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Abstract
We previously reported that overexpression of catalase upregulated xenobiotic- metabolizing

enzyme (XME) expression and diminished benzo(a)pyrene (BaP) intermediate accumulation

in mouse aortic endothelial cells (MAECs). Endoplasmic reticulum (ER) is the most active

organelle involved in BaPmetabolism. To examine the involvement of ER in catalase-induced

BaP detoxification, we compared the level and distribution of XMEs, and the profile of BaP

intermediates in the microsomes of wild-type and catalase transgenic endothelial cells. Our

data showed that endothelial microsomes were enriched in cytochrome P450 (CYP) 1A1,

CYP1B1 and epoxide hydrolase 1 (EH1), and contained considerable levels of NAD(P)H: qui-

none oxidoreductase-1 (NQO1) and glutathione S-transferase-pi (GSTP). Treatment of wild-

type MAECs with 1μMBaP for 2 h increased the expression of microsomal CYP1A1, 1B1

and NQO1 by ~300, 64 and 116%, respectively. However, the same treatment did not signifi-

cantly alter the expression of EH1 and GSTP. Overexpression of catalase did not significantly

increase EH1, but upregulated BaP-induced expression of microsomal CYP1A1, 1B1, NQO1

and GSTP in the following order: 1A1>NQO1>GSTP>1B1. Overexpression of catalase did

not alter the distribution of each of these enzymes in the microsomes. In contrast to our previ-

ous report showing lower level of BaP phenols versus BaP diols/diones in the whole-cell, this

report demonstrated that the sum of microsomal BaP phenolic metabolites were ~60%

greater than that of the BaP diols/diones after exposure of microsomes to BaP. Overexpres-

sion of catalase reduced the concentrations of microsomal BaP phenols and diols/diones by

~45 and 95%, respectively. This process enhanced the ratio of BaP phenol versus diol/dione

metabolites in a potent manner. Taken together, upregulation of phase II XMEs and CYP1

proteins, but not EH1 in the ERmight be the mechanism by which overexpression of catalase

reduces the levels of all the BaPmetabolites, and enhances the ratio of BaP phenolic metabo-

lites versus diol/diones in endothelial microsomes.
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Introduction
Benzo(a)pyrene (BaP), a polycyclic aromatic hydrocarbon (PAH) compound, has been shown
to contribute to the development of atherosclerosis-related cardiovascular disease [1, 2]. The
atherogenic role of BaP is due to its reactive intermediates [3–5] and reactive oxygen species
(ROS) generated during its metabolism [6–8]. The level of BaP reactive intermediates and ROS
is controlled by the coordinated activity of phase I and phase II xenobiotic-metabolizing
enzymes (XMEs). Specifically, phase I enzymes, such as cytochrome P450 (CYP)-1 family pro-
teins and epoxide hydrolase 1 (EH1), catalyze the formation of BaP reactive intermediates,
while phase II enzymes, such as glutathione S-transferases (GSTs), UDP glucuronosyl-transfer-
ases (UGTs) and sulfotransferases (SULTs), detoxify BaP intermediates by converting them to
less reactive and water soluble conjugates [9, 10], which are exported out of the cells and finally
excreted through the urine and feces. In addition, phase II enzymes NAD(P)H: quinone oxido-
reductase-1 (NQO1) prevents the redox cycling of BaP quinone-semiquinone-quinols, thus
reducing ROS generation.

Among the three members of CYP1 enzymes, CYP1A1 and 1B1 are best known for PAH
metabolism [11]. It has been shown that elimination of hepatic CYP function by knockout of
CYP reductase increased BaP-DNA adducts in mouse liver [12]. The formation of these
adducts imply a more important role of hepatic CYP1 proteins in BaP detoxification than in its
bioactivation. Increasing evidence suggests that the detoxification activity of CYP1 proteins
results primarily from the 1A1 isoenzyme. Specifically, knockout of CYP1A1 augments
BaP-DNA adducts and BaP-induced toxicity [13], while knockout of CYP1B1 results in protec-
tion against PAH-induced toxicity in mice [14]. The mechanism underlying these contradic-
tory results has not been fully elucidated. One possibility is that the metabolites generated by
CYP1A1 and 1B1 are different, i.e., CYP1A1 is more efficient in the conversion of BaP to
hydroxyl, quinone, and diol metabolites, whereas CYP1B1 is more competent in the formation
of more complicated intermediates, such as BaP-7,8-dihydrodiol- 9,10-epoxide [15], which
binds covalently to proteins, lipids and DNA. Thus, a balance between expression of CYP1A1
and 1B1 enzymes governs BaP-induced toxicity.

Another explanation for the different effects of CYP1 proteins on BaP metabolism is that
CYP1A1 is tightly coupled to phase II enzymes in the endoplasmic reticulum (ER). The close
spatial association or geographically tight coupling of phase I and phase II XMEs on the ER
membrane would facilitate the sequential reactions of BaP bioactivation and detoxification,
preventing accumulation of reactive intermediates in the cells. In contrast, CYP1B1 may not be
tightly coupled to phase II XMEs, resulting in the BaP intermediates accumulation [16]. While
this theory is promising, it has not been tested yet.

We previously reported that overexpression of antioxidant enzyme catalase diminished
BaP-induced atherosclerosis in hypercholesterolemic mice [4], reduced BaP intermediates
[17], and enhanced BaP-induced expression of NQO1, GST-pi (GSTP), CYP1A1 and 1B1 in
mouse aortic endothelial cells (MAECs) [17, 18]. We also observed that the level of CYP1A1
increased by BaP exposure and catalase overexpression was greater than that of CYP1B1. The
upregulatory activity of catalase on NQO1, GSTP, and CYP1A1 was mediated by a mechanism
involving aryl hydrocarbon receptor (AhR), and the catalase-increased CYP1B1 expression
was mediated by an AhR-independent pathway, as knockdown of AhR diminished BaP-
increased NQO1, GSTP, and CYP1A1 expression, but did not significantly alter BaP-induced
CYP1B1 in cells overexpressing catalase [17].

The present report described the effect of overexpressing catalase in MAECs on the levels of
microsomal XMEs and BaP intermediates. Our data demonstrated that CYP1A1, CYP1B1 and
EH1 were located primarily in the microsomes. Though historically thought as cytosolic
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proteins, considerable levels of NQO1 and GSTP were also found in the microsomes. Exposure
of MAECs to BaP upregulated the expression of microsomal CYP1A1, CYP1B1, NQO1 and
GSTP, but not EH1. Overexpression of catalase reduced BaP intermediates, and upregulated
BaP-induced expression of these XMEs in an order as follows: 1A1>NQO1>GSTP>1B1>EH1.
Overexpression of catalase did not alter the distribution of these XMEs in microsomes. Thus,
decrease in microsomal BaP intermediates in catalase-overexpressing cells unlikely result from
an increased spatial association of phase I and phase II XMEs, but might result from an increased
expression of XMEs in a way that shifts the balance between CYP1A1 and 1B1 and the balance
between phase I and phase II XMEs in favor of reducing BaP intermediates.

Materials and Methods

Isolating and culturing mouse aortic endothelial cells (MAECs)
Transgenic mice overexpressing human catalase were generated by injection of fertilized 57BL/
6 embryos with a fragment of human genomic DNA containing the entire human catalase gene
as described previously [19]. The catalase activity in the aorta [19], endothelial cells [20] and
smooth muscle cells (SMCs) [21] obtained from mice hemizygous for human catalase trans-
gene (hCatTg) was approximately 2.5-fold higher than in wild-type (WT) littermates. In addi-
tion, the catalase activity in other tissues, including heart, kidney, lung, liver, muscle and
spleen, obtained from the hCatTg mice was 2- to 4-fold higher than in those obtained from
WT controls. In contrast, the activities of other antioxidant enzymes, such as Cu/Zn-superox-
ide dismutase (SOD), Mn-SOD, extracellular-SOD, and glutathione peroxidase-1 were compa-
rable in tissues and cells obtained fromWT and hCatTg mice [19]. Mouse aortic endothelial
cells (MAECs) were obtained from hCatTg and wild-type mice at 3 to 4 months of age using an
outgrowth technique [20]. Freshly isolated MAECs displayed a cobblestone-like monolayer
and expressed vonWillebrand factor and platelet-endothelial cell molecule-1 (CD31) [20].
These characteristics remain unchanged over 15 passages (data not shown). The 8th and 9th

passages of MAECs were used in this report. All procedures for handling animals were con-
ducted following protocols approved by the Institutional Animal Care and Use Committee at
Meharry Medical College.

Measurement of reactive oxygen species (ROS)
For detection of intracellular ROS, MAECs were grown to confluence in a black-walled bot-
tom-clear 96-well plate in Dulbeco’s Modified Eagle’s Medium (DMEM) supplemented with
10% fetal bovine serum (FBS) and 1% Penicillin/Streptomycin at 37°C in a 95% air and 5%
CO2 atmosphere, and then incubated for 1 h with 10 μg/ml 6-carboxy-2',7'-dichlorodi- hydro-
fluorescein diacetate (CDC-H2F diacetate) (Molecular Probes Inc., Eugene, OR). After three
washes with Hank’s buffer, 100 μl of serum-free DMEM with or without 1 μM BaP (Sigma-
Aldrich, St. Louis, MO) was added to each well and incubated for 30 min. Fluorescence was
read using a fluorometer (Fluoroskan Ascent FL, ThermoLabsystems, Philadelphia, PA) with
excitation/emission wavelengths of 480/540 nm for CDC-H2F.

For measurement of hydrogen peroxide (H2O2) release, MAECs grown to confluence in a
96-well plate were incubated with 150 μl Amplex red reagent (Invitrogen, Carlsbad, CA) in the
presence or absence of 1 μM BaP for 30 min at 37°C. Fluorescence was read using a Fluoskan
Ascent fluorometer with the excitation and emission wavelengths at 540 and 590 nm respec-
tively. The cumulative H2O2 concentration was determined based on the standard curve
obtained by incubation of the Amplex red reagent with H2O2. Because this measurement
reflects the ability of MAECs to release H2O2, we refer to it as H2O2 release. At the end of the
experiments, MAECs were lysed in M-PER mammalian protein extraction reagent (Thermo
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Scientific, Rockford, IL). Protein levels in the lysate were determined using a BCA protein
assay kit (Thermo Scientific). The levels of H2O2 were expressed relative to the protein levels.

Western blot analysis
MAECs grown in 100-mm culture dishes were treated with 100 μl of serum-free DMEM con-
taining 1 μM BaP or 2 μl DMSO for 4 h. For whole-cell protein extraction, cells were lysed in
M-PER mammalian protein extraction reagent. Microsomes were prepared as described previ-
ously [22, 23]. Briefly, MAECs were harvested by trypsin/EDTA digestion, and homogenized
with a Dounce homogenizer in a lysis buffer [20% glycerol, 10mmol/L Tris-HCl (pH 7.4), 1
mM EDTA (pH 7.4), 1 mM DTT]. The homogenate was centrifuged serially at 1,000 g for 10
min and at 12,000 g for 15 min to remove cell debris, nuclei and mitochondria in the pellets.
The resulting supernatant was centrifuged at 100,000 g for 60 min in a Beckman Optima L-80
XP ultracentrifuge using a Ti70 rotor (Beckman Coulter, Brea, CA). All the procedures were
performed at 4°C. The pellet containing microsomes was collected in M-PER mammalian pro-
tein extraction reagent. The whole-cell and microsomal lysates were resolved on a 10% sodium
dodecyl sulfate (SDS)-polyacrylamide gel. Proteins were transferred to a PVDF membrane.
After blocking with 3% fat-free milk, the membranes were incubated sequentially with primary
and secondary antibodies. The antibodies against β-actin (sc130656), protein disulfide isomer-
ase (PDI) (sc20132), catalase (sc50508), CYP1A1 (sc48432), CYP1B1 (sc32882), EH1
(sc22748), NQO1 (sc16464) and GSTP (sc134469) were obtained from Santa Cruz Biotechnol-
ogy (Santa Cruz, CA). Immunoreactive bands were visualized using ECL-plus chemilumines-
cence reagent (GE Healthcare-Amersham, Piscataway, NJ) and analyzed with a GS-700
Imaging Densitometer (Bio-Rad, Hercules, CA) [17]. The uneven sample loading was normal-
ized using the intensity ratio of the immunoreactive bands of the tested proteins relative to β-
actin.

High-performance liquid chromatography (HPLC) analysis for BaP
intermediates
MAECs were treated for 4 h with 10 nM of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD)
(Sigma-Aldrich), an AhR ligand that has been shown to induce XME expression [24]. Micro-
somes were isolated from TCDD-pretreated MAECs by serial centrifugations as described
above, and suspended in 120 μl serum-free DMEM (final protein concentration 0.5 mg/ml)
containing 1 μM BaP. The reaction was initiated by adding 5 ml of cocktail containing
NADPH (0.72 mM), EDTA (100 mM), KPO4 (100 mM), and MgCl2 6H2O (3.75 mM). After
incubation at 37°C for 1 h, the reaction was stopped with 8 ml ethyl acetate containing butyl-
ated hydroxytoluene (0.2 mg/ml) [22]. The microsomal suspension was mixed with 0.1% SDS,
and extracted with a solution containing water, methanol and chloroform at a ratio of 1:1.5: 2
(v/v). The organic phase was dried under N2 and resuspended in 0.5 ml of methanol. Particu-
lates in the extracts were removed by passing them through Acrodisc filters (0.45 μm, 25 mm
diameter; Gelman Sciences, Ann Arbor). The final extracts were stored at 4°C in amber color
screw top vials to prevent photo-degradation until analyzed. The extracts were analyzed using
a HPLC system (Agilent Technologies, Wilmington, DE) equipped with a C18 reverse-phase
column (Octadecylsilane Hypersil, 5 μm, 200 × 4.6 mm; Agilent Technologies) and hooked to
a UV detector (scanned at 254 nm; Agilent Technologies). Elution was performed with a linear
gradient from 40% methanol to 100% methanol in 45 min at a flow rate of 1.0 ml/min [25].
Benzo(a)pyrene metabolite standards were purchased from the National Cancer Institute
Chemical Carcinogen Repository (Midwest Research Institute, Kansas City, MO).
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Identification of the metabolites was accomplished by comparison of retention times and peak
areas of the samples with that of standards.

