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Introduction
The application of genomics to medicine and pathology has 
moved very quickly in humans, particularly in cancer diag-
nosis and treatment. The use of gene expression signatures 
and identification of biomarkers, such as miRNAs, have been 
particularly valuable in dissecting cancer pathogenesis and 
pathological grading of cancer types.1–3 Similar developments 
in veterinary medicine are beginning to emerge, with prog-
ress informed by the experience in humans.4 One relatively 
common disease that has received attention is canine lym-
phoma. Although there are a number of subtypes with dif-
fering pathogeneses, many show characteristics of activated 
lymphocytes.

During their life cycle, lymphocytes undergo rapid peri-
ods of clonal expansion and contraction during ontogeny and 
differentiation as a result of activation-induced proliferation 
caused by invading pathogens. Proliferation requires the 
activation of up to 10,000 genes and a complex program of 
signal transduction and cell division. When the program of 
proliferation and regression is disturbed, cells may undergo 
oncogenic transformation, resulting in the development of 
lymphoma. Lymphoma is one of the most common cancers 

in dogs, accounting for up to 20.1% of cancers in male dogs 
and 8.4% in female dogs.5,6 Lymphoma can be classified into 
two distinct immunophenotypes, those of B-cell origin and 
those of T-cell origin, representing 67% and 31% of canine 
non-Hodgkin’s lymphoma cases, respectively.7 T-cell lympho-
mas proliferate at higher rates than B-cell lymphomas, mak-
ing them an aggressive cancer with poor prognosis. They are 
also less responsive to treatment and do not respond well to a 
typical course of chemotherapy.8

The development of lymphoma is a complex process that 
results from accumulation of mutations that disrupt normal 
homeostatic mechanisms of cell cycle progression and apopto-
sis.9 Under normal circumstances, cell cycle progression is regu
lated by cyclins and phosphorylation states of key molecules 
controlled by cyclin-dependent kinases. There is also a major 
class of molecules that inhibit progression, providing what are 
referred to as checkpoints during transition from progressive  
stages of the cell cycle. Many of these molecules have also 
been characterized as tumor suppressors, reflecting the fact 
that oncogenesis can arise as a result of loss of function muta-
tions in the genes that code for these proteins. Because these 
molecules function as negative regulators, the processes of 
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lymphocyte activation and maintenance of a proliferative 
state are sensitive to changes in tumor suppressor gene (TSG) 
expression levels.

The family of TSGs has gradually increased with further 
definition of the functional category that extends beyond cell 
cycle arrest to apoptosis and repair of damaged DNA.10 Fur-
thermore, either changes to gene expression levels or functional 
mutations of TSGs can compromise regulatory checkpoints and 
increase the likelihood of uncontrolled cell proliferation.11 These 
changes may occur prior to, or after tumorigenesis, and have the 
potential to contribute to both lymphomagenesis and disease pro-
gression.12 Documented somatic changes in canine lymphoma 
include reduced expression of the tumor suppressor/cell cycle 
regulatory protein, p16INK4A (CDKN2A),13,14 and mutations in 
the p53 (TP53) TSG.15 TSGs are potential markers for activated 
lymphocytes, and some have been shown to be useful in molecu-
lar diagnosis of lymphoma. Studies in dogs have focused on small 
numbers of individual TSG rather than larger scale expression 
profiles distinctive of an activated leukocyte phenotype.

We hypothesized that the levels of subsets of TSG expres-
sion may be good indicators of activated lymphocytes and may 
be useful as diagnostic or prognostic tools in canine lymphoma, 
similar to the use of gene expression profiles that have been 
used to discover and implement biomarkers in human lym-
phoproliferative disorders. Hence, the aim of the present study 
was to analyze expression profiles of canine TSGs in leuko-
cytes to identify genes that discriminate between resting and 
activated states. The analysis focused on data from microarray 
analysis and annotation based on human and canine databases. 
Three gene set collections were also tested for enrichment with 
activated cells. Additional analysis focused on quantitative 
reverse-transcriptase polymerase chain reaction (qRT-PCR) 
for seven candidate genes known to be involved in control of 
cell cycle progression and with previous links to lymphoma.

Materials and Methods
Sample selection and RNA extraction. Samples included  

in the study were derived from 11 dogs, all Bullmastiffs rang-
ing between eight months and seven years of age. The study 
was approved by the University of Sydney Animal Ethics 
Committee under protocol N00/3-2009/3/4949. RNA from 
each of the dogs was obtained from blood samples collected by 
a veterinarian. The leukocyte fraction from each sample was 
divided into two tubes, each resuspended in 1  mL of Dul-
becco’s modified Eagle’s medium. Half the samples were then 
stimulated through the addition of 5 µg of phytohemaggluti-
nin (PHA), as previously described.16 Briefly, total RNA was 
isolated from samples using a modified extraction procedure 
and microspin columns, according to manufacturer’s recom-
mendations (QIAmp; Qiagen). Purified RNA was eluted in 
30 µL of RNase-free water and stored at −80 °C.

Microarray analysis. Analysis of microarray data was 
performed as described previously.16 Briefly, background 
correction and quantile normalization were performed on the 

data with probe-set intensities calculated accordingly using 
the Robust Multichip Average17 algorithm available from the 
Affymetrix Expression Console Software. Differential expres-
sion (DE) of genes between stimulated and unstimulated 
T-cells was defined using the limma function (linear model 
approach)18 incorporated in the R package – oneChannelGUI. 
A rank fold change was used to identify DE genes, with a cut-
off of ±2-fold, corresponding to a Benjamini and Hochberg 
adjusted false discovery rate (FDR) of 0.05.19

Identification of TSGs. A list of TSGs was retrieved 
from database and literature sources. A total of 637 gene records 
were downloaded from TSGene.20 Each of the 637 genes was 
manually annotated for canine cancer and assessed against the 
probe sets relevant to Affymetrix Canine Genome Array ST. 
Further annotation was performed against the Bullmastiff-
stimulated leukocyte response microarray dataset.16 This 
resulted in a list of 554 TSGs that were represented on the 
microarray. A small subset of these 554  genes, determined 
by manual annotation to be associated with lymphoma, was 
selected as candidate genes for further analysis.

Gene set enrichment analysis and functional anno-
tation clustering. Gene sets within the TSG subset signifi-
cantly enriched in activated leukocytes were identified using 
gene set enrichment analysis.21,22 Three gene set collections 
downloaded from the Molecular Signatures Database were 
used, including hallmark gene sets (50 gene sets), gene ontol-
ogy (GO) gene sets (1454  gene sets), and oncogenic signa-
ture gene sets (189  gene sets).21 Gene sets with a nominal 
P value of ,0.05 and an FDR q-value of ,0.25 following 
1000 permutations were classified as significantly enriched. 
The 20 most upregulated and downregulated TSGs were ana-
lyzed for functional annotation clustering using the Database 
for Annotation, Visualization and Integrated Discovery.23 
A group enrichment score cutoff of 1.3 (Expression Analysis 
Systematic Explorer (EASE)  =  0.05) was used to denote 
biological significance.23

Cluster analysis. Cluster analysis of microarray data 
was performed on all TSGs annotated from the microarray 
as well as a separate analysis of the 20 most downregulated 
and upregulated genes, by rank. Separate cluster analyses 
were performed on TSG in hallmark gene sets significantly 
enriched with activated cells and genes known to be associa
ted with lymphoma. Microarray expression data were input 
using R-statistical package and outputs generated through 
an integrated cluster analysis and display program, Heatmap 
(https://cran.r-project.org/web/packages/gplots/index.html). 
Additional annotations were sourced from Heatplus.

Quantitative reverse transcription PCR. Primers for 
candidate genes were designed using the online Primer 3 Plus 
software.24 Canine DNA sequences were obtained from Gen-
Bank at NCBI. Ensembl was used to visualize gene structure 
and assist in design around the intron–exon boundaries. Each 
primer was designed to generate an amplicon of between 100 and 
200 bp and spanned at least one intron to avoid amplification 
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of any residual genomic DNA (Table  1). Primers were 
commercially manufactured (Thermo Fisher Scientific). Canine 
RNA samples (1 µg) were reverse transcribed into cDNA using 
the GoScript Reverse Transcription System (Promega) with 
oligo-dT primers, and the following protocol: denaturation at 
70  °C for five minutes, extension at 42  °C for one hour, and 
inactivation at 70 °C for 15 minutes. Resulting cDNA was used 
as template for PCR under the following cycling conditions: 
activation cycle at 95 °C for five minutes, followed by 35 cycles 
at 94 °C for one minute, at 60°C for one minute, and at 70 °C 
for one minute. PCR products were initially visualized on a 2% 
agarose gel to confirm amplification of correct amplicons.

Relative gene expression for a subset of six samples (SM5, 
SM6, SM9, SM13, SM14, and SM16) was determined using 
qRT-PCR and a SYBR green mastermix (QuantiFast; Qiagen)  
with the same protocol as described in the preceding sec-
tion and monitored via real-time thermal cycler (Rotor-Gene 
6000; Qiagen). Each sample was run in duplicate. GAPDH 
was included as an endogenous control gene. RNA from the 
remaining five dogs was unavailable for use in qRT-PCR.

The delta–delta Ct method was used to estimate relative 
transcript levels for each gene.25 All Ct values were normalized 
against a GAPDH reference gene. The level of gene expression 
in stimulated samples relative to unstimulated samples was 
then calculated by 2−∆∆Ct, giving a relative expression value for 
each gene.

Results
Identification of TSGs. Of the 637  genes identified 

in the TSG database, a total of 554 TSGs were identified as 

being expressed in leukocytes. TSGs p53, p21 (CDKN1A), 
p27 (CDKN1B), p18 (CDKN2C), p19 (CDKN2A), and p15 
(CDKN2B) were identified as a subset of candidate genes for 
further analysis based on their known association with lym-
phoma based on human and canine literature. p16 and p14 
were not annotated within the microarray but were included 
on the basis of previous research in canine lymphoma.

Gene set enrichment analysis and functional annotation. 
A total of 49 genes sets consisting of TSG subsets were sig-
nificantly enriched in activated leukocytes (Table  2). These 
included 3 upregulated hallmark gene sets, TNFA signaling 
via NF-kB, p53  signaling, and mTORC1 signaling, and 46 
GO gene sets. No oncogenic signaling gene sets were signifi-
cantly enriched in activated cells. A total of five biologically 
significant functional annotation clusters were identified in 
the 20 TSG subsets, and clusters identified were associated 
with cellular response to stimulation, ion binding, regulation 
of I-kappaB kinase/NF-kappaB cascade, negative regulation 
of cell proliferation, and regulation of leukocytes (enrichment 
scores 2.3, 2.01, 1.96, 1.96, and 1.39, respectively).

Cluster analysis. Cluster analysis demonstrated the 
variation in expression of TSGs across all samples. Cluster-
ing based on all 554 TSGs showed no distinguishable pattern 
of expression between stimulated and unstimulated samples 
(data not shown). However, it was clear that stimulation had a 
notable effect on expression of subsets of TSG in these dogs. 
A subset consists of 10 most downregulated genes, including 
KCNRG, TGFBR2, TRIME13, RASSF2, KLF6, RBM5, 
DIRAS1, DOK1, CAPG, and COL4 A3, and 10 most upregu-
lated genes, including EGR1, EGR2, PLK2, PAWR, PRKC1, 
BTG2, TNFAIP3, ZFP36, and FABP3. Cluster analysis of 
these genes revealed distinct clustering of expression patterns 
between stimulated and unstimulated samples (Fig. 1). A dis-
tinct pattern was also present in a subset of 17 TSGs from 
three hallmark gene sets, stimulated samples clustering sepa-
rately to resting samples (Fig. 2).

Cluster analysis of the candidate TSGs showed a less 
distinctive pattern of expression (Fig. 3). Seven dogs showed 
consistent upregulation of p18, p19, p21, and p27 in active cells 
highlighting a regulated response following activation in these 
individuals. Expression of p53 and p15  showed more varia-
tion across dogs and activation states. Variation in expression 
patterns between dogs was evident, and the majority of genes 
in the subset downregulated in activated samples from dogs 
SM1, SM10, and SM17.

Analysis by qRT-PCR. Primers were designed for seven 
different genes, including p18, p19, p21, p27, p53, p14, and 
p15. Primers designed for the p16 gene failed to amplify the 
targeted region despite multiple designs, modification, and 
optimization. Analysis of differential gene expression between 
stimulated and unstimulated samples was expressed as relative 
fold change. DE based on qRT-PCR was compared with values 
from microarray analysis, shown as a comparative histogram 
for all genes except for p14, which was not annotated within 

Table 1. List of TSG primers used for qRT-PCR.

Gene name Primers  
(forward/ 
reverse)

Sequence 5′-3′

p14 (CDKN2A) Forward TGGTGCTAAAGCTAGTGAGGAG

Reverse CTTCCTGGACACGCTGGT

p15 (CDKN2B) Forward GATCCCAACGGAGTCAACAG

Reverse CTTCCTGGACACGCTGGT

p16 (CDKN2A) Forward AGCAGCATGGAGCCCTTC

Reverse GATTCAGGTCATGATGATGGG

p18 (CDKN2C) Forward GGGGGACCTAGAGCAACTTAC

Reverse GAGGTGCTAATCCCGATTTG

p19 (CDKN2A) Forward GCTGCAGGTCATGATGTTTG

Reverse CCAATGTCCAGGATGCCA

p21 (CDKN1A) Forward CAGACCAGCATGACAGATTTC

Reverse CAAGCTCCTAGAAATGAGACC

p27 (CDKN1B) Forward CAGAGGACACACACTTGGTAGA

Reverse AGTGGAGCAGACGCCTAAGA

p53 (TP53) Forward CAGTGTGGTGGTGCCTTATG

Reverse TCATCACCCTGGAAGACTCC
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Table 2. Gene sets significantly enriched with activated leukocytes.

Gene Set Name Nominal  
P-Value

FDR 
Q-Value

Hallmark TNFA signaling via NFKB 0.006 0.127

Hallmark mTORC1 signaling 0.034 0.210

Hallmark p53 pathway 0.004 0.246

Positive regulation of biological process 0.002 0.096

Inflammatory response 0.008 0.096

Positive regulation of cellular metabolic process 0.012 0.103

Negative regulation of transcription 0.014 0.103

Positive regulation of cellular process 0.004 0.105

Macromolecule catabolic process 0.004 0.106

Biopolymer catabolic process 0.004 0.110

Regulation of nucleobasenucleosidenucleotide and nucleic acid  
metabolic process

0.004 0.110

Positive regulation of metabolic process 0.012 0.111

Positive regulation of developmental process 0.014 0.115

Negative regulation of transcription from RNA polymerