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Humans are capable of adjusting their posture stably when interacting with a compliant
surface. Their whole-body motion can be modulated in order to respond to the
environment and reach to a stable state. In perceiving an uncertain external force,
humans repetitively push it and learn how to produce a stable state. Research in human
motor control has led to the hypothesis that the central nervous system integrates
an internal model with sensory feedback in order to generate accurate movements.
However, how the brain understands external force through exploration movements,
and how humans accurately estimate a force from their experience of the force, is
yet to be fully understood. To address these questions, we tested human behaviour in
different stiffness profiles even though the force at the goal was the same. We generated
one linear and two non-linear stiffness profiles, which required the same force at the
target but different forces half-way to the target; we then measured the differences in
the learning performance at the target and the differences in perception at the half-
way point. Human subjects learned the stiffness profile through repetitive movements in
reaching the target, and then indicated their estimation of half of the target value (position
and force separately). This experimental design enabled us to probe how perception
of the force experienced in different profiles affects the participants’ estimations. We
observed that the early parts of the learning curves were different for the three stiffness
profiles. Secondly, the position estimates were accurate independent of the stiffness
profile. The estimation in position was most likely influenced by the external environment
rather than the profile itself. Interestingly, although visual information about the target
had a large influence, we observed significant differences in accuracy of force estimation
according to the stiffness profile.

Keywords: stiffness perception, force perception, visuomotor control, learning, sensorimotor prediction,
perceptual decision
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INTRODUCTION

Humans can control their body movements to maintain balance
when interacting with external forces, even in an uncertain
environment. Imagine a situation when you are sitting down
on a gym ball to perform an exercise. Before taking actual
action, you may push the ball by hand several times to
check its elastic stiffness. Such natural behaviour prepares us
for forthcoming exercise on the soft gym ball. The Central
Nervous System (CNS) learns an active contact motion through
sensorimotor feedback and plastically adapts body movements
to a new environment. Humans have remarkable capabilities
to generalise sensory information in a cognitively robust
way and optimise their control performance (Wolpert et al.,
1995, 2011). Research on motor control suggests that humans
develop internal models that allow them to formulate motor
behaviour, to predict consequences of their action and to achieve
the behavioural goal optimally (Davidson and Wolpert, 2003;
Flanagan et al., 2003). Through exploring human reaching
movements against applied force fields, several models have
been proposed to explain the underlying mechanisms (Franklin
et al., 2003; Krakauer et al., 2006; Chib et al., 2009; Darainy
et al., 2009; Kadiallah et al., 2012; Judkins and Scheidt,
2014; Casadio et al., 2015). Online sensorimotor feedback
and the learning process are key components in optimising
human reaching behaviour. However, to our knowledge, how
the brain interprets force perception and how the brain
employs the perception to make an appropriate prediction are
still open questions.

Using psychophysical measures such as discrimination
thresholds, human perception of force has been investigated,
mainly in terms of the magnitude and direction of the
force (Jones and Tan, 2013; van Beek et al., 2013, 2015).
A considerable amount of research has shown that human
force perception is formed by haptic information experienced
during touch, but it can also be influenced by other sensory
information, predominantly visual (White, 2012; Li et al., 2015)
and proprioceptive (van Beek et al., 2015). For example, the
perceived heaviness of an object is subjectively changed by
the “visual” object size; this is well known as the size-weight
illusion (Murray et al., 1999; Ernst, 2009). In the case of
the perception of force magnitude, previous studies (van Beek
et al., 2013, 2015) reported anisotropic characteristics in both
2D and 3D, suggesting that the perception was affected by
the direction of the postural arm movement. In real-world
interactions with compliant surfaces, force profiles are varied
and complicated; that is, when making a contact with an
object and handling it, the profiles are governed by not a
simple linear equation, rather by multiple or dynamic formulae.
Humans examine material stiffness through active exploration,
such as pushing the surface, and then can thereby anticipate the
static stiffness. Although there are a few studies investigating
human haptic perception using linear and nonlinear materials
(Hartman et al., 2016; Wu and Klatzky, 2018; Guang et al.,
2019), it is still unclear whether the brain understands the
profile itself or not. Understanding the brain mechanism is
important for designing systems optimally in human-machine

interaction, for example, in virtual reality rehabilitation (Levac
et al., 2019), robot-assisted rehabilitation (Gasperina et al.,
2021), and human-robot collaborative tasks (Mauri et al., 2019;
Roveda et al., 2019).

In terms of learning force profiles, motor control research
has helped in understanding human goal-directed movements
against external force fields (Bhushan and Shadmehr, 1999;
Thoroughman and Shadmehr, 2000). Human sensorimotor
performances have been studied by both empirical and
computational approaches (Wolpert et al., 2011, for a review).
Interacting with a force exerted by contact surfaces, humans can
learn how to control their reaching movements optimally
and how to adjust their arm impedance characteristics
appropriately. Previous studies, employing an error-based
visuomotor perturbation paradigm, have shown that a certain
exposure (e.g., repetitive movements against compliant forces)
facilitates learning spatial and temporal characteristics of
the interaction (Goodbody and Wolpert, 1998; Krakauer
et al., 2006). Trial-based learning models have also been
studied to understand the underlying principles of human
motor control (Krakauer et al., 2006). In a similar study
employing a dynamic perturbation (Wang et al., 2001),
the internal model seemed to be modified, integrating
with sensory feedback through the learning process. The
brain possibly controls complex movements by flexibly
combining motor primitives, or elements, in the sensorimotor
maps and transforming desired joint trajectories into motor
commands via learning (Thoroughman and Shadmehr, 2000).
Although learning can improve the motion performance,
it is less known how the perception would be influenced
by force profiles.

The objectives of the current study were to explore the
following research questions: (1) Do humans learn different
environmental stiffness profiles while moving in contact with
the environment? and (2) Do humans perceptually distinguish
stiffness profiles? We hypothesised that if the brain could
properly understand stiffness profiles through learning and if
then the CNS could establish an internal model modulating
movement properties in response to applied force, humans
could appropriately perform reaching movements despite the
perturbations caused by the stiffness of the environment.
To systematically explore our hypotheses, we employed an
experimental paradigm where the subjects had to perform
arm-movements in contact with environment that had three
different stiffness profiles. We designed the three stiffness
profiles such that they had a single intersection exactly at
the point that was defined as the movement target (see
Figure 1A). To quantify the reaching performance and the
learnability, we measured the position of the hand and the
force of the interaction throughout the motion. To acquire
the understanding of the stiffness profiles, we also asked
the subjects to move the hand to and hold it at certain
points before the target where the three stiffness profiles
were significantly different. Analysing the hand position
and the force with respect to the stiffness profiles enabled
us to get insight into how the brain interprets different
environmental stiffness.
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EXPERIMENT 1

Materials and Methods
Participants
A total of 36 subjects (28 females, 18–41 years old, mean age:
20.0 ± 3.8 (SD), mean height: 169.1 ± 6.4 cm (SD), 32 right-
handed) took part in the main experiment. All the participants
had normal or corrected to normal vision, and no known
motor deficits and/or any limb injuries. The study was approved
by the Research Ethics Committee, University of Birmingham,
and all procedures were in accordance with the Declaration of
Helsinki. Participants were recruited via the University Research
Participant Scheme—SONA System—and they received £10
for their participation. The subjects gave informed consent to
participate but were naive to the purpose of the experiment. They
also had no prior knowledge about the stiffness models.

Apparatus and Stimuli
The study was conducted using a 3-degrees-of-freedom (3-
DoF) haptic device, HapticMaster (Moog Inc.), which consisted
of a large robotic manipulator with an end-effector (van der
Linde and Lammertse, 2003). A simple spring force (F) was
generated by setting parameters (i.e., spring stiffness, k) in real-
time depending on the end-effector position (Z). We designed
four different compliant forces by changing the stiffness k values
(see Figure 1A and Table 1). The k value is maintained constant
in two linear models ([1], [4]) and position dependent in other
two non-linear models ([2], [3]). Three stiffness profiles were set
crossing at the same position (Z = 12 cm) and the same force
(Fz = 30 kg·m/s2) as a “target.”

A participant stood in front of the haptic device and grasped
the end-effector (Figure 1B). The apparatus was fully covered
by black cloth, so he/she could not see his/her hand and any
movements of the rod. The initial, or “home,” position, where the
centre of the end-effector was Z = 0 at the workspace, was 110 cm
above from the ground. When the applied force was zero, the end
effector was stably situated at the home position as an end of a
spring. In this study, the rod movements were restricted along the
x and y direction. This ensured the participant’s movements or
the exerted force at the end point was only along the z direction.

The visual information about the task such as the target
positions was provided by the 21-inch flat display which was
approximately 1.60 m away from the participants’ standpoint.
The centre of the screen was aligned to the centre of the robotic
rod and approximately 1.55 m above the ground (Figure 1B). In
order to remove external disturbances and any predictive cues
such as noises caused by rod movements, participants listened to
alpha-wave music through headphones during the task.