Fluorescence Microscopic Analysis of CYP1A1 and 1B1
MAECs grown on chamber slides were treated with 1 μM BaP or medium alone at 37°C for 4
h. Following three washes with phosphate buffered saline (PBS), the cells were fixed with 3.7%
paraformaldehyde at room temperature for 15 min, and permeabilized with 0.1% Triton-X 100
at room temperature for 20 min. After blocking with 5% goat serum, the slides were incubated
with antibodies against CYP1A1 or CYP1B1, and then incubated with Texas Red goat anti-
mouse IgG1 secondary antibody for CYP1A1 or Alexa Fluor 568 donkey anti-rabbit secondary
antibody for CYP1B1. Thereafter, the cells were incubated for 10 min with 250 nM of Tio6(3)
(Invitrogen, Carlsbad, CA), which permeates the cellular membrane and is commonly used as
a probe to localize endoplasmic reticulum. Following three rinses, the slide was mounted with
a glass coverslip with ProLong mounting medium (Invitrogen), and viewed using a Nikon A1R
confocal microscope (Nikon Instruments, Melville, NY). The two channels were acquired
sequentially with the following excitation and emission parameters: Tio6(3) was excited at 488
nm with an argon laser and fluorescence was detected from 500–550 nm. Texas Red and Alexa
Fluor 568 were excited with the 561 nm diode laser and fluorescence was detected at 570–620
nm. High-resolution (100 nm/pixel) Z-series images were obtained fromMAECs with a ×60
(1.4 N.A.) plan apochromat oil-immersion objective and analyzed for co-localization. Overlay
images were assembled, zoomed, and cropped using Nikon Elements 2.3 software.

Statistical analysis
Data are reported as the mean ± SEM. Differences among control and treatment groups were
analyzed by Student’s unpaired t-test (for two groups) and one-way or multiple factor analysis
of variance (for more than two groups) followed by Tukey’s post-hoc test. Statistical signifi-
cance was considered when P was less than 0.05. For the experiments using the 96 well micro-
plate reader, the mean value for each experiment was averaged from triplicate wells in the same
plate. The number of experiments was indicated in figure legends. VassarStats (vassarstats.net)
software was used for statistical analysis.

Result

Overexpression of catalase reduces peroxide radicals in MAECs
We previously reported that that endothelial cells obtained from hCatTg mice had ~2.5 fold
increase in their catalase activity, and no significant change in the activities of other antioxidant
scavengers, including Cu/Zn-superoxide dismutase (SOD), Mn-SOD, extracellular-SOD, and
glutathione peroxidase-1, when compared with the cells obtained from wild-type (WT) litter-
mates [20]. Data from the present study show that the catalase protein level were about 2.6 fold
higher in hCatTg MAECs than in WT cells, and that BaP barely altered the catalase protein
level in both hCatTg and WTMAECs (Fig 1A and 1B). Data in Fig 1C and 1D also show that
under control conditions the release of H2O2 and the level of intracellular peroxides were
slightly lower in hCatTg MAECs than in WT cells, but the differences were not statistically sig-
nificant. In contrast, hCatTg and WTMAECs show significantly different responses to BaP
with regard to H2O2 release and intracellular peroxide level. Thus, addition of 1 μM BaP to the
culture medium elevated H2O2 release and cellular peroxide level by ~2.8 and 2.7 fold in WT
MAECs, respectively. However, the same dose of BaP induced only ~1.6 and 1.5 increases in
H2O2 release and cellular peroxide level in hCatTg cells.
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Overexpression of catalase enhances BaP-induced expression of XMEs
in endothelial microsomes
The crude microsomal preparation obtained by the serial centrifugations contain both rough
and smooth ER [26]. The images in Fig 2A show that the β-actin level was comparable in the
whole-cell lysates and the microsomal preparations; while the level of PDI, a protein enriched
in ER, was ~6 fold higher in the microsomal preparations than in the whole-cell lysates. These
suggest that the crude microsomal preparations obtained from MAECs are enriched in ER pro-
teins. Treatment with BaP and/or overexpression of catalase did not significantly affect the pro-
tein levels of β-actin and PDI in MAECs.

We previously reported that overexpression of catalase upregulated BaP-induced expression
of phase I enzymes CYP1A1 and CYP1B1, and phase II enzymes NQO1 and GSTP by activa-
tion of AhR. The present study determined the effect of catalase overexpression on the distribu-
tion and expression level of these proteins and another phase I enzyme EH1 in microsomes. As

Fig 1. Overexpression of catalase reduces BaP-induced peroxides.MAECs obtained from wild-type (WT) mice and
transgenic mice overexpressing human catalase (hCat) were incubated with 1 μM of BaP for 30 min or culture medium alone
as a control (Ctrl). The catalase protein level was determined in whole-cell extracts by western blot analysis (A) and quantified
relative to β-actin (B). The release of H2O2 fromMAECs (C) were measured using an Amplex red hydrogen peroxide assay kit,
and the intracellular level of peroxide radicals (D) was measured using CDC-H2F diacetate as a probe. Values represent the
mean ± SEM of three separate experiments; MAECs were pooled from 4 mice. * P<0.05 vs. WT cells with same treatments,
and † P<0.05 vs. the same genotype cells without BaP treatment.

