASY column SC200 150 µm ∗ 100 mm (RP-C18)
was balanced by 100% mobile phase A solution. Approximately
5 µg of tryptic peptide mixture was loaded on to the column
Thermo EASY column SC001 traps 150 µm ∗ 100 mm (RP-
C18) (Thermo) and was separated by the chromatographic
column at a flow rate of 400 nL/min using a linear gradient
of B solution for 180 min. After separation, the tryptic
peptide mixture was analyzed simultaneously with a Q-Exactive
mass spectrometer (Thermo Finnigan) for 180 min. The MS
was run in positive ion mode with a scan range of 300–
1800 m/z. Each scan cycle consisted of one full MS scan
in profile mode followed by 20 MS2 scans in centroid
mode.

Protein Identification and Relative
Quantification
At first, nine original LC-MS/MS documents were split into three
groups which were processed with Maxquant software (version
number: 1.5.2.8) to get the label-free analysis. The spectra data
of MS/MS were searched in the International Protein Index
database (version 3.68, 91464 entries, Human). The following
were the main parameters: 6 for the main search ppm, 2 for the
missed cleavage, 20 for the MS/MS tolerance ppm, True set as
de-isotopic, trypsin as digestion enzyme, ipi.human.3.68.fasta as
database, carbamidomethyl as the fixed modification, Oxidation
(M) and Acetyl (Protein N-term) as the variable modification,

reverse as decoy database pattern, true set as LFQ, 2 for LFQ
min ratio count, 2 min for match between runs, 0.01 for the
peptide FDR, 0.01 for the protein FDR. A similarity search
was performed in the UniProt database for M.TB with the
following parameters: peptide mass tolerance for ±15 ppm and
fragment mass tolerance for 20 mmu. Trypsin was used as the
protein-cleaving enzyme, and the two missed cleavages were
accepted. Carbamidomethylation of cysteine was designated as
a fixed modification, and oxidation of methionine, acetylation
on protein N-term were selected as variable modifications.
The proteomics data were deposited in the iProx database1:
IPX0001176000.

Bioinformatics Analysis
Annotation of differentially expressed proteins including
the CC, MF, and BP was obtained from the GO
database2 and PANTHER analysis3. The biological
signaling pathway analysis was performed with the
KEGG database4. The reciprocity network of proteins
identified was analyzed using the Search Tool for
the Retrieval of Interacting Genes/Proteins (STRING)
software5.

Western Blot Analysis
Sodium dodecyl sulfate-polyacrylamide gels (12 and 8%)
were prepared according to the molecular weight of target
proteins. A total of 20 µg of samples was loaded onto these
systems and transferred onto nitrocellulose filter membranes
(Millipore, Corporation, Billerica, MA, United States) through
electroblotting. The membranes were blocked with 3% BSA-
TBST (10 mmol/L-Tris HCl, 150 mmol/L NaCl, 0.1% Tween
20 containing 5% skim milk) at room temperature for 30 min.
Subsequently, membranes were incubated with the primary
antibody including rabbit anti-CDH1 antibody (diluted
1:20000, Abcam, Cambridge, MA, United States), rabbit
anti-CFH antibody (diluted 1:10000, Abcam), rabbit anti-
alpha 1 antichymotrypsin antibody (diluted 1:5000, Abcam),
rabbit anti-APOCIII antibody (diluted 1:1000, Abcam), rabbit
anti-RBP4 antibody (diluted 1:5000, Abcam), rabbit anti-
TF antibody (diluted 1:20000, Abcam), mouse anti-alpha
1 acid glycoprotein antibody (diluted 1:2000, Santa Cruz
Biotechnology, Santa Cruz, CA, United States) and rabbit
anti-CP antibody (diluted 1:10000, Abcam) at 4◦C overnight.
After washing five times membranes were incubated with
horseradish peroxidase-conjugated goat anti-mouse IgG (diluted
1:5000, Santa Cruz Biotechnology), goat anti-rabbit IgG (Fc)
(diluted 1:5000, Santa Cruz Biotechnology) and mouse anti-
rabbit IgG (L) (diluted 1:5000, Santa Cruz Biotechnology)
at room temperature for 40 min. Then they were reacted
with enhanced chemiluminescence (ECL) solution (Millipore,
Corporation, Billerica, MA, United States) according to the

1http://www.iprox.org/
2http://www.geneontology.org/
3http://www.pantherdb.org/
4https://www.genome.jp/kegg/pathway.html
5http://string.embl.de/
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electrochemiluminescence kit instructions. Finally, the gray
value of each band was measured by the TotalLab Quant
software (TotalLab, Newcastle, United Kingdom).

ELISA Analysis
The Human CDH1 ELISA kit (R&D Systems, Inc.; Minneapolis,
MN, United States; the detection limit was 0.09 ng/mL), alpha
1 antichymotrypsin Human ELISA kit (Abcam, the detection
limit was 1.722 ng/mL), APOCIII Human ELISA kit (Abcam,
the detection limit was 0.001 µg/mL), Alpha 1 acid Glycoprotein
Human ELISA kit (Abcam, the detection limit was 10.1 µg/mL),
TF Human SimpleStep ELISATM kit (Abcam, the detection limit
was 292 pg/mL), Retinol Binding Protein 4 Human SimpleStep
ELISATM kit (Abcam, the detection limit was 19 pg/mL),
Factor H Human ELISA Kit (Abcam, the detection limit was
0.2 ng/mL), and CP Human ELISA Kit (Abcam, the detection
limit was 0.6 µg/mL) were used according to the manufacturers’
instructions to measure the concentrations of plasma proteins in
the different groups.

Statistical Analysis
Parametric data were expressed as the mean ± SD, and
non-parametric data were expressed as the median (range).
Continuous variables were tested using Student’s t-test or Mann–
Whitney U-test, as appropriate. Categorized variables were
analyzed using the Fisher’s exact test or Pearson’s chi-squared
test. P < 0.05 was considered statistically significant. ROC curves
were constructed to obtain the area under the curve (AUC) and
evaluate the diagnostic values of each single biomarker. Logistic
regression analysis was used to further evaluate the diagnostic
accuracy of the combined plasma biomarkers. All data were
analyzed using SPSS 17.0 (SPSS Inc., Chicago, IL, United States).
A tree-structured data analytic technique referred to as CART
analysis was used in the training set to classify the PTB group
and non-TB groups (LTBI and HC groups). The CART software
used a Gini splitting algorithm with 10-fold cross-validation that
favored even splits and would not allow splits of nodes with five
or fewer observations. The best decision tree was chosen using
this algorithm, as previous study (Lu et al., 2011).

RESULTS

Characteristics of the Study Population
A total of 398 participants were enrolled in this study, including
128 PTB patients, 125 LTBI individuals, 112 HCs, and 33
LC patients. The LC cases were consisted of adenocarcinoma
(n = 20), squamous cell carcinoma (n = 8) and small cell LC
(n = 5). The demographic characteristics of the study population
are shown in Table 1.

In the discovery set, there were 15 PTB patients, and 15 age-
and gender-matched LTBI individuals and HCs, respectively. An
additional 85 PTB patients, 84 LTBI individuals, and 71 HCs were
included in the training set for candidate biomarker validation
and diagnostic model construction, while the remaining 28 PTB
patients, 26 LTBI individuals, 26 HCs, and 33 LC patients were
included in the blind testing set for diagnostic model validation

(Supplementary Figure S1). There were no significant differences
in the basic information, such as age, gender, and body mass
index (BMI), between the PTB group and the control groups,
except for the age and BMI between the PTB group and LC group
in the blind testing set (P < 0.001) (Table 1).

Label-Free Quantitative Proteomics
Analysis
Label-free quantitative proteomics was used to compare samples
from the three groups (PTB, LTBI, and HC). In total,
229 non-redundant proteins were quantified based on the
identification of one or more unique peptides. Differentially
expressed proteins were defined as those that showed a fold
change greater than 2.0 or less than 0.5 in relative abundance
and a P-value < 0.05. Based on these criteria, there were 59
differentially expressed proteins between the PTB group and
LTBI group, and 56 differentially expressed proteins between
the PTB group and HC group, respectively. In the comparison
between the PTB group and LTBI group, 26 proteins were
up-regulated (>2-fold) and 33 proteins were down-regulated
(<0.5-fold) in the PTB group. There were 26 up-regulated
proteins (>2-fold) and 30 down-regulated proteins (<0.5-fold)
in the PTB group when comparing with HC group. Comparison
of PTB with the other two groups (PTB vs. LTBI and PTB
vs. HCs) showed that a total of 31 overlapping proteins
were significantly differentially expressed in plasma of PTB
patients, and they presented the same trends when compare
with LTBI and HC (Table 2). The intensity changes of the 31
differentially expressed proteins are shown as a heat map in
Figure 1.

To investigate whether M.TB proteins were secreted in human
plasma, the spectra data of MS/MS in our study were also
searched in the UniProt database for M.TB. We identified 6,
6, and 2 M.TB proteins in active TB, LTBI, and HC samples,
respectively. The six proteins identified in active TB samples
were prpC, pbpB, rpsN, pyrR, mntH, and Rv0102, while the six
proteins identified in LTBI samples were relA, vapB18, clpP2,
kasA, Rv0064, and Rv2633c. Two proteins, including aceAa and
dxr, were detected in HC samples.

Bioinformatics Analysis of Differentially
Expressed Proteins
We classified the 31 differentially expressed proteins by GO
analysis as CC, BP, and MF. The results showed that the majority
of the proteins have an extracellular distribution, involving
extracellular region (24.30%), extracellular exosome (23.36%),
and extracellular space (18.69%) (Figure 2A). According to
the analysis of MF, the differentially expressed proteins were
categorized into different groups. Expectedly, the top category
detected was related to binding, including antigen binding
(12.00%), fibronectin binding (8.00%), cholesterol binding
(8.00%), copper ion binding (8.00%), cell adhesion molecular
binding (8.00%) and glycoprotein binding (8.00%). The other
proteins were categorized into antioxidant activity (8.00%),
serine-type endopeptidase activity (12.00%) and serine-type
endopeptidase inhibitory activity (12.00%) (Figure 2B). In
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TABLE 1 | Demographic characteristics of the study population.

Study complex Variables PTB LTBI HC LC P-value∗ P-value† P-value‡

Discovery set n 15 15 15 –

Male/female 5/10 5/10 5/10 – 1.000 1.000 –

Age (median, range) 28 (19-49) 31 (22-53) 29 (20-57) – 0.523 0.806 –

BMI (mean ± SD) 19.6 ± 2.0 20.9 ± 1.5 20.9 ± 1.7 – 0.058 0.077 –

Smokers/non-smokers 0/15 1/14 1/14 – 1.000 1.000 –

BCG vaccination, n (%) 13 (86.7) 15 (100%) 13 (86.7) – 0.483 0.651 –

Training set n 85 84 71 –

Male/female 55/30 45/39 40/31 – 0.141 0.286 –

Age (median, range) 33 (16–65) 36 (20–65) 33 (19–60) – 0.237 0.983 –

BMI (mean ± SD) 20.3 ± 4.2 21.2 ± 3.9 20.8 ± 3.6 – 0.186 0.459 –

Smokers/non-smokers 44/41 40/44 31/40 – 0.590 0.313 –

BCG vaccination, n (%) 70 (82.3) 73 (86.9) 61 (85.9) – 0.412 0.546 –

Blind testing set n 28 26 26 33

Male/female 17/11 18/8 13/13 20/13 0.512 0.428 0.993

Age (median, range) 25.5 (16–62) 29.5 (20–51) 26 (22–40) 63 (38–80) 0.966 0.256 <0.001

BMI (mean ± SD) 19.8 ± 2.8 19.7 ± 2.6 20.9 ± 3.2 23.8 ± 2.8 0.919 0.173 <0.001

Smokers/non-smokers 11/17 13/13 11/15 15/18 0.428 0.821 0.627

BCG vaccination, n (%) 24 (85.7) 22 (84.6) 23 (88.5) 29 (87.9) 0.494 0.249 0.803

n, number of subjects; SD, standard deviation; BMI, body mass index; PTB, pulmonary TB; LTBI, latent tuberculosis infection; HC, healthy control; LC, lung cancer.
∗Comparison between PTB and LTBI group; †comparison between PTB and HC group; ‡comparison between PTB and LC group.

addition, the important proteins identified in the PTB group that
were significantly up or down-regulated were categorized into a
diverse set of functional groups, including acute-phase response
(5.00%), defense response to bacterium (5.00%), inflammatory
response (5.00%) and innate immune response (5.00%), and so
on (Figure 2C).

Kyoto Encyclopedia of Genes and Genomes enrichment
analysis was then implemented to test proteomics pathway
enrichment. KEGG enrichment indicated that complement
and coagulation cascades, Staphylococcus aureus infection,
prion diseases, and porphyrin and chlorophyll metabolism
are significantly associated with active PTB (Figure 2D).
The protein–protein functional network diagram analysis also
demonstrated that most of these differentially expressed proteins
closely interacted with each other (Figure 2E).

Validation of Identified Proteins by
Western Blot
After synthesizing the results, including fold change and
bioinformatics data, as well as considering the biological
functions of these differentially expressed proteins associated
with infection and immunity, 4 up-regulated proteins (ACT,
AGP1, CFH, and CP) and 4 down-regulated proteins (CDH1,
APOCIII, RBP4, and TF) were selected to be validated by
western blotting, using the pooled samples in the discovery set
(Figure 3). During western blotting analysis, the nitrocellulose
filter membranes were stained with Ponceau S to ensure equal
loading between each sample (Wang et al., 2012). Based on the
western blotting results, all eight proteins exhibited the same
expression pattern as indicated in the results of proteomics
analysis. ACT, AGP1, CFH, and CP were up-regulated in PTB
patients compared with the other two groups. The average

PTB/LTBI ratios of these proteins were 1.50, 1.30, 1.18, and
1.29, respectively. The PTB/HC ratios were 1.41, 1.29, 1.10, and
1.15, respectively. CDH1, APOCIII, RBP4, and TF were down-
regulated in PTB patients. The average PTB/LTBI ratios were
0.65, 0.53, 0.42, and 0.59, respectively. The PTB/HC ratios were
0.68, 0.62, 0.48, and 0.68, respectively.

Validation of Differentially Expressed
Proteins in Training Set by ELISA
A total of 240 individuals (85 PTB patients, 84 LTBI individuals,
and 71 HCs) were recruited in this training set. In this phase, 80
samples (27 PTB patients, 30 LTBI individuals, and 23 HCs) were
randomly selected to initially verify the eight proteins by ELISA.
CFH and CP results were inconsistent with the proteomics results
and were excluded from subsequent validation. The other six
proteins were further confirmed in the remaining 160 samples
(58 PTB patients, 54 LTBI individuals, and 48 HCs). Statistically
significant differences in plasma ACT, AGP1, APOCIII, CDH1,
RBP4, and TF were noted in the PTB group, when compared with
the LTBI group and HC group (Figures 4A–F and Supplementary
Table S1). Furthermore, the trends of the plasma expression levels
of these proteins based on ELISA validation were coincident with
the proteomics results. The plasma concentrations of ACT and
AGP1 were significantly increased in the PTB group samples
compared with those in the LTBI group samples (P < 0.001
and P < 0.001, respectively) and HC group samples (P < 0.001
and P < 0.001, respectively), while the plasma concentrations
of CDH1, APOCIII, RBP4, and TF were significantly decreased
in the PTB group samples than that in the LTBI group samples
(P < 0.001, P < 0.001, P < 0.05, and P < 0.001, respectively) and
HC group samples (P< 0.001, P< 0.001, P< 0.01, and P< 0.001,
respectively).
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TABLE 2 | Proteins identified by LC-MS/MS of PTB patients different from LTBI and HC individuals.

IPI number Protein name Gene Uniprot Mass/Da PTB/LTBI PTB/HC

Ratio P-value Ratio P-value

IPI00744889 E-cadherin CDH1 Q9UII7 99,694 0.2383 0.0487 0.3371 0.0198

IPI00007240 Coagulation factor XIII B chain F13B P05160 75,511 0.2004 0.0176 0.3325 0.0012

IPI00011264 Complement factor H-related protein 1 CFHL Q03591 37,651 6.0731 0.0044 11.9184 0.0001

IPI00017601 Ceruloplasmin CP P00450 122,205 2.3079 0.0003 2.1999 0.0001

IPI00018219 Transforming growth
factor-beta-induced protein ig-h3

BIGH3 Q15582 74,681 0.2084 0.0008 0.1137 0.0429

IPI00556155 Insulin-like growth factor binding protein
3 isoform a precursor

IBP3 P17936 31,674 0.362 0.0049 0.2691 0.0026

IPI00657670 Apolipoprotein C-III variant 1 APOC3 B0YIW2 12,816 0.084 0.0011 0.0468 0.0164

IPI00877703 Putative uncharacterized protein FGG C9JC84 52,338 2.0204 0.0123 2.9498 0.0054

IPI00022391 Serum amyloid P-component APCS P02743 25,387 0.2894 0.0021 0.3284 0.0018

IPI00022392 Complement C1q subcomponent
subunit A

C1QA P02745 26,017 0.1395 0.0019 0.2866 0.0108

IPI00022417 Leucine-rich alpha-2-glycoprotein LRG P02750 38,178 3.6325 0.0213 3.214 0.0279

IPI00022420 Retinol-binding protein 4 RBP4 P02753 23,010 0.3588 0.0004 0.1639 0.0035

IPI00884926 Alpha-1-acid glycoprotein 1 AGP1 B7ZKQ5 23,512 12.3226 0.0007 4.5748 0.0013

IPI00022445 Platelet basic protein CTAP3/PPBP P02775 13,894 2.46 0.0224 2.2171 0.0339

IPI00022463 Transferrin TF P02787 77,064 0.131 0.0009 0.0856 0.0133

IPI00025426 Isoform 1 of Pregnancy zone protein CPAMD6 P20742 163,863 6.6994 0.0027 3.1198 0.0062

IPI00028413 Isoform 1 of Inter-alpha-trypsin inhibitor
heavy chain H3

ITIH3 Q06033 99,849 2.8921 0.0030 3.2223 0.0044

IPI00029739 Isoform 1 of complement factor H CFH P08603 139,096 2.971 0.0010 3.5319 0.0007

IPI00829636 FLJ00382 protein (Fragment) IGHD P01880 42,353 3.1564 0.0017 2.2785 0.0111

IPI00166729 alpha-2-glycoprotein 1, zinc precursor AZGP1 P25311 34,259 0.3167 0.00002 0.2225 0.0014

IPI00940451 59 kDa protein IGHG3 P01860 41,287 6.525 0.0188 4.8085 0.0254

IPI00215894 Isoform LMW of kininogen-1 BDK P01042 71,957 11.7329 0.0001 7.433 0.0013

IPI00889740 Fibulin 1 FBLN1 P23142 77,214 0.3419 0.0012 0.3271 0.0001

IPI00301143 Isoform 1 of Peptidase inhibitor 16 CRISP9/PI16 Q6UXB8 49,471 0.3792 0.0058 0.241 0.0076

IPI00304273 Apolipoprotein A-IV APOA4 P06727 45,399 3.5902 0.0009 8.6196 0.0003

IPI00385762 Arginine-fifty homeobox ARGFX A6NJG6 35,617 0.2138 0.0015 0.3748 0.0022

IPI00550991 Alpha-1-antichymotrypsin ACT/SERPINA3 P01011 47,651 3.7169 0.0049 3.2121 0.0047

IPI00555812 Gc-globulin GC P02774 52,964 2.3735 0.0303 3.5584 0.0127

IPI00641737 Haptoglobin HP P00738 45,205 13.781 0.0008 8.4063 0.0011

IPI00792393 10 kDa protein – – 101,160 5.7704 0.0123 192.1467 0.0064

IPI00796830 13 kDa protein – – 129,930 0.4777 0.0122 0.224 0.0043

PTB, pulmonary TB; LTBI, latent tuberculosis infection; HC, healthy control.

ROC Analysis
Receiver operating characteristic (ROC) analysis was performed
to evaluate the sensitivity and specificity of the six proteins in
the training set (Supplementary Figure S2 and Table 3). The
AUC values of ACT, AGP1, CDH1, APOCIII, RBP4, and TF
were 0.835, 0.816, 0.784, 0.721, 0.724, and 0.723, respectively,
when discriminating between the PTB group and LTBI group.
The plasma protein ACT had the best ability to distinguish
between PTB and LTBI, followed by the proteins AGP1 and
CDH1. The AUC values of ACT, AGP1, CDH1, APOCIII,
RBP4, and TF were 0.762, 0.856, 0.925, 0.793, 0.823, and
0.723, respectively, when discriminating between the PTB group
and HC group. CDH1 was the best protein for distinguishing
the PTB group from the HCs group. Logistic regression with
forward stepwise analysis indicated that APOCIII and RBP4

were excluded, and CDH1, TF, ACT, and AGP1 were included
in the diagnostic model for discrimination of the PTB group
from the LTBI group. The AUC value of this diagnostic model
reached as high as 0.946, and the model exhibited 82.3%
sensitivity and 92.8% specificity in discriminating the PTB group
from the LTBI group. In addition, logistic regression with
forward stepwise analysis indicated that TF and RBP4 were
excluded, and APOCIII, CDH1, ACT, and AGP1 were included
in the diagnostic model for discrimination of the PTB group
from the HC group. The AUC value of this diagnostic model
reached 0.989, and the model exhibited 96.5% sensitivity and
95.8% specificity in discriminating the PTB group from the
HC group. These results revealed that the combination of the
proteins enables higher diagnostic capacity than each single
protein.
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FIGURE 1 | Hierarchical cluster analysis of the 31 differentially expressed proteins. Hierarchical cluster analysis was performed to determine whether the 31-protein
profile could reflect the different statuses of M.TB infection. It showed that the nine pooled samples were successfully clustered into three groups, and each group
matched exactly to the clinical grouping of PTB, LTBI, and HC. PTB, pulmonary TB; LTBI, latent tuberculosis infection; HC, healthy control.

A Simple Diagnostic Model for
Distinguishing the PTB Group and
Non-TB Group
To obtain a simple and visual diagnostic model and facilitate
clinical application, we subjected these six proteins to CART
analysis to determine the ideal protein combination and to
optimize the discrimination between PTB and non-TB. This
analysis demonstrated that a combination of ACT, AGP1, and
CDH1 presented the best discriminating capacity (Figures 5A,B).
When discriminating the PTB group and LTBI group, this
classification tree yielded a sensitivity of 81.2% (69/85), a
specificity of 95.2% (80/84), and an accuracy of 88.2% (149/169).
In addition, this combination of ACT, AGP1, and CDH1
demonstrated good capacity for discrimination between the PTB
group and HC group. The sensitivity, specificity, and accuracy of

this combination was 81.2% (69/85), 90.1% (64/71), and 85.2%
(133/156), respectively.

Blind Test of the Diagnostic Model
In the independent blind test, we validated the diagnostic
accuracy of the ACT-AGP1-CDH1 combination with
identification of PTB patients (n = 28) and non-TB individuals,
including LTBI individuals (n = 26), HCs (n = 26) and LC patients
(n = 33). The expression of three proteins of interest was also
examined by ELISA. Statistically significant differences of these
three proteins were noted in the PTB groups when compared
with that in the LTBI, HC and LC groups (Figures 4G–I
and Supplementary Table S2). Similar to the training set, the
diagnostic model effectively discriminated the PTB group and
the other three groups (Figures 5C–E). According to the optimal
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FIGURE 2 | Bioinformatics analysis of the differentially expressed proteins. (A) Cellular component (GO analysis); (B) molecular function (GO analysis); (C) biological
process (GO analysis); (D) KEGG pathway analysis; (E) function network analysis of differentially expressed proteins using STRING software.

cutoff value yielded in the diagnostic model, it could classify
85.2% individuals (46/54) with a sensitivity of 75.0% (21/28) and
a specificity of 96.1% (25/26) in discriminating the PTB patients
from the LTBI individuals. Moreover, it presented a sensitivity of
75.0% (21/28), a specificity of 92.3% (24/26), and an accuracy of
83.3% (45/54) when discriminating the PTB group from the HCs
group. Furthermore, it showed a sensitivity of 75.0% (21/28), a
specificity of 81.8% (27/33), and an accuracy of 78.7% (48/61) in
discriminating the PTB group from the LC group.

DISCUSSION

The human immune response to M.TB infection is highly
complicated and multifaceted. Identifying the immunologic
characteristics of different infection statuses (LTBI or active
TB) will facilitate early diagnosis of active TB or LTBI and the
understanding of the pathogenesis from latent infection to TB
reactivation. In this study, a label-free quantitative proteomics
technique was applied to compare the proteomic profiles of

the PTB, LTBI, and HC individuals, and we detected distinct
plasma protein biomarkers of PTB, LTBI, and HCs. A total
of 31 differentially expressed proteins were identified in the
PTB patients, compared with LTBI and HCs. Most importantly,
plasma ACT, AGP1, and CDH1 were combined to construct a
simple and visual diagnostic model, which had relatively high
diagnostic accuracy for distinguishing the active TB patients from
non-TB groups.

Label-free quantitative proteomics has obviated the
requirement for protein staining or peptide labeling, and it
is a powerful technique with a high capacity for multiplexing
(simultaneously measuring multiple biomarkers), a modest
peranalyte sample volume, very low technical variability, and
higher dynamic range and proteome coverage capacity (Sandin
et al., 2015), in comparison with other proteomic technologies.
This technology has been widely used in identifying potential
biomarkers of cancers (Fan et al., 2015; Gamez-Pozo et al.,
2015), neurodegenerative diseases (Perrin et al., 2013), renal
transplantation (Welberry Smith et al., 2013), and endocrine
system and metabolic diseases (Moulder et al., 2015). The
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FIGURE 3 | Validation of the differentially expressed proteins by western blot. The eight differential proteins were selected to be validated by western blot, using the
nine pooled samples in the discovery set. All these proteins showed the same expression pattern with proteomics analysis. ACT (A), AGP1 (B), CFH (C), and CP (D)
were up-regulated in the PTB group when compared with the LTBI and HC groups. CDH1 (E), APOCIII (F), RBP4 (G), and TF (H) were down-regulated in the PTB
group when compared with the LTBI and HC groups. (I) The nitrocellulose filter membranes were stained with Ponceau S to ensure equal loading between each
sample in western blot analysis. PTB, pulmonary TB; LTBI, latent tuberculosis infection; HC, healthy control.

available information on proteomics analysis between active TB
and LTBI was limited until now. Most of the previous studies
on TB biomarker screening were focused on the differential
analysis between active TB and the other pulmonary diseases
(COPD, LC, or pneumonia), or between active TB and HC
(Liu et al., 2011, 2013, 2014; Song et al., 2014; Xu et al., 2014,
2015). Only one study has characterized the plasma proteins in
children at different M.TB infection stage (active TB and LTBI),
and four proteins (XRCC4, PCF11, SEMA4A, and ATP11A)
were detected and confirmed between active TB and LTBI using
proteomics analysis and followed western blot analysis (Li et al.,
2017). However, these four proteins were not detected in our
study, possibly because of the considerable difference in immune
response between adults and children.

A total of 31 differentially expressed proteins were identified
in both PTB vs. LTBI and PTB vs. HC comparisons. These
proteins could be closely related to the status of active TB.
GO analysis clarified the biological significance of these 31
differentially expressed proteins. CC analysis by GO revealed that
most of the proteins were located in the extracellular region,
indicating that they are the secretory proteins. The secretory
proteins play important roles in mediating intracellular signal
transduction in host defense and inflammation development in
TB. Interestingly, some extracellular exosome proteins (23.36%)
were detected in the analysis. Since we did not deplete any
organelles or subcellular structures in plasma before LC-MS/MS
analysis, it is reasonable that exosome proteins were detected
in our proteomics analysis. MF analysis indicated that proteins

Frontiers in Microbiology | www.frontiersin.org 9 June 2018 | Volume 9 | Article 1267

https://www.frontiersin.org/journals/microbiology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-09-01267 June 11, 2018 Time: 17:15 # 10

Sun et al. Plasma Biomarkers and Tuberculosis

FIGURE 4 | Validation of the differentially expressed proteins by ELISA. (A–F) Validation of the six differentially expressed proteins in the training set. Significant
differences in ACT, AGP1, CDH1, APOCIII, RBP4, and TF were noted in the comparison of the PTB group with the LTBI and HC group, and the expression trends of
these proteins were consistent with the proteomics results. (G–I) Validation of the three differentially expressed proteins in the blind test set. Significant differences in
ACT, AGP1, and CDH1 were noted in the comparison of the PTB group with non-TB groups (LTBI, HC, and LC group). Data presented as mean ± SD. ∗P < 0.05,
∗∗P < 0.01, ∗∗∗P < 0.001. PTB, pulmonary TB; LTBI, latent tuberculosis infection; HC, healthy control; LC, lung cancer.

TABLE 3 | The AUC, sensitivity and specificity of the six differentially expressed proteins and the panels in discriminating PTB patients from LTBI individuals, and from
HCs, using logistic regression analysis.

Category Parameters ACT AGP1 CDH1 APOCIII RBP4 TF Panel∗

PTB vs. LTBI Sensitivity (%) 68.2 63.5 65.9 85.9 68.2 72.3 82.3

Specificity (%) 92.9 91.8 78.6 47.6 69.1 61.9 92.8

AUC 0.835 0.816 0.784 0.721 0.724 0.723 0.946

PTB vs. HC Sensitivity (%) 69.4 63.5 80.0 77.6 65.9 62.3 96.5

Specificity (%) 88.7 94.4 92.9 73.2 92.9 81.7 95.8

AUC 0.762 0.856 0.925 0.793 0.823 0.723 0.989

PTB, Pulmonary tuberculosis; LTBI, latent tuberculosis infection; HC, healthy control. AUC, area under the ROC curve. ∗Panel: a combination of the plasma CDH1, TF,
ACT, and AGP1 in discriminating the PTB group from the LTBI group; a combination of the plasma APOCIII, CDH1, ACT, and AGP1 in discriminating the PTB group from
the HC group.

with binding activity accounted for a large proportion, consistent
with a previous study that screened the differentially expressed
serum proteins in active TB compared with HC (Xu et al.,
2014). BP analysis revealed that proteins involved in the human
immune response process accounted for a large proportion.M.TB
infection and further active TB development are accompanied
with the interaction between host immune response and bacterial

invasion; thus, the expression of proteins participating in the
immune response must be significantly different between M.TB
infection and non-infection. This explains why proteins involved
in the human immune response process were detected at a larger
proportion in active TB status.

Furthermore, M.TB secreted proteins were detected in our
study, which may be derived from the plasma exosomes.
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FIGURE 5 | The diagnostic model for distinguishing PTB and non-TB individuals using the classification and regression tree (CART) analysis. (A,B) ACT, AGP1, and
CDH1 were incorporated to establish a diagnostic model using CART analysis in the training set. The tree structure and the cutoff values of each node were
consistent in discriminating the PTB group from the LTBI and HC groups. (C–E) Validation of the diagnostic model in the blinding test set. Similar with the training
set, the diagnostic model performed well to discriminate the PTB group from the three control groups. PTB, pulmonary TB; LTBI, latent tuberculosis infection; HC,
healthy control; LC, lung cancer.

Exosomes represent a promising research tool for TB diagnosis
and treatment because they are released from various cells
containing valuable biochemical information (proteins, lipids,
and nucleic acids) relating to disease. Recently, many reports
have suggested M.TB secreted proteins or nucleic acid in
plasma/serum exosomes as candidate diagnostic markers for
TB (Giri et al., 2010; Kruh-Garcia et al., 2014; Lee et al.,
2015; Mehaffy et al., 2017). The spectra data of MS/MS in
our study were also searched for M.TB protein, and a total
of 6, 6, and 2 M.TB proteins were identified in PTB, LTBI,
and HC samples, respectively. Since our study was focused
on the screening of human plasma proteins for discriminating
PTB from LTBI, and we did not isolate the plasma exosomes,
the proteome was predominately comprised of host proteins
with only a small portion of the collected spectra data
corresponding to mycobacterial peptides. Further research is
needed to systematically explore the M.TB secreted proteins in
plasma/serum exosomes and further elucidate the role of these
M.TB proteins in the pathogenesis from LTBI to active TB.

The six plasma proteins, ACT, AGP1, CDH1, APOCIII, RBP4,
and TF, showed significantly different expression levels in PTB
patients compared with those in LTBI and HC individuals.
Specifically, ACT and AGP1 concentrations were significantly
increased in the plasma of patients with PTB compared with
those of the other two groups. These two proteins are acute-phase
proteins involved in various inflammatory conditions. A previous
study suggested that the serum ACT level was generally higher
among active TB patients, which was in line with our results

(Song et al., 2014). ACT acts as a regulatory enzyme that primarily
inhibits neutrophil elastase activity and thus protects tissues from
proteolytic damage after inflammation (Stoller and Aboussouan,
2012). The deficiency of ACT is associated with the development
of pulmonary emphysema (Daniel et al., 1988). In the active TB,
the elevated plasma ACT level might be a protective factor to
prevent or defer lung damage. It has been reported that AGP1 was
rapidly produced in the infected lung at the early M.TB infection
stage, and 10-fold higher concentrations were detected during
the progressive phase of M.TB infection (Martinez Cordero et al.,
2008). Furthermore, the distinct expression pattern of the serum
AGP1 in TB patients was useful in the differential diagnosis
of bacterial lung infections (Fassbender et al., 1995). Similar to
our results, it has been reported that AGP1 levels were elevated
in active TB patients and may be a potential marker for low
response to anti-TB treatment (Hernandez-Pando et al., 1998).
A previous study also determined that LTBI individuals with an
elevated AGP level were essentially at the early phase of active
TB (Jensen et al., 2013). CDH1 belongs to the family of adhesion
molecules known as ‘cadherins,’ which mediate the interaction
and adhesion between epithelial cells and maintain the integrity
of the organization (Takeichi, 1991). It has been reported that
CDH1 is a potential epithelial master gene, and the decreased
level of CDH1 is associated with the onset of EMT (Kim et al.,
2014). A recent study indicated that the EMT of mesothelial
cells occurred in TB pleurisy, together with a reduction in the
CDH1 level (Kim et al., 2011). Furthermore, the down-regulated
expression of CDH1 was detected in M.TB (H37Rv)-infected
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THP-1 cells and further induced the EMT process (Gupta et al.,
2015). All these results were consistent with our results showing
that the plasma CDH1 level was reduced in PTB patients.
APOCIII is a very low-density lipoprotein, and one of the
lipid carriers associated with lipid metabolism. It inhibits the
activity of lipoprotein lipase and was positively associated with
higher concentration of serum/plasma triglycerides in circulation
(Bobik, 2008). A previous study has suggested that PTB patients
have lower serum lipid levels than those of HC, which was
correlated to the fact that PTB patients were generally losing
weight (Deniz et al., 2007). This phenomenon might be related to
the reduced APOCIII level; we indeed detected a reduced plasma
APOCIII level in PTB patients in our study. Consistent with our
results, Liu et al. (2014) also identified that APOCIII was down-
regulated in Traditional Chinese Medicine (TCM) syndromes of
TB. Furthermore, one of the three down-regulated ‘MS peak’ that
exhibited high diagnostic accuracy was identified as an isoform of
APOCIII in smear-positive PTB patients (Liu et al., 2015). It has
been reported that RBP4 modulates pathophysiological processes
during M.TB infection (Tanaka et al., 2011). Two related TB
proteomics studies have shown that RBP4 was reduced in the
whole-blood supernatants from patients with active TB and in
the plasma of patients with PTB; Therefore, RBP4 was identified
as a candidate biomarker for active TB (Tanaka et al., 2011; Xu
et al., 2014). These studies directly confirmed our results that
the plasma RBP4 was decreased in PTB patients, although the
control groups in the two studies were not LTBI individuals. The
function of TF is to transport iron, which is critical for M.TB
growth (Boelaert et al., 2007). Iron homeostasis was associated
with TB progression, and lower concentration of TF has been
identified as a risk factor for progression to TB (Minchella et al.,
2015). In this study, the lower plasma TF level might be a
reason for the progression to active PTB, compared with that
of the LTBI individuals and HC without any symptoms. Based
on these analyses, we hypothesized that the six proteins may be
candidate biomarkers for distinguishing PTB patients from LTBI
and HCs. Furthermore, these proteins may be promising markers
to explore the pathogenesis of TB and the transition from latent
infection to active TB.

We evaluated the diagnostic capacity of the six proteins
and found that all the proteins had high AUC values
(>0.7). Logistic regression analysis showed that the panel
of ACT_AGP1_CDH1_TF could improve the diagnostic
accuracy to 87.6% for PTB vs. LTBI, and the panel of
ACT_AGP1_CDH1_APOCIII could improve the diagnostic
accuracy to 96.2% for PTB vs. HC. These panels of proteins
exhibited excellent differential capacity for discriminating
PTB from LTBI or HCs. However, one shortcoming of these
panels was that the distinct pattern of proteins is required to
distinguish active TB and the two control groups, which may
cause difficulty for use in clinical settings. We cannot know
whether an individual was a LTBI or healthy control prior to
clinical examinations; therefore, we would not know the optimal
panel to use to diagnose active TB. In order to obtain a simple
visual model with relatively high accuracy for diagnosing active
TB, we used the tree-structured data analytic technique CART
to select the best biomarker panel and construct the model.

Consequently, ACT, AGP1, and CDH1 were finally chosen to
build the decision trees for distinguishing the PTB group and the
two control groups. The diagnostic accuracies were more than
85% in both PTB vs. LTBI and PTB vs. HC differentiation, with
high specificity for ruling out the possibility of active TB. Since
active TB is a benign disease, and arbitrary anti-TB treatment will
result in severe adverse reactions, a relatively higher-specificity
diagnosis method will be preferred by clinicians and patients.
Furthermore, the model performed well in a blind testing set,
and it also presented a relatively good sensitivity and specificity
in distinguishing PTB patients and LC patients. These results
indicated that this diagnostic model may be promising for
discriminating PTB from non-TB.

To our knowledge, this is the first study to identify candidate
plasma biomarkers for distinguishing PTB from latent infection
in adults using a label-free proteomics technique and further
validated in two independent clinical settings with a relatively
larger sample size. However, there are still some limitations
in our study. First, there was a lack of controls with diverse
pulmonary diseases other than TB in the discovery set, although
LC patients were included in the blind testing set to validate the
diagnostic model. Furthermore, considering the small number of
samples in the discovery set, the pooled samples were used in
the proteomics analysis in order to eliminate the effect of inter-
individual difference. However, some differentially expressed
proteins between TB cases and controls may have been obscured
after pooling, which cannot be avoided. Larger numbers of
independent samples in proteomics analysis may be the optimal
method to avoid this dilemma. In addition, although the total
number of samples in our study was sufficiently large, the
sample size in the blind testing set for model validation was
still moderate. Further studies with increased sample size will be
needed to validate this model. Lastly, since a part of TB patients
in clinical were smokers, about half of the enrolled participants in
the following validation and blind test sets were smokers, which
was discrepant from the discovery set, in which most participants
were non-smokers. However, the control groups enrolled in the
validation and blind test sets were matched in smoking status
to avoid the potential interference of smoking. Furthermore, the
diagnostic model presented an accuracy of 91.8 and 90.2% in
discriminating the PTB group from the LTBI and HC groups
in the validation set, respectively, and an accuracy of 86.7, 87.5,
and 77.1% in discriminating the PTB group from the LTBI, HC,
and LC groups, which indicated that the discrepancy of smoking
status between the discovery set and the following validation and
blind test sets may not have led to bias in the analysis.

CONCLUSION

Our study uncovered plasma proteomic profiles of different
M.TB infection statuses in adults, and identified 31 differentially
expressed proteins between PTB patients and LTBI or HC
individuals. Furthermore, a new diagnostic model consisting
of ACT, AGP1, and CDH1 was established and presented a
relatively good capacity in discriminating PTB patients from
LTBI individuals. These results provide a new potential diagnostic
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signature for distinguishing PTB and latent infection, and may
facilitate better understanding of the pathogenesis involved in the
transition from latent infection to TB activation.
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