Experiment Protocol
The experiment consisted of four sessions (see Figure 2A)
with the four different stiffness profiles described above and in
Figure 1A. We probed the performance at the target and at
half of either position or force in the course of the stiffness
profile. The profile [4] was for practice and set as a reference
of desired half-force. Firstly, a practice session was introduced
using only the “half-linear” to learn the task. After the practice,

one stiffness from three different profiles was pseudo-randomly
assigned to the session orders. Each session comprised a series
of blocks: (1) “baseline/wash-up,” (2) learning, (3) “half-force”
estimation task, (4) “half-position” estimation task, and then
(5) “half-force” estimation task. In each block, participants were
asked to give their estimations on test trials after a certain number
of repetitive reaching movements to the target, or reference
(Figure 2B). The test trials measured how accurately participants
held the end-effector compared to the desired physical property
and probed whether they had properly perceived the different
stiffness profile to estimate it.

Each session started from the “baseline” block set with the
“half-linear” condition aiming to reset, or “wash up,” the motor
learning and motor memory. This block consisted of five sets
of (three repetitive movements followed by one test trial).
After the baseline/wash-up, the stiffness was assigned to one
of the three stiffness profiles. The “learning” block consisted of
10 sets of a consecutive task (five repetitive movements with
feedback followed by one test trial). On the test trial in both
“baseline/wash-up” and “learning” blocks, participants held the
end-effector at the same force that they had experienced at the
target in the repetitive period. Following the “learning” block,
participants conducted three test blocks. These blocks consisted
of five sets, the same as the “baseline/wash-up,” In the “half-
position” test block, participants held the end-effector at the
position where they estimated as the half of the real target
position that they learnt through the repetitive movements prior
to the trial. In the “half-force” test block, they held the end-
effector with half the force they estimated from the previously
experienced force at the target. We conducted a pilot experiment
in advance, and we observed that the “half-force” prediction
performance was worse than “half-position” performance. Thus,
in this experiment we doubled the number of “half-force” trials,
aiming to keep the standard deviation of “half-force” prediction
performance being not so far from the standard deviation of
“half-position” one; one “half-position” block was set between
two “half-force” blocks.

In preliminary testing the obtained data suggested that
participants might have paid attention to timing rather than to
stiffness during the repetitive movements in the learning session.
If there were no time constraint, participants might maintain
their own rhythms to reach the anticipated goal. Such timing
moreover is closely related to speed control and so could affect
the force itself. Several studies have shown that time perception
plays an important role in human motor control (Goodbody
and Wolpert, 1998; Rank and Di Luca, 2015; Berret and Jean,
2016). Thus, considering these points we designed a certain time
window for the reaching movements, with visual feedback to
the participants. The average time window was calculated on
the basis of preliminary testing and was held the same for the
different stiffness conditions. Visual information was provided
only at the beginning and end of the movement, in view of its
effect on human force perception.

Experimental Procedure
The total of 36 participants were equally divided into six
groups with six order combinations, in order to minimise the
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FIGURE 1 | Experimental settings. (A) Four different types of force dynamics employed: (1) linear, (2) quadratic, (3) logarithmic, and (4) half-linear. Three stiffness
profiles [(1), (2), and (3)] were designed to produce the same force 30 kg·m/s2 at Z = 12 cm, and (4) was the half of the (1), that is 15 kg·m/s2 at Z = 12 cm. The red
dotted lines indicate the desired values in half-position and half-force prediction task. (B) A cartoon of the explanation of the experimental settings. (C) A typical
example of motion profile of one participant in three stiffness conditions. Three coloured solid lines indicate averaged performance of force (Fz ) vs. position (Z). blue,
linear model; red, quadratic model; green, logarithmic model; respectively. The grey areas represent standard deviations of the performance in each model. (In this
figure, “noisy” trajectories during holding the end-effector around the target (at Z = 12 cm) were excluded).

order effects on the performance. Prior to the experiment,
all participants received instructions about the task from the
experimenters and then began the practice session followed by
the three main sessions. Participants moved an end-effector
of a robotic manipulandum against force generated by haptic
devices following the experimental protocol. They pushed the
end-effector to reach the target, and then released it to freely
return to the initial position (Z = 0). The end-effector movements

TABLE 1 | Spring type, stiffness and force.

Type Stiffness Force

Linear Full [1] 250 250 Z

Half [4] 125 125 Z

Non-Linear Quadratic [2] 2083 Z 2083 Z2

Logarithmic [3] 86.6 Z−1/2 86.6 Z1/2

The four different forces are rendered by changing the spring stiffness.