doi:10.1371/journal.pone.0162561.g001

Catalase Accelerates Microsomal BaP Detoxification

PLOS ONE | DOI:10.1371/journal.pone.0162561 September 8, 2016 6 / 16



Fig 2. Overexpression of catalase enhances expression of BaP-induced xenobiotic- metabolizing enzymes in endothelial
microsomes.MAECs obtained from wild-type (WT) mice and transgenic mice overexpressing human catalase (hCat) were
incubated with 1 μM of BaP or culture medium alone as a control for 4 h. Microsomes were isolated fromMAECs with serial
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the data in Fig 2 show, the basal levels of CYP1A1, 1B1 and EH1 were ~1.6, 2.3 and 1.3 fold
higher, respectively, in the microsomal preparations than in the whole-cell lysates. The NQO1
level in the whole-cell lysates and microsomes was comparable, while the GSTP level was ~30%
lower in the microsomes under the control conditions. The data in Fig 2B also show that the
basal level of CYP1A1 was slightly higher in the whole-cell lysates but significantly higher in
the microsomes obtained from hCatTg MAECs than in those obtained fromWT cells. Overex-
pression of catalase did not significantly alter the basal levels of CYP1B1, EH1, GSTP and
NQO1, and thus no significant difference was observed between WT and hCatTg MAECs
under the control conditions (Fig 2C–2F).

Exposure of MAECs to BaP (1 μM) slightly increased the EH1 level; however, the difference
between cells treated with and without BaP did not reach statistical significance (Fig 2D). In
contrast, BaP treatment increased the total and microsomal levels of other proteins studied.
The magnitude of increase varied from protein to protein. Specifically, 1 μM BaP exposure for
2 h elevated the total CYP1A1 protein level by 3.4 and 4.7 fold, and its microsomal level by ~4
and 4 fold in WT and hCatTg MAECs, respectively (Fig 2B). As a consequence of the upregula-
tory effect of catalase overexpression on CYP1A1 expression, the total and microsomal
CYP1A1 proteins were ~2 fold higher in hCatTg than in WT cells after BaP treatment (Fig 2B).
As the data in Fig 2C show, the expression of CYP1B1 induced by BaP treatment and catalase
overexpression was relatively lower compared to CYP1A1. Specifically, BaP treatment
increased the total CYP1B1 by ~40 and 50% and the microsomal CYP1B1 by 64 and 86%,
respectively, in WT and hCatTg MAECs. The total and microsomal CYP1B1 proteins in
hCatTg MAECs were significantly higher than those in WT cells after treatment with BaP (Fig
2C).

The data in Fig 2E show that treatment with 1 μM BaP for 2 h increased total and micro-
somal GSTP proteins in hCatTg cells by ~60 and 86%, respectively; but did not significantly
alter the GSTP protein level in wild-type MAECs. The same dose of BaP induced NQO1 in
both WT and hCatTg MAECs, and the induced magnitude was significantly greater in hCatTg
than in WT cells. Specifically, BaP enhanced both total and microsomal NQO1 proteins ~3
fold in hCatTg MAECs, but only about 2 fold in WT cells, leading to a significantly higher level
of NQO1 proteins in the hCatTg MAECs than in WT cells following BaP treatment (Fig 2F).

Fluorescence microscopy for subcellular localization of CYP1A1 and
1B1
This study confirmed the ER distribution of CYP1A1 and 1B1 using a fluorescence micros-
copy. These CYP1 proteins were stained with antibodies conjugated with red fluorescence, and
the ER was stained with a green fluorescence dye Tio6(3). The colocalization of CYP1 proteins
in the ER was determined by the yellow fluorescence in merged images. The data in Fig 3 show
that the basal level of CYP1A1 is lower as compared to CYP1B1. Treatment with BaP and over-
expression of catalase increased the expression of these proteins, as reflected by the increased
fluorescence intensity. Consistent with the western blot data shown in Fig 2, the BaP- and cata-
lase-induced changes vary between CYP1A1 and 1B1. Thus, treatment of the WTMAECs with
1 μM BaP for 2 h induced ~4.5 and 2 fold increase in the protein levels of CYP1A1 and 1B1,
respectively. The same BaP exposure concentration (dose) and duration of BaP treatment

centrifugations. The total and microsomal levels of CYP1A1, EH, GSTP, NQO1 and PDI were determined by western blot analysis,
and expressed as a ratio of their immunoblot intensity relative to β-actin. Values represent the mean ± SEM of five separate
experiments in which MAECs were pooled from 4 mice. * P< 0.05 vs. control; † P< 0.05 vs. BaP-treated WT cells; and ‡ P< 0.05 vs.
the total level of the protein in the same genotype cells with BaP treatment.

doi:10.1371/journal.pone.0162561.g002
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Fig 3. Localization of CYP1A1 and 1B1 in endoplasmic reticulum.MAECs obtained from wild-type (WT) mice and transgenic mice overexpressing
human catalase (hCat) were incubated with 1 μM of BaP or culture medium alone as a control (ctrl) for 4 h. After the cells were fixed and permeabilized,
they were immunostained with antibodies against CYP1A1 (1A1) or CYP1B1 (1B1), and then stained with endoplasmic reticulum (ER) marker Tio6(3).
(A-B) Images were obtained using a Leica TCS SP2 confocal microscope. (C) The protein levels of CYP1A1 and 1B1 were determined by the
fluorescence intensity (F.I.). (D) The ratio of CYP1A1 and 1B1 proteins in the ER versus those in the whole-cell was determined by the F.I. in the ER and
the entire cell. * P< 0.05 vs. the same genotype cells without BaP treatment (ctrl); and † P< 0.05 vs. BaP-treated WT cells.

doi:10.1371/journal.pone.0162561.g003
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elevated the expression of these proteins by ~10 and 2 fold in hCatTg MAECs (Fig 3B). Thus,
the BaP-induced expression of CYP1A1 is significantly higher in hCatTg than in WTMAECs.

The images in Fig 3 show that both CYP1A1 and 1B1 are distributed in the ER and extra-
ER compartments; however, the ratio of CYP1A1 in the ER and the whole-cell is lower than
that of CYP1B1 under the control condition. Treatment with BaP significantly elevated the
ratio of ER and total CYP1A1, but did not alter the ratio of CYP1B1. Overexpression of catalase
did not significantly affect the distribution of CYP1A1 and 1B1 in the ER either before or after
BaP treatment. Specifically, treatment with 1 μM BaP for 2 h elevated the ratio of ER and total
CYP1A1 from 0.52 to 0.82 in WT cells, and from 0.62 to 0.8 in hCatTg cells, respectively (Fig
3D). The ratio of ER and total Cyp1B1 is 0.75–0.82 in WT and hCatTg MAECs treated with or
without BaP (Fig 3D). No significant difference was observed in WT and hCatTg MAECs in
the absence or presence of BaP treatments.

Overexpression of catalase reduces BaP intermediates in endothelial
microsomes
Since overexpression of catalase did not significantly alter the basal level of XMEs in micro-
somes (Fig 2), here we stimulated XME expression by pretreatment of MAECs with 10 nM
TCDD, and studied the effect of catalase overexpression on BaP metabolism in the microsomes
obtained from TCDD-treated cells. The data in Fig 4A show that TCDD exposure elevated
CYP1A1, 1B1, GSTP and NQO1 protein levels by 7.5, 2.3, 1.7 and 2.4 fold, respectively, in the
microsomes obtained from hCatTg MAECs, and 2.6, 1.6, 1.3 and 1.7 fold, respectively, in the
microsomes obtained fromWT cells. Similar to the observations for BaP-induced XME expres-
sion, TCDD-induced expression was greater in the transgenic than in WT cells. A slight
increase in microsomal EH1 level was observed in TCDD-treated MAECs compared to
untreated controls; however, the difference between TCDD-treated and untreated cells was not
statistically significant (Fig 4A and 4B).

The data in Fig 4B show that treatment of microsomes with 1 μM BaP for 4 h induced
detectable accumulation of BaP reactive intermediates, including 9-hydroxybenzo[a]pyrene
(9-OH BaP), 3-hydroxy BaP (3-OH BaP), 9,10-dihydroxy BaP (9,10-diol), 7,8-dihydro BaP
(7,8-diol), 4,5-dihydroxy BaP (4,5-diol), BaP-3,6-dione (3,6-dione) and BaP-6,12-dione
(6,12-dione). The sum of the two BaP phenols 9-OH BaP and 3-OH BaP was ~1.6 fold higher
than the sum of the BaP diols and diones in WTMAECs. The sum of phenols, the sum of
diols/diones, and the total level of BaP intermediates studied were reduced by ~45, 95 and 63%,
respectively, in the microsomes obtained from hCatTg MAECs compared to that obtained
fromWT cells (Fig 4). The more profound reduction in BaP diols/diones than in phenols
resulted in the difference of these two classes of BaP intermediates even larger. Thus, the sum
of BaP phenolic metabolites was ~13 fold greater than diols/diones in hCatTg cells.

Discussion
Endoplasmic reticulum (ER), including the rough and smooth ER, is the most active organelle
involved in BaP metabolism, though other subcellular compartments such as the mitochondria
and cytosol, are also able to metabolize BaP [27]. The present report demonstrated that the
sum of 9(OH)- and 3(OH)BaP generated by the microsomes was ~1.6 fold higher than that of
the BaP diols/diones in WTMAECs. In contrast, we previously observed that these phenolic
metabolites in the whole-cell were ~2.6 fold lower than the diols/diones in WTMAECs [17].
These findings suggest that BaP might be metabolized in the ER and other subcellular compart-
ments as well. The metabolites generated from the ER are mainly BaP phenols, while those
from the extra-ER compartments are mainly BaP diols/diones. It is known that BaP
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Fig 4. Overexpression of catalase reduces BaP reactive intermediates in endothelial microsomes. (A-B) MAECs obtained
from wild-type (WT) mice and transgenic mice overexpressing human catalase (hCat) were incubated with 10 nM of TCDD for 4
h. Microsomes were isolated from TCDD-treated MAECs with serial centrifugations. The total and microsomal levels of CYP1A1,
EH, GSTP and NQO1 were determined by western blot analysis, and expressed as a ratio of their immunoblot intensity relative
to β-actin. (C-D) Microsomes were isolated from TCDD-treated MAECs with serial centrifugations, and incubated with 1 μM of
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intermediates are generated by CYP1 proteins and EH1. Specifically, CYP1 proteins oxidize
BaP to form BaP phenols and epoxides. The phenolic metabolites are further oxidized to qui-
nones by CYP1 proteins, while the epoxides are hydrolyzed by EH1 to form BaP diols, which
can be autooxidized to diones or converted by CYP1 proteins to tetrols, such as BaP-7,8-dihy-
drodiol-9,10-epoxide [28]. It has been reported that in the absence of EH1, BaP was metabo-
lized primarily to phenols and quinones in microsomes. Addition of a purified EH1 into the
microsomal suspension resulted in the formation of BaP diols with a concomitant decrease in
the formation of phenolic metabolites [29]. These observations suggest that the relative level of
EH1 versus CYP1 proteins controls the contribution of the phenol/quinone and the epoxide/
diol pathways in BaP bioactivation. The three members of CYP1 proteins, i.e., CYP1A1, 1A2
and 1B1, are located primarily in the ER [30], with modest distribution in other subcellular
compartments, such as mitochondria, plasma membrane and lysosomes [31, 32]. Two EH iso-
enzymes have been reported in mammalian cells. EH1 is located primarily in the rough ER and
has been shown to hydrolyze BaP epoxides [33]; while EH2 is enriched in several extra-ER
compartments, such as the mitochondria, peroxisomes and cytosol, and has not been reported
to hydrolyze PAHmetabolites, instead playing a major role in metabolism of endogenous lipid
epoxides [34, 35]. Data from this report suggest that CYP1A1, 1B1 and EH1 were located
largely in the microsomes of MAECs. Further studies are needed to determine the ratio of EH1
versus CYP1 proteins in the ER and other subcellular compartments. It is possible that though
CYP1A1, 1B1 and EH1 are located mainly in the ER, the ratio of EH1 versus CYP1 proteins is
lower in the ER, especially in the smooth ER, than in extra-ER compartments. Thus, BaP is
metabolized mainly through the phenol/quinone pathway in the ER and through the epoxide/
diol pathway in other compartments, leading to accumulation of more phenolic metabolites
and less diols/diones in microsomes than in the whole-cell. Data from the present report sup-
port this postulation. Specifically, we observed that overexpression of catalase upregulated
BaP-induced expression of CYP1A1 and 1B1, but barely altered EH1 expression in micro-
somes. This undeniably diminishes the ratio of EH1 versus CYP1 proteins. Correspondingly,
the ratio of BaP phenols versus diol/dione metabolites is increased in the microsomes obtained
from catalase-transgenic cells than in those fromWT cells.

The microscopy studies in this report show that the ER/whole-cell ratio of CYP1A1 was rel-
atively lower under the control conditions. BaP treatment increased the ratio of CYP1A1 in the
ER and the whole-cell. These findings suggest that BaP-increased CYP1A1 is retained in the
ER compartment in MAECs. It has been suggested that CYP1 family enzymes are incorporated
into the ER membrane in a signal recognition particle (SRP)-dependent manner during the
translation process, with the catalytic site facing the cytoplasm. A small fraction of them, of
which the catalytic site faces the lumen of the ER, escapes ER retention, and is transported via
the Golgi apparatus to the plasma membrane [31]. The N-terminal residues of these proteins
are responsible for anchoring them in the membrane. Modification of the N-terminal
sequence, possibly by phosphorylation or proteolytic processing, prevents the ribosome-
nascent chain complex binding the SRP. This fraction of CYP1 proteins are synthesized in the
cytoplasm and imported into the mitochondria via the mitochondrial targeting signal [32, 36].

BaP for 1 h. BaP reactive metabolites, including 9-hydroxybenzo[a]pyrene (9-OH BaP), 3-hydroxy BaP(3-OH BaP),
9,10-dihydroxy BaP (9,10-diol), 7,8-dihydro BaP (7,8-diol), 4,5-dihydroxy BaP (4,5-diol), BaP-3,6-dione (3,6-dione) and BaP-
6,12-dione (6,12-dione), in the microsomes were determined using a reverse phase HPLC system. Panel C shows a
representative HPLC chromatogram of BaPmetabolites, and panel D shows the level of BaP metabolites as expressed relative
to the level of microsomal proteins. Values represent the mean ± SEM of five separate experiments in which MAECs were pooled
from 4 mice. * P< 0.05 vs. the same genotype cells without TCDD treatment (control), and † P< 0.05 vs. WT cells treated with
TCDD.

doi:10.1371/journal.pone.0162561.g004
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It has been reported that CYP1A1 proteins obtained from the microsomes were much more
efficient than those obtained from the mitochondria with regard to BaP metabolism [27], and
that BaP oral administration-induced toxicity in CYP1A1 knockout mice could be diminished
by selective expression of CYP1A1 in the ER but not by selective expression of this gene in the
mitochondria [36]. Thus, retention of CYP1A1 in the ER in response to BaP exposure could be
important for BaP metabolism. It has been postulated that CYP1B1 may localize primarily in
extra-ER compartments and is not tightly coupled to phase II XMEs. Activation of CYP1B1
therefore results in the BaP intermediate accumulation in cells [16]. In contradiction with this
postulation, our data suggest that CYP1B1 localizes primarily in the ER of MAECs under the
basal and BaP-treated conditions. Thus, CYP1A1 in MAECs might not be geographically closer
than CYP1B1 to phase II enzymes. In addition, our data showed that overexpression of catalase
augmented BaP-induced expression of CYP1A1 and 1B1, but did not affect its ER/whole-cell
ratio. Thus, decrease in BaP intermediates under reduced oxidative conditions is not due to
regulation of the ER retention of CYP1 proteins.

Benzo(a)pyrene detoxification reaction is catalyzed by GSTs, UGTs and SULTs, which add
a glutathione, glucuronic acid or a sulfate to the functional group, converting BaP intermedi-
ates to hydrophilic conjugates. Glutathione S-Transferase Pi (GSTP) has been reported to be
relatively more efficient than other classes of GSTs in conjugation of glutathione with BaP
intermediates [37]. We previously reported that overexpression of catalase enhanced BaP-
induced GSTP expression in MAECs. Though historically classified as a cytosolic protein,
GSTP has been found in the mitochondria [38] and plasma membrane [39]. Here we observed
that GSTP is detectable in the microsomes obtained fromMAECs, and overexpression of cata-
lase enhanced BaP-induced GSTP expression. Increase in expression of phase II enzymes, e.g.,
GSTP, could be a mechanism, which underlies the paradoxical findings that overexpression of
catalase upregulates the expression of phase I enzymes CYP1A1 and 1B1, but lowers the BaP
intermediates in MAECs. We previously observed that knockdown of AhR diminished BaP-
induced GSTP expression, and elevated the accumulation of BaP reactive intermediates in
MAECs overexpressing catalase. These observations suggest that overexpression of catalase
upregulates phase II enzymes, such as GSTP, accelerating BaP detoxification via a mechanism
involving AhR. Further studies are required to study whether overexpression of catalase
induces other GST isoenzymes, as well as other phase II enzymes, such as UGTs and SULTs.

One of the mechanisms underlying the toxicity induced by the BaP phenols/quinone path-
way is the redox cycling of quinones, semiquinones and quinols, which generates ROS, such as
superoxide and H2O2 [6–8]. The phase II protein NQO1 bypasses the formation of semiqui-
nones and prevents quinone-semiquinone-quinol redox cycles, thus reducing ROS generation.
Data from studies using human cancer cells demonstrated that NQO1 distributes in the cytosol
and nucleus, but not in the ER, mitochondria and Golgi [40]. However, a large amount of
NQO1 protein has been found in the ER and mitochondria in several mouse tissues, such as
the liver, kidney, lung and small intestine [32]. Here we observed that NQO1 was present in
the microsomes obtained fromMAECs, and overexpression of catalase increased BaP-induced
expression of NQO1. Thus, catalase diminishes BaP-induced H2O2 not only by directly
destroying H2O2, but also by upregulating NQO1 expression, which reduces H2O2 generation
during BaP metabolism. We previously reported that the overexpression of catalase upregulates
NQO1 expression by activation of transcription factors AhR and nuclear factor erythroid
2-related factor-2 (Nrf2) [18].

In summary, this report demonstrated that the spectrum of BaP intermediates in micro-
somes were different from that we previously observed in the whole-cell in MAECs [17], i.e.,
microsomes accumulate more BaP phenols than diols/diones after BaP treatment. Overexpres-
sion of catalase reduced all these BaP metabolites, with a greater magnitude of reduction in
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BaP diols/diones than in phenols. In addition, we observed that CYP1A1, 1B1 and EH1 were
located mainly in microsomes, and NQO1 and GSTP were partially distributed in microsomes.
BaP upregulated the expression of CYP1A1, 1B1 and NQO1 but not EH1 and GSTP in WT
MAECs. Overexpression of catalase increased BaP-induced expression of these proteins in the
following order: CYP1A1>NQO1>GSTP>CYP1B1>EH1. Preferential upregulation of
CYP1A1 and phase II enzymes might be a mechanism for catalase to reduce BaP
intermediates.
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