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ARTICLE INFO ABSTRACT

Keywords: Objective: Focal cortical dysplasia (FCD) is the most common epileptogenic developmental malformation and a
Epilepsy prevalent cause of surgically amenable epilepsy. While cellular and molecular biology data suggest that FCD
Cortical dysplasia lesional characteristics lie along a spectrum, this notion remains to be verified in vivo. We tested the hypothesis
MRI

that machine learning applied to MRI captures FCD lesional variability at a mesoscopic scale.

Methods: We studied 46 patients with histologically verified FCD Type II and 35 age- and sex-matched healthy
controls. We applied consensus clustering, an unsupervised learning technique that identifies stable clusters
based on bootstrap-aggregation, to 3 T multicontrast MRI (T1-weighted MRI and FLAIR) features of FCD nor-
malized with respect to distributions in controls.

Results: Lesions were parcellated into four classes with distinct structural profiles variably expressed within and
across patients: Class-1 with isolated white matter (WM) damage; Class-2 combining grey matter (GM) and WM
alterations; Class-3 with isolated GM damage; Class-4 with GM-WM interface anomalies. Class membership was
replicated in two independent datasets. Classes with GM anomalies impacted local function (resting-state fMRI
derived ALFF), while those with abnormal WM affected large-scale connectivity (assessed by degree centrality).
Overall, MRI classes reflected typical histopathological FCD characteristics: Class-1 was associated with severe
WM gliosis and interface blurring, Class-2 with severe GM dyslamination and moderate WM gliosis, Class-3 with
moderate GM gliosis, Class-4 with mild interface blurring. A detection algorithm trained on class-informed data
outperformed a class-naive paradigm.

Significance: Machine learning applied to widely available MRI contrasts uncovers FCD Type II variability at a
mesoscopic scale and identifies tissue classes with distinct structural dimensions, functional and histopatholo-
gical profiles. Integrating in vivo staging of FCD traits with automated lesion detection is likely to inform the
development of novel personalized treatments.

1. Introduction

Focal cortical dysplasia (FCD) Type II is the most common epi-
leptogenic developmental malformation and a prevalent cause of sur-
gically amenable epilepsy. Histopathologically, FCD is typified by in-
tracortical dyslamination and dysmorphic neurons, either in isolation
(Type IIA) or together with balloon cells (Type IIB) (Blumcke et al.,
2011). From a neurobiological standpoint, whether FCD II subtypes
represent distinct entities or a spectrum is a matter of debate. Recent
studies have shown significant cellular variability, with anomalies that
may vary across lesions with the same subtype (Najm et al., 2018).

Moreover, multiple subtypes may co-exist within the same FCD, with
the most severe features determining the final diagnosis (Iffland and
Crino, 2017). On MRI, FCD may appear as increased cortical thickness,
abnormal signal intensity and blurred appearance (Bernasconi et al.,
2011). The critical role of a lesion for successful surgery (Jobst and
Cascino, 2015; Téllez-Zenteno et al., 2010) has motivated the devel-
opment of automated methods aimed at detecting small FCD lesions
often overlooked on routine radiological inspection (Gill et al., 2017;
Hong et al.,, 2014). To date, algorithms have assumed structural
homogeneity, possibly limiting sensitivity and specificity. In recent
years, data-driven techniques applied to neuroimaging have offered
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novel perspectives on brain disorders and provided diagnostic and
prognostic markers in Alzheimer’s disease (Zhang et al., 2016), de-
pression (Drysdale et al., 2016) and autism (Hong et al., 2017). This is
typically achieved using clustering, an unsupervised learning task that
creates non-overlapping groupings based on similarity. Notably, a
common challenge when using algorithms such as K-means or hier-
archical clustering is the difficulty to objectively assess stability of the
solutions. Conversely, consensus clustering (Bellec et al., 2010) is a
more robust approach that relies on multiple iterations of the chosen
clustering method on random sub-samples (or bootstraps) of the da-
taset. By inducing sampling variability, this approach yields metrics to
assess the stability of the clusters (or classes) consistently emerging
across bootstraps.

Assessing individual variability may offer a novel basis to advance
our understanding of FCD neurobiology and improve lesion detection.
Here, we tested the hypothesis that FCD variability is measurable at a
millimetric scale. To this purpose, we applied consensus clustering on
structural MRI features of FCD to identify clusters (or classes) that
collectively make up a given lesion. By quantifying the in vivo expres-
sion of multiple pathological traits rather than assigning a given FCD to
a single category, this approach combines dimensional modelling of
individual lesions with categorical description of intra-lesional tissue
classes. In addition, we evaluated the relationship of FCD classes to
histopathology, as well as local function and large-scale connectivity as
determined by resting-state fMRI. Reproducibility was assessed in two
independent datasets. Finally, clinical utility was tested by comparing
the performance of a detection algorithm trained on class-informed
data to a class-naive paradigm.

2. Materials and methods
2.1. Subjects

From a database of patients with drug-resistant epilepsy admitted to
the Montreal Neurological Institute and Hospital between 2009 and
2018, we selected 46 consecutive individuals with histologically-proven
FCD (22 females, 47.8%; mean + SD age = 27.1 * 8.6 years) who
had research-dedicated structural and functional MRI scans, henceforth
named Discovery dataset. The pre-surgical workup included seizure
history, neurologic examination, neuroimaging, and video-EEG mon-
itoring. EEG inter-ictal activity and ictal onset were concordant with
the location of FCD lesions in 42 (91%) and 32 (70%) patients, re-
spectively. We evaluated the frequency of interictal epileptic discharges
(IED) on scalp EEG during multi-day monitoring (11 * 3) and cate-
gorized them based on their frequency per recording into rare (<25%)
or frequent (=75%). In 25 patients, surgery was preceded by invasive
monitoring using stereotactic depth electrodes; all displayed high inter-
ictal activity and focal changes at seizure onset in electrodes targeting
the lesion. At a mean * SD postoperative follow-up (Engel, 2001) of
8.4 + 2.2years, 30 patients became seizure-free (Engel-I), 11 had rare
disabling seizures (Engel-II), and 5 had worthwhile improvement
(Engel-III).

Serial 5 pum paraffin-embedded histological sections of lesional
tissue were stained with haematoxylin and eosin or Bielschowsky, and
others immunostained using antibodies against GFAP, non-phosphory-
lated neurofilaments (SMI-32 monoclonal), microtubule-associated
protein-2 (MAP-2), and neuronal specific nuclear protein (NeuN). FCD
Type-1I was defined as disrupted cortical lamination with dysmorphic
neurons in isolation (IIA, n = 21) or together with balloon cells (IIB,
n = 25). We evaluated severity of cortical dyslamination, blurring of
cortical interface and gliosis using categorical scoring (1 = mild,
2 = moderate, 3 = severe).

In 70% of patients, routine radiological assessment was unremark-
able with equal proportions between Type IIA (16/21) and Type IIB
(16/25) (p = 0.37); the FCD lesion was subsequently recognized
through inspection of texture maps (Bernasconi et al., 2011). There

NeuroImage: Clinical 28 (2020) 102438

were no differences in age (27.7 + 10.1 years vs. 26.6 * 6.2 years,
p = 0.64), sex (11 vs. 13 females, p = 0.98) and age at onset
(13.6 = 8.5yearsvs. 11.2 + 7.5 years, p = 0.31) between patients
with FCD Type IIA and Type IIB.

The control group consisted of 35 age- and sex-matched healthy
individuals (16 females, age = 28.8 =* 5.7 years). The Ethics
Committee of the Montreal Neurological Institute and Hospital ap-
proved the study, and the written consent was obtained from all par-
ticipants in accordance with the Declaration of Helsinki.

2.2. MRI acquisition

Images were acquired on a 3 T Siemens TimTrio scanner using a 32-
channel head coil. The protocol included the following sequences: 3D
T1-weighted MPRAGE (Tlw; TR = 2300 ms, TE = 2.98 ms, flip
angle = 9°, voxel size = 1 X 1 x 1 mm?), 3D fluid-attenuated in-
version recovery (FLAIR; TR = 5000 ms, TE = 389 ms, flip
angle = 120°,0.9 x 0.9 x 0.9 mm?) and echo planar resting state fMRI
(rsfMRI; TR = 2020 ms, TE = 30 ms, flip angle = 90°, 34 slices, voxel
size = 4 X 4 X 4 mm?®, 150 volumes). For the latter, participants were
instructed to lie still with their eyes closed while remaining awake. To
reduce signal loss and distortions in orbitofrontal and mesiotemporal
regions, slices were tilted in an oblique axial orientation.

2.3. MRI preprocessing and surface construction

T1lw and FLAIR images underwent field non-uniformity correction,
intensity normalization and linear registration to stereotaxic space
based on the hemisphere-symmetric ICBM MNI152 template. T1lw
images were classified into white matter (WM), grey matter (GM) and
cerebrospinal fluid (CSF) (Kim et al., 2005). FLAIR images were linearly
mapped to T1lw images in MNI space. The rs-fMRI was analyzed using
DPARSF (rfmri.org/DPARSF); after discarding the first 5 time-points,
the data underwent slice-timing and motion correction, realignment
and statistical correction for nuisance effects of WM and CSF signals. To
further correct for residual motion, time-points with a frame-wise dis-
placement of > 0.5 mm were included as separate covariates (Power
et al., 2012) in a linear model alongside the estimates of head motion
(i.e., 3D rotations and translations, obtained from motion correction
procedure) and used as final signals for the analyses. The time-points
were then band-pass filtered at 0.01-0.08 Hz. Images were co-regis-
tered to the native T1w space using a boundary-based approach that
maximizes alignment between intensity gradients of structural and
echo-planar data (Greve and Fischl, 2009). The accuracy of multimodal
registration was verified visually and corrected if needed.

We applied Constrained Laplacian Anatomic Segmentation using
Proximity (CLASP) algorithm to generate models of GM-WM and GM-
CSF surfaces with 41 k surface points (or vertices) per hemisphere (Kim
et al., 2005). In short, CLASP iteratively expands a surface mesh to fit
the GM-WM surface and subsequently estimates the GM-CSF surface by
expanding the GM-WM surface along the Laplacian gradient between
the two surfaces. Surface-based registration, which aligns individual
participants based on cortical folding, was performed to enhance
vertex-wise anatomical correspondence across participants (Lyttelton
et al.,, 2007). Surface extraction accuracy was visually verified, and
inaccuracies were manually corrected.

2.4. Surface-based feature extraction

Two experts (AB, NB) blinded to clinical information independently
segmented the FCD lesions on co-registered Tlw and FLAIR images;
interrater Dice agreement index was 0.91 =+ 0.11. Their consensus
volume label (the union of the two segmentations) was intersected with
cortical surfaces to generate surface-based FCD label, which served as
input to the clustering algorithm. We calculated at each vertex be-
longing to the label morphological, intensity and functional features. To



H.M. Lee, et al.

minimize interpolation, we mapped the surfaces to the native space of
each modality using the inverse transform of the initial co-registration.
To enhance the signal-to-noise of the features while retaining high
spatial specificity, we applied smoothing using a 2D quadratic diffusion
kernel with 2 mm full-width-half-maximum. We then computed z-
scores for each feature with respect to the distribution of the analogous
tissues in healthy controls. For controls, we computed z-scores using a
leave-one-out scheme.

To examine intracortical GM, we positioned three surfaces between
the inner GM-WM and outer GM-CSF surfaces at 25%, 50%, and 75%
cortical thickness, systematically sampling the axis perpendicular to the
cortical ribbon. To assess the superficial WM, we generated surfaces
running 1, 2 and 3 mm below the GM-WM surface guided by a
Laplacian gradient between the GM-WM surface and ventricles (Liu
et al,, 2016). We then sampled the following vertex-wise features
modelling FCD pathology in vivo:

a) Cortical thickness. To model GM thickening, we measured cortical
thickness as the Euclidean distance between corresponding vertices
of GM-WM and GM-CSF surfaces (Kim et al., 2015).

b) Normalized FLAIR intensity. Gliosis is associated with increased
FLAIR signal intensity (Colombo et al., 2012). We divided FLAIR
intensity by the average of GM-WM interface intensity. This value
was normalized with respect to the mode of the FLAIR intensity
histogram (Hong et al., 2014), corrected for CSF partial volume and
mapped on each intracortical/subcortical surface. Intensities were
sampled at 25, 50 and 75% intracortical and 1, 2 and 3 mm sub-
cortical surfaces.

c) Gradient. To model GM-WM interface blurring, vertical gradients

were computed at the GM-WM interface as T1w and FLAIR intensity

differences between corresponding vertices along the 75% in-
tracortical and 1 mm subcortical surfaces divided by the Euclidean
distance between them.

T1w/FLAIR ratio. Despite histopathological evidence (Scholl et al.,

2017), FCD-associated microstructural anomalies have not been

previously assessed in vivo. To this purpose, we sampled T1w/FLAIR

ratio as a proxy for myelin content (Glasser and Van Essen, 2011);

decreases are interpreted as hypomyelination (Bernhardt et al.,

2018). After sampling T1w/FLAIR ratio at 25, 50 and 75% in-

tracortical and 1, 2 and 3 mm subcortical surfaces, we used a local

cylindrical kernel approach to correct for outliers due to bulk blood

vessels and CSF partial volumes (Glasser and Van Essen, 2011).

e) Functional derivatives. To assess local function, we calculated am-
plitude of low frequency fluctuations (ALFF) from the power spec-
trum of rs-fMRI timeseries as the square root of the mean amplitude
of frequency components in 0.01 — 0.08 Hz range. ALFF reflects
regional intensity of spontaneous neuronal activity and has been
shown to relate to interictal spiking (Zhang et al., 2010). Moreover,
we computed degree centrality (DC), which measures the number of
connections that link a given node to the rest of the network. Hence,
higher DC reflects higher connectivity of the node to the rest of the
brain (Bullmore and Sporns, 2009). These features were computed
voxel-wise in volume space and then mapped to the 50% in-
tracortical surface.

d

(=

2.5. Data-driven clustering of lesional vertices

After surface-based metrics were calculated from all vertices across
the whole-brain, vertices located within the surface-mapped FCD lesion
masks were extracted for subsequent analyses. We applied consensus
clustering (Bellec et al., 2010), a procedure in which clustering is re-
peated across 10,000 bootstraps (i.e. random subsampling of with re-
placement) to estimate the stability matrix that stores the likelihood of
intra-lesional FCD features to belong to the same cluster (or classes); a
subsequent clustering on this matrix identifies stable classes that had
consistently emerged across bootstraps (Fig. 1). Specifically, we first
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generated a data matrix where columns (n = 19,253) represent FCD
vertices gathered across all patients and rows (n = 15) the corre-
sponding groups of structural features (listed in section 2.4): FLAIR
intensity (derived from 75, 50 and 25% intracortical and 1, 2 and 3 mm
subcortical surfaces); T1w/FLAIR (75, 50 and 25% intracortical and 1,
2 and 3 mm subcortical), Tlw and FLAIR vertical gradients (GM-WM
interface), and cortical thickness.

Since groups had different number of features, a stratified duplica-
tion matched numbers across categories given by the lowest common
denominator, namely six; this ensured that the feature groups’ con-
tributions to the clustering solution was not driven by differences in the
number of features. Moreover, to ensure that smaller lesions (which
contained lower number of vertices) contributed to the clustering result
as much as larger lesions, we applied lesion-stratified bootstrapping. In
this procedure, 10,000 sets of FCD vertices were extracted based on
70% random sampling with probabilities proportional to the inverse of
the number of vertices based on eta? similarity matrices (Cohen et al.,
2008). We performed spectral clustering on this similarity matrix by
combining clustering solutions from the 10,000 bootstraps into a con-
sensus matrix storing probabilities of vertices to belong to the same
cluster. Finally, spectral clustering on this consensus matrix (henceforth
consensus clustering) identified classes with distinct structural profiles
that consistently emerged across bootstraps.

2.6. Evaluation of clustering solutions

For each pair of lesional vertices, we calculated the percentage of
bootstrap solutions that had the same adjacency as the one in the
consensus clustering solution. The percentage averaged across all pairs
defined the percent agreement for the stability of fit for each K. The
goodness of fit was computed using the inverse of Davies-Bouldin index,
which measures the ratio between inter-cluster distance (how far
clusters are separated from each other) and intra-cluster distance (how
far members of a cluster are from its centroid); a higher index indicates
a better fit. Bootstrap and consensus clustering were repeated for
K = 2-5. We chose the K that yielded optimal percent agreement and
goodness of fit.