were monitored by the computer systems and visual information
was provided in real-time on the screen, excluding a certain area
between the start position and the target position. Participants
conducted repetitive movements against the force to learn the
reference force produced by the stiffness profile and then made
a prediction based on it. In the repetitive period, the target
zone was visually defined by a blue coloured circle. Participants
were asked to reach the target within a certain time window
(0.6 ± 0.2 s). The timer started when the end-effector moved
from the initial position and stopped when the end effector
position crossed the target position. Participants received a
feedback message for each movement on the display: “too fast”
when <0.4 s or “good timing” 0.4 s ≤ t ≤ 0.8 s, or “too slow”
when t > 0.8 s. Depending on the timing of the reach, the
target colour correspondingly changed from blue into either
yellow or light blue, or red. They were also requested to set
the end-effector within the target zone (which was displayed
as a small circle) as accurately as possible and to keep it
there for 1 s, maintaining it with zero-velocity as much as
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possible. In the testing period, no visual feedback was provided.
Participants kept the end-effector indicating their prediction,
and maintained it with zero-velocity for 3 s. On test trials in
the “practice” and the “learning” blocks, participants kept the
end-effector with the same feeling as for the target force. In
the “half-force” or “half-position” blocks, they held the end-
effector (1) at half the position they were experiencing with
the target or (2) at half the force they were experiencing
with the target. After the completion of each session, the
participant had a break and was asked to answer a few questions
aiming to assess subjective perception of the force he/she
experienced. The total experimental time for each participant was
approximately 90 min.

The physical properties in the movements were measured with
sensors mounted at the end-effector while the human subjects
were controlling the haptic device in different force conditions.
The end-effector’s position Z, the velocity Vz, and the force F were
recorded at a 5-ms sampling rate. We analysed the movement
performance, and participants’ predictions on the test trials.

Learning Analyses
In the learning block, participants moved the end-effector toward
the target and held it at the target as accurately as possible for
1 s with zero velocity. Aiming to examine how the reaching
performance was changing through the repetitive movements in
three different stiffness conditions, we introduced a metric to
evaluate the position accuracy:

M = |(Z − Zd)| + K ∗ |(Ż − Żd)| (1)

where, Z is the end-effector position reached at the end of each
movement and Ż is the velocity maintained there; Zdand Żd are
the desired position (12 cm) and the desired velocity (0.0 m/s),
respectively. K is maintained as a constant value (0.005 s) defined
by the sampling rate employed in the experimental setting. Thus,
the metric (M) indicates the position accuracy in reaching the
target; the unit of M is cm. In other words, M = 0 means that
a participant had reached the target accurately and maintained
the velocity at zero. (Note that this learning analysis excluded the
trial data performed without visual feedback.).

Data Analysis
The arm manipulator device provided position, velocity, and
force information, which were used to compute the learning
metric M and to analyse force perception. The position and
velocity information were also captured when the participant
reached the target zone, identified by a specific identity variable
defined in the software. The mean learning metric value was
computed for each participant over the set of 50 repeated trials
in different stiffness profiles. A Repeated Measures ANOVA
and paired t-tests were performed (using IBM SPSS software)
to evaluate the participant’s individual learning and perception
performance in “linear,” “quadratic,” and “logarithmic” profiles.

Results
Reaching Performances in Different Stiffness Profiles
Figure 1C shows an example of the typical motion profile
of one participant through 50 repetitive movements with

visual feedback in the learning block, where the target was
located at Z = 12 cm with Fz = 30 kg·m/s2. (This figure
shows the analysed reaching performances excluding the noisy
holding period). These trajectories clearly indicate how the
real movement properties, i.e., Fz vs. Z, were different in the
three stiffness models, which generated “linear,” “quadratic,” and
“logarithmic” force profiles.

Figure 3 shows changes in learning metric (M) value over the
50 repetitions in “linear,” “quadratic,” and “logarithmic” profiles;
the data were averaged across 36 participants. Three coloured
lines all indicate that the averaged M values changed by more
than two orders of magnitudes within the initial 10 repetitions in
the learning block and then gradually improved in accuracy over
the course of the block. Although none of the learning metrics
ever converged to zero, they were all changing in a direction
indicating improvements in accuracy. Inspection of the three
learning-curves in Figure 3E suggests that the curve for the
“quadratic” case is more accurate than those for the other two
cases. The standard errors for position accuracy also indicated
that the performance in the quadratic case was more reliable in
reaching the target position.

We calculated each participant’s metric (M) value averaging
across the 50 repetitions. A repeated measures ANOVA with
a Greenhouse-Geisser correction showed that mean M values
did not differ significantly between the three stiffness conditions
[F(1.228, 42.963) = 2.802, p = 0.094]. This result suggests that
when humans performed repetitive movements to reach the
target, the accuracies were maintained at the end goal position
irrespective of the different stiffness profiles.

From Figure 3E, we observed that a major change in the
learning performance occurred within the initial 10 trials. We
calculated each participant’s M value averaging across the 10
repetitions and conducted statistical analyses using a repeated
measures ANOVA for the three different forces. The results
with Greenhouse-Geisser corrections showed that there were
significant differences in the learning metrics among the stiffness
profiles [F(1.605, 56.188) = 7.209, p = 0.003]. Post hoc tests
using Bonferroni correction showed that between the “linear”
case (M = 3.2E-3, SD = 2.2E-3) and the “quadratic” case
(M = 2.6E-3, SD = 1.26E-3) there was no significant difference
[t(35) = 1.300, p = 0.202]. In contrast, between the “linear” and
the “logarithmic” cases (M = 4.3E-3, SD = 2.41E-3) there was
a marginal statistical difference [t(35) = -2.101, p = 0.0043],
and between “quadratic” and the “logarithmic” cases there was
a significant difference [t(35) = -4.307, p = 0.000]. Despite
showing high standard deviations, these results suggest that the
performance was significantly affected by the stiffness profile in
the initial stages of the learning phase.

Stiffness Perception in Different Force
The read-out data (position and force) at the end of the trials
in both testing blocks were analysed and statistically evaluated.
To allow for individual differences in absolute performance, all
participants’ data were averaged over the total trials in the test
block and then normalised by their average performance on the
test trials in the learning block; thus, the proportion (0.5) is the
desirable value in each condition. See Figure 4A and Table 2. The
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FIGURE 2 | Experimental protocol. (A) A diagram of the four sessions. Following the practice, each session consisted of a series of five blocks: (1)
baseline/wash-up, (2) learning, (3) half-force estimation task, (4) half-position estimation task, (5) half-force estimation task, and then questionnaire periods. The
baseline/wash-up employed the half-linear condition. Then, one of three types of stiffness profiles (linear, quadratic, logarithmic) was assigned pseudo-randomly after
the baseline/wash-up. (B) A cartoon illustrating the repetitive movements to reach the target (Z = 12 cm, Fz = 30 kg·m/s2) and a test trial.

individual data (n = 36) were plotted on to the lines representing
the force; Figure 4B shows the half-position task performance
and Figure 4C shows the half-force task performance. These
graphs indicate that most participants overestimated the real
half-position (at 0.5 as Z = 6 cm) in all three forces; also, the
majority of participants overestimated the actual half-force (at 0.5
as Fz = 15 kg·m/s2).

Figure 4A shows that there were no significant differences
on half-position estimations among the three different types of
stiffness. A repeated measures ANOVA shows that there were
no significant differences on half-position estimations in three
different force profiles: F(2, 70) = 0.627, p = 0.537. These results
indicate that the participants estimated the similar position
regardless of the force. In contrast to the half-position task, there
were significant differences on half-force estimations among
three different force profiles. A repeated measures ANOVA with a
Greenhouse-Geisser corrections shows that there were significant
differences in half-force estimations in three stiffness conditions:
F(1.175, 50.944) = 105.443, p = 0.000. These results suggest that
the half-force estimations were affected by the stiffness profiles.

In further statistical analyses, a paired-samples t-test was
conducted to compare the estimation performance between
the half-position and half-force tasks. There were significant
differences in positions measured at half estimation between the
two tasks, t(35) = 2.27, p = 0.029 in “linear” force and t(35) = 4.74,
p = 0.000 in “quadratic” force, suggesting that the participants
understood the task and learned the force. Conversely, there were
not significant task differences in half-estimation in “logarithmic”
force, t(35) = 1.66, p = 0.106, These trends were also shown in

forces measured at half-estimation in the two tasks, t(35) = 2.31,
p = 0.027 in “linear” force and t(35) = 4.58, p = 0.000 in
“quadratic” force; in contrast there was not a significant task
difference in measured forces in “logarithmic” case, t(35) = 1.62,
p = 0.114. Such results suggest that the participants did not well
distinguish the task itself, or they could not estimate the half, in
“logarithmic” force profile.

In graphical examinations of the scatter plots, the mean values
of half-position estimations were equally shifted from the desired
value (red-dotted line) in three different stiffness conditions. This
trend indicates that participants overestimated the half-position
equally regardless of the force. In contrast, a black straight
line connecting respective mean values of half-force estimations
was tilted from the desired red-dotted line, suggesting that the
performance was affected by the stiffness profile.

EXPERIMENT 2

Based on the results in Experiment 1, we conducted additional
testing to examine the effect of direction of visual feedback
on estimations. In Experiment 1, the movement direction of
the displayed circle representing the end-effector position was
vertical and the same as the actual physical movements. Although
all the visual information disappeared in the estimation trials,
participants might have learned, by means of proprioception, the
relative position of their body, rather than the force profile itself.
To examine this, we designed an experiment to provide the visual
feedback independently of the direction of hand movement.
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FIGURE 3 | Changes in learning metrics in three conditions. Evaluation of 36 participants over the course of the 50 repetitions. The graphs represent the means with
standard errors of the M values in three different stiffness profiles. (A) Learning-curves in all the three stiffness models. (B) Learning performance in “quadratic”
model. (C) In “linear” model. (D) In “logarithmic model. (E) Focusing on the initial 10 trials.

Materials and Methods
Participants
Fourteen participants [4 female, 22–31 years old, mean age:
25.1 ± 2.3 (SD)] were newly recruited. The recruitment
procedures and the criteria were identical to those of
Experiment 1. Experiment 2 was treated as a follow-up to
the Experiment 1, so that the number of participants was
relatively small.

Stimuli and Procedure
The task information was displayed on a screen and guided a
participant to move an end-effector to reach the target. The

initial position was visually indicated as the centre of a circle
on the screen and the target was set at the contour. The visual
information was synchronised with the end-effector movements
in the same manner with the Experiment 1, but its direction was
radial, not vertical (see the cartoon in Figure 5 and compare with
the Figure 4).

The experimental procedure and the protocol were broadly
similar to the main experiment: three sessions with different
stiffness conditions started from the “wash-up/baseline,”
followed by the “learning,” “half-force,” and “half-position”
blocks. The learning block consisted of 5 sets of a task (5
repetitions with feedback followed by one test trial), and the
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FIGURE 4 | Stiffness perception in three force dynamics in Experiment 1. Thirty-six participants’ performance in the “half-position” and “half-force” test trials. Blue,
red, and green colours, respectively, represent linear, quadratic, and logarithmic stiffness conditions. (A) Normalised averaged performance in the half-position trials
(light-coloured bars with diagonal lines, on the left sides) and in the half-force trials (dark-coloured bars, on the right sides). Error bars denote ± 1 standard error.
(B) In the half-position trials, the individual data were plotted onto the lines representing the stiffness dynamics. (C) In the half-force trials. The individual data
averaged in the test trials were plotted onto the line representing the force dynamics. Large crosses represent the mean values and black line is regression line fitted
to the shown means.

TABLE 2 | Summary of comparison between the half-position task performance vs. half-force task performance at the test trials in Experiment 1.

z-Position z-Force

Force types Half-position task Half-force task Half-position task Half-force task

Mean SD Mean SD Mean SD Mean SD

Linear 0.653 0.113 0.704 0.096 0.662 0.125 0.713 0.107

Quadratic 0.645 0.121 0.744 0.106 0.432 0.162 0.569 0.159

logarithmic 0.633 0.112 0.666 0.113 0.802 0.078 0.821 0.080

Mean, averaged across 36 participants (5 trials for the half-position, 10 trials for the half-force); SD, Standard deviation.

“half-force” block was only once per each session. The total
experimental time was approximately 60 min and shorter than
the Experiment 1. After Experiment 1, we noticed that the
experimental duration (90 min) was quite long and caused
participants’ tiredness; thus, we shortened it aiming to keep
their concentration.

Results
Effects of Visual Feedback Direction
As shown in Figure 5A and Table 3, the averaged half-estimation
performances in Experiment 2 had a similar pattern to those of
Experiment 1. The individual data (n = 14) were also plotted on
to the solid lines representing the force profile (see Figures 5B,C).
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FIGURE 5 | Averaged normalised performance across 14 participants at the half-position and at the half-force trials in Experiment 2. Blue, red, and green colours,
respectively, represent linear, quadratic, and logarithmic stiffness conditions. (A) Normalised averaged performance in the half-position trials (light-coloured bars with
diagonal lines, left) and in the half-force trials (dark-coloured bars, right). Error bars denote ± 1 standard error. (B) In the half-position trials, the individual data were
plotted onto the lines representing the stiffness dynamics. (C) In the half-force trials. The individual data averaged in the test trials were plotted onto the line
representing the force dynamics. Large crosses represent the mean values and black line is regression line fitted to the shown means.

TABLE 3 | Summary of comparison between the half-position task performance vs. half-force task performance at the test trials in Experiment 2.

z-Position z-Force

Force types Half-position task Half-force task Half-position task Half-force task

Mean SD Mean SD Mean SD Mean SD

Linear 0.643 0.065 0.670 0.106 0.643 0.065 0.670 0.107

Quadratic 0.576 0.076 0.772 0.091 0.340 0.089 0.607 0.145

logarithmic 0.656 0.090 0.608 0.124 0.807 0.055 0.773 0.084

Mean, averaged across 14 participants (5 trials for the half-position, 10 trials for the half-force); SD, Standard deviation.

A repeated measures ANOVA was conducted for the half-
estimation values in three stiffness conditions; the estimations
differed significantly among forces in both tasks: F(2, 26) = 7.241,
p = 0.003 in the half-position and F(2, 26) = 7.948, p = 0.002
in the half-force.

Inspection of the data suggests that the half estimation
performances in all the three conditions show similar trends

in Experiment 1 and Experiment 2. Noticeably the slope of
a line connecting respective mean values of the half-position
estimations was more tilted from the desired dotted line,
showing that performance was slightly worse than that of
Experiment 1. Conversely, the line slope of the half-force
estimations approached the desired dotted line, showing that the
performance was slightly improved. These changes suggested that
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performance was likely to have been affected by the direction of
visual feedback.

DISCUSSION

This study investigated human perception of force and the
learning performance by systematically manipulating stiffness
profiles. We generated three different position-force profiles
having one intersection as a target. Participants moved the
end-effector of the haptic device to the target in the different
conditions and indicated their estimation of half of the target
value in either position or force. Firstly, although we observed
statistically significant differences in the early stages of motor
learning, the differences in position accuracies between the
profiles diminished through the repetitive movements. Secondly,
our results showed better estimations in the half position
condition than in the half force regardless of the force profiles.
Importantly, there were significant differences in the half-
force estimations depending on the profile, suggesting that the
CNS can differentiate it. The findings demonstrated that, even
though they were less accurate, human estimations of stiffness
were certainly affected by the profile through active learning.
However, there were several other factors (e.g., time perception,
velocity control in repetitive movements), that might have led to
inaccurate performances such as over-estimations in reaching the
anticipated target. Moreover, the results also indicated difficulties
in one specific force profile, here the logarithmic case, in both
learning and prediction performances, suggesting that these
might have been influenced by a degree of familiarity in force
profiles in everyday situations. Such possible factors closely
interact with each other; thus, these should be carefully discussed
to understand the mechanisms.

Force and Motor Learning in Different
Stiffness Profiles
The learning analysis evaluated changes in the position accuracies
through repetitive movements under three different stiffness
conditions. The results showed that although none of the metric
(M) values ever converge to zero, the participants were gradually
improving the accuracy within a minor range of deviation.
Despite the learning duration and although the analyses were
different from those of other studies, our data showed similar
learning trends to others; for example, the mirror-tracing task in
Stratton et al. (2007) study, where the individual learning curves
were characterised by fast time scales in the “warm-up” period
and slow scales in the “persistent change” period.

The learning metric for all participants showed that the
overall target reaching performance was not affected by the
different stiffness profiles. All were able to reach the target
position with better accuracy over the course of the trials.
Among three different types of stiffness in the current study
(Figure 3A), the learning performance was relatively better in
the case of the “quadratic” force profile and the improvements
were progressed through the repetitive movements. In the
initial stages of the learning phase (Figure 3E), the participants
showed reaching performance with high deviations in all the

three forces, but the deviations were reduced, even in the case
of “logarithmic” force, within a few repetitions. However, the
learning-curve in the “quadratic” force condition was observed
to be consistent throughout the trial, suggesting that participants
might have easily understood this type of force over the course
of repetitions. In contrast, the learning metric value in the
“logarithmic” force was slightly worse in comparison with other
two conditions. Therefore, the participants might have had
needed more repetitions to understand the logarithmic case and
improve their accuracy in reaching the target position.

Inspecting the results from a different perspective, human
perception of force is very subjective, so the results inevitably
depend on each participant’s sensitivity; thus, we need to consider
interactions with other cognitive functions. Previous studies
have shown that time perception significantly affects the human
perception of force; for example, Rank and Di Luca (2014)
demonstrated that the arm movement performance changed
with a time-dependent force perception. They found that the
response time and the arm movement influenced the accuracy.
Thus, a speed control in reaching movements is a key factor that
would also affect force perception. We originally designed the
experiments with no time-limitation to reach the target, aiming
to provide participants enough time to understand the different
force profiles. However, in a pilot experiment, we noticed that
participants tended to generate their own rhythms and maintain
them in repetitive reaching movements, regardless of the stiffness
profiles. Such rhythmic, or speed, control might have led to
less accuracy in reaching the target and induced scant attention
to the profiles.

In this study, although timing feedback was roughly provided
to the participants when the end-effector was reaching at the
target, there was no strict time limitation. We observed that the
averaged reaching times were slightly different in the three force
conditions: “linear”: 0.624 s ± 0.049 and “logarithmic”: 0.652
s± 0.036) were shorter than the quadratic case (0.681 s± 0.053).
As can be seen in Figure 1A in “Materials and Methods” section,
the magnitudes of linear and logarithmic forces were more
than double those for the quadratic case at the short distance.
Consequently, large stiffness at the early movements might have
caused difficulties in controlling the timing when generating
force against the spring stiffness. Because the participants tended
to approach the target more rapidly in linear and logarithmic
force trials, this might have impaired judgements and the
accurate learning of the profile. Such differences in reaching time
inevitably depend on the profile, and this might have affected
the learning performance and the force perception. A potential
enhancement of our study would be to record differences in body
posture and in electromyographic signals during the trials. These
measures could then be related to variation in motor timing and
rhythms according to the stiffness profiles.

By interviews and questionnaires at the end of each session,
we also examined subjective interpretation of the different
stiffnesses (see Supplementary Material 3). In Experiment 2
where we introduced visual feedback in a radial direction,
one third of participants admitted that the “quadratic” force
profile resembled pushing a cushion, and half of participants
claimed/reported that the “logarithmic” force profile resembled
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pushing a revolving door. The “quadratic” case might have
evoked a mental image of pushing common materials in daily
experience, whereas participants might have been unfamiliar
with the logarithmic one. Although these were very rough
examinations, such exploration could be supported by other
research in relation to motor learning and episodic or procedural
motor memory (Dayan and Cohen, 2011). To investigate
familiarity effects, additional experiments would be considered,
for example, by manipulating visual image to associate with
different stiffness profiles.

Stiffness Perception and Other Factors
in Motor Control
A considerable amount of research has investigated human
discrimination of force magnitude and force direction (Jones,
1989; Pang et al., 1991; Vicentini et al., 2010). There are
different experimental paradigms such as matching tests and
two alternative forced-choice discrimination tasks. Tan et al.
(1994) summarised the findings from different studies (e.g.,
Pang et al. (1991) investigated the range: 2.5–10 kg·m/s2,
Jones (1989) the range: 25–410 kg·m/s2), and reported that
over a large range humans seem to exhibit a just-noticeable
difference (JND) of 7% in force sensing. However, these
data were measured in static, or point-based, discrimination
tasks. In the current study, the force range was from 0
to 30 kg·m/s2, and was within the range reported above.
Although many studies have investigated force perception,
to our knowledge, there are few studies examining whether
humans could understand the dynamics itself via active
movements, evaluating it by static properties. The current
study had a limitation but could show the transform from the
active to static.

In our experiment, the visual deprivation in the test trials was
introduced in order to examine force perception in isolation;
however, at the same time this might have disturbed the
task performance. In further examination of visual deprivation
effect (see Supplementary Material 1), the nine participants
showed relatively large errors in the M values, indicating
they were highly influenced by the deprivation; they could
be considered as visual dominant people. In addition, human
decision-making process (Wolpert and Landy, 2012; Cos, 2017)
is important in motor planning and force perception, especially
in uncertain environments (Sober and Sabes, 2005; Sarlegna
and Sainburg, 2009; Wong and Haith, 2017). We observed
that most participants over-estimated their anticipated target
relative to the veridical values in the test trials. This could be
explained by the effect of the deprivation of visual feedback;
that is, such uncertainties might have increased the delay of
decision making. The over-estimation might have been caused
by minimising the risk of not reaching the target. This could be
also explained by a statistical decision theory such as Bayesian
model (Trommershäuser et al., 2005; Nagengast et al., 2011).
Besides, the current study examined human predictions of
force in the range previously experienced (i.e., the half of the
target). Suppose, however, participants were asked to make
a prediction outside the range (2 times of the target force

for example), then uncertainty would much increase, so that
different brain mechanisms might be involved in anticipation
and the performance change. Future experiments could test
such a possibility.

Our results showed that position estimation was overall
better than the force prediction. Interestingly, the direction
of visual feedback synchronised with hand movements
affected the performance. Comparing Figures 4B, 5B, we
observe better position estimation for the vertical direction
(Experiment 1) than for the radial direction (Experiment
2). In contrast, comparing Figures 4C, 5C, we see that
force estimation was better in radial feedback compared
with vertical. The isometric measurements, without hand
movements (conducted in Supplementary Material 2),
showed that both full-force and half-force estimations were
relatively less accurate than other conditions with hand
movements, excluding the half-force prediction in logarithmic
condition. The vertical hand movements were closely related
to body perception and could have had referred to the
centre of body in making a position estimation. Previous
research also demonstrated that postural adjustment is an
important factor in motor control (Peterka, 2002; Peterka and
Loughlin, 2004; Rueckert et al., 2016) and in force perception
(van Beek et al., 2013).

Finally, our findings could contribute to practical applications
in interactive environments. Exoskeleton technologies, for
example, are increasingly used in rehabilitation and industrial
fields, and it is essential to incorporate biomechanical feedback
of human movements. Relevant to the present study is
the need, when touching uncertain compliant surfaces, to
prevent a dissociation between human force perception
and impedance control, for safety reasons (Roveda et al.,
2019). Further experiments would provide an optimal
solution to predict and guide human motor behaviour
by changing stiffness online in human-robot interaction.
Moreover, an understanding of how humans maintain
stable postures when interacting with external force, and
an understanding of how humans predict the forthcoming
state, would be valuable in developing control algorithm for
self-regulating robots. Later technology might achieve a fully
autonomous robot exhibiting human-like behaviour when
sitting on a gym ball.

SUMMARY STATEMENT

This study showed substantial differences in human estimations
of force according to the stiffness profile of the environment,
even though the differences in overall movement accuracy were
diminished from the early stage of motor learning.
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