2.7. Statistical analysis

For vertex-wise analysis, Student t-tests assessed differences in
structural profiles of FCD classes with respect to analogous vertices of
healthy controls. Linear mixed-effect models evaluated associations
between FCD classes and function; the hemisphere harboring each pa-
tient’s FCD was matched to that of a healthy control for sex and closest
age (without re-using the same control hemisphere), for a total of
19,253 healthy vertices matched to 19,253 lesional vertices.

For patient-wise analysis, Student t-tests compared the relative
proportion of each FCD class with histopathology. Logistic regression
assessed associations between proportions of classes and clinical para-
meters, including age at onset, generalized seizures, interictal epileptic
discharges; multinomial logistic regression was used for variables with
more than two categories. Age, sex and lesion size were included as
covariates. Results were corrected for multiple comparisons using the
False discovery rate (FDR) at qgppg < 0.05 (Benjamini and Hochberg,
1995).

2.8. Data-driven FCD detection

We evaluated the yield of FCD class-membership for automated
lesion detection using extreme gradient boosting, a scalable tree
boosting system (Chen and Guestrin, 2016). Each vertex was indexed
with structural features and FCD class label. Inputs consisted of the
original 15 features used for clustering in addition to their means across
neighboring vertices in distance intervals of 0-2 and 2-4 mm. We im-
plemented a two-stage classification strategy. The first was designed to
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Fig. 1. Clustering framework. A. Feature engineering. Data matrix shows vertex-wise lesional features at intra-/subcortical levels, z-scored with respect to healthy
controls (step 1, black arrow). B. Bootstrap clustering. Lesion-stratified bootstrapping generated 10,000 data subsets based on 70% random subsampling with re-
placement, ensuring equal contributions from all patients regardless of FCD size (step 2). Spectral clustering applied to each bootstrap using an eta-squared similarity
matrix (step 3). C. Consensus clustering. Solutions from 10,000 bootstraps combined into a consensus matrix (step 4) storing probabilities of all pairs of lesional
vertices to belong to the same cluster; spectral clustering on the consensus matrix identifies distinct clusters that consistently emerge across bootstraps (step 5). B and
C were repeated for K = 2-5. Abbreviations. FLAIR: fluid-attenuated inversion recovery; GM: gray matter; int: intensity; IC/SC: intra-/subcortical; WM: white matter.
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maximize sensitivity and consisted of four classifiers each tuned to one
of the discovered FCD classes; predictions were fed into a meta-classifier
to produce the final prediction. The second was aimed at improving
specificity by removing false positives from the first stage; it also con-
sisted of the same four classifiers followed by a meta-classifier. For
training, we performed random upsampling with replacement of each
FCD lesion to match the number of vertices to that of the largest lesion;
the same procedure was applied to the sampling of healthy vertices,
thus ensuring that each patient contributed equal number of lesional
and healthy vertices. In addition, to ensure that the lesional and healthy
vertices contribute equal weights, we scaled the weight of the lesional
class by the ratio between the total number of healthy and lesional
vertices. The classifier was then trained using a 5-fold cross validation
with 100 repetitions; this procedure, by which 20% of patients are
classified using data from the remaining 80%, allows unbiased esti-
mation of performance for previously unseen FCD. Finally, we com-
pared the classification performance of the class-informed algorithm to
a class-naive classifier using two-sided McNemar’s test. Student t-test
assessed patient-wise sensitivity (percentage of detected FCD) and
specificity (number of false-positive clusters).

2.9. Replication analysis

We assessed generalizability in two separate cohorts of patients with
histologically-verified FCD examined at the Montreal Neurological
Institute and Hospital (Replication 1; n = 14; 7 females; mean
age = 24.3 * 4.6 years) and the Severance Hospital in South Korea
(Replication 2; n = 12, 4 females; mean age = 25.8 = 8.0 years), with
3D T1lw and FLAIR images acquired on a 3 T Siemens Prisma and 3 T
Philips Achieva using 32-channel head coils, respectively. The MRI pre-
processing and clustering procedures were identical to those applied to
the Discovery cohort. To mitigate effects of scanner/site difference,
imaging features underwent subject-wise z-normalization prior to z-
normalization with respect to healthy controls.

3. Results

FCD Type II lesions were parcellated into four classes with distinct
structural profiles, functional impact and histopathological embedding.

3.1. Data-driven FCD clustering (Fig. 2)

Clustering achieved optimal stability and goodness of fit parameters
at K = 4, dichotomizing lesional vertices across patients into four
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distinct classes; results were highly stable across 10,000 bootstrap in-
stances, supporting robustness. Across classes, GM and WM profiles
were significantly different from healthy controls (qgrpr < 0.05): Class-
1 with severe isolated WM anomalies, characterized by increased FLAIR
intensity (indexing gliosis) and decreased T1w/FLAIR intensity (in-
dexing hypomyelination), as well as subtle decrease in vertical gra-
dients of Tlw and FLAIR (indexing blurring), but virtually no GM
changes; Class-2 with severe GM thickening combined with moderate
increase in WM FLAIR, decreased T1w/FLAIR and subtle interface
blurring; Class-3 with only moderate increase in intracortical FLAIR and
decreased T1w/FLAIR, but no WM abnormalities; Class-4 with mod-
erate increase in intracortical T1w/FLAIR and decrease in FLAIR in-
tensity, as well as moderate interface blurring. FCD lesions expressed at
least two classes, regardless of size. Similar to the Discovery dataset,
K = 4 showed optimal stability and goodness of fit in Replication 1 and
2 cohorts, with closely matching structural profiles (Figure S1).

3.2. Relationship to function (Fig. 3)

Class-1 was characterized by moderate decrease in large-scale
connectivity (qegpr < 0.01, Cohen’s effect size d = -0.23), but negli-
gible decrease in local function (ggpr < 0.001, d = -0.05); Class-2 by
severe decrease in local function (qgrprg < 0.001, d = -0.69) and
moderate decrease in connectivity (qegpg < 0.01, d = -0.46); Class-3
and Class-4 by decrease in local function, severe in the former
(gepr < 0.001, d = -0.77) and moderate in the latter (qrppg < 0.01,
d = -0.40), but no change in connectivity.

3.3. Relationship to histopathology

Overall, MRI classes reflected typical histopathological FCD char-
acteristics. The proportion of Class-1 vertices was more prevalent in
lesions with severe WM gliosis and GM-WM interface blurring
(gepr < 0.05), Class-2 in those with severe GM dyslamination and
gliosis, as well as moderate interface blurring and WM gliosis
(grpr < 0.05), Class-3 with moderate GM gliosis (qgpr < 0.05), Class-
4 with mild interface blurring (qrpr < 0.05). While Class-2 was as-
sociated with Type IIB with balloon cells (log odds ratio: 5.02,
p < 0.01), the proportion of Type IIB and IIA did not differ among the
other Classes.

3.4. Relationship to clinical parameters

The relative proportions per lesion of Class-2 and Class-4 were as-
sociated with early disease onset (< 10 years; log odds ratio: 4.20 and
3.78; p = 0.02 and p = 0.04, respectively). With regards to epileptic
activity, Class-1 and showed marginal association with rare compared
to frequent IEDs (log odds ratio = -2.81; p = 0.07), and Class-3 with
focal compared to bilateral IEDs (log odds ratio = -8.84; p = 0.07).

3.5. Data-driven FCD detection

The number of FCD vertices that the class-informed paradigm cor-
rectly  predicted but  class-naive  incorrectly  predicted
(mean = SD = 4,770 * 826) was higher than those the class-naive
correctly predicted but class-informed incorrectly predicted
(n = 2,698 + 172); disparity in performance was significant across all
100 repetitions (two-sided McNemar’s test; p < 1le-5). At patient-level,
the class-informed paradigm detected a higher number of lesions than
the class-naive (77 = 3% yvs. 73 * 3%;p < le-5), while the number
of false positive clusters did not differ (5 * 0.3 vs. 5 = 0.5).

4. Discussion

Whether FCD Type IIA and IIB represent distinct entities or a
spectrum has been a matter of debate. Beside evidence for molecular
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variability (Crino, 2015), recent observations suggest co-expression of
multiple histological subtypes within the same FCD lesion (Iffland and
Crino, 2017; Najm et al., 2018); moreover, severity and arrangement of
pathological features may vary between lesions assigned to the same
subtype (Nakagawa et al., 2017), supporting the notion of a spectrum.
Harnessing the power of bootstrap-aggregated consensus clustering, we
quantified the in vivo expression of multiple pathological traits for a
given FCD rather than assigning them to a single category, thus moving
beyond previous studies assuming structural homogeneity. The high
stability of clustering solutions from 10,000 bootstraps, obtained using
a conservative approach based on 70% random subsampling with re-
placement, suggests that the FCD classes may generalize beyond the
Discovery dataset of this study. Indeed, this was consolidated by the
replication in two independent datasets. Lesions were parcellated into
four classes with distinct structural profiles variably expressed within
and across patients. Classes had differential histopathological features
and functional embeddings. Clinical utility is supported by gain in
performance of a lesion detection algorithm trained on class-informed
data compared to a class-naive paradigm; a main contributor resides in
the explicit modeling of structural variability in the class-informed
paradigm allowing FCD classes to equally contribute to the training.

Current histopathological gradings are based on descriptive criteria
and often do not take into account the degree of severity of individual
features. Although this approach may be sufficient in clinical practice, it
may limit the neurobiological understanding of FCD. The presented
MRI-based classification framework may allow us to capture a broader
pathological spectrum. Indeed, the gradual structural compromise we
observed across individual lesions provides the basis for a dimensional
conceptualization of FCD. Phenotypical variability is further supported
by the fact that discovered classes did not show consistent associations
with histological subtypes. While the absence of digitized tissue sam-
ples prevented a fully quantitative comparison between MRI and his-
tology, our imaging markers reflecting categorical variations of main
FCD features emphasize the ability of post-processing to capture his-
topathological variations at mesoscopic scale. Indeed, MRI-derived
Classes with preferential WM damage (1 and 4) were more commonly
associated with histopathological features of severe GM-WM interface
blurring and WM gliosis, while those with GM damage (2 and 3) dis-
played intracortical dyslamination and gliosis. Notably, only Class-2
typified by severe cortical thickening was associated with Type IIB,
possibly in relation to increased neuronal cell diameter and balloon
cells (Muhlebner et al., 2012). Notably, however, accurate histological
characterization may be arduous for various reasons, including in-
complete surgical sampling (Krsek et al., 2009; Oluigbo et al., 2015),
difficulty of perpendicular sectioning with respect to the pial surface
(Bliimcke et al., 2016) due to variability in size and quality of resec-
tions, as well as the logistic burden of immunohistochemistry (Bliimcke
et al., 2016; Prayson, 2014).

Beside optimized performance for automated detection, the clinical
relevance of FCD classes is further supported by their relation to
electro-clinical parameters and age of onset. From an electro-
physiological perspective, Class-1 with preferential WM damage, was
associated with rare IEDs, while Class-3 with selective cortical
anomalies being associated with focal discharges. Classes driven by GM
anomalies had an impact on local function, whereas those with WM
changes affected large-scale connectivity. A likely explanation lies in
the developmental origin of FCD with stage-dependent modulation of
genetically-driven molecular perturbations (Marsan and Baulac, 2018).
Anomalous local function may relate to GM alterations secondary to
aberrant cell proliferation during mitotic cycles, whereas WM altera-
tions may be linked to defective later-stage neuronal migration
(Guerrini and Dobyns, 2014). This is consistent with our results
showing early disease onset in patients with predominant GM pa-
thology classes. Cortical development consists of three successive but
partially overlapping stages of cell proliferation, neuronal migration
and cortical organization (Bystron et al., 2008). Thus, co-expression of
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two or more classes within lesions suggests that molecular perturba-
tions along overlapping stages of neurodevelopment may contribute to
the structural and functional makeup of FCD.

5. Conclusions

The presented data-driven approach uncovered FCD Type II varia-
bility at a mesoscopic scale, revealing tissue classes with distinct
structural dimensions, functional and histopathological profiles. From a
clinical standpoint, integrating in vivo staging of FCD pathology with
automated algorithms relying on widely available MRI contrasts is
likely to pave the way for the detection of the most subtle form of
cortical dysplasia characterized by isolated intra-cortical dyslamina-
tion, an elusive entity currently representing one of the main barriers to
epilepsy surgery (Krsek et al., 2009; Téllez-Zenteno et al., 2010).
Moreover, addressing the full spectrum of FCD traits may play a key
role in establishing genotype-phenotype associations and their clinical
translation, opening opportunities to inform the development of novel
personalized treatments (Citraro et al., 2016) so far mainly hindered by
the lack of phenotypes linked to FCD somatic variants (D’Gama and
Walsh, 2018).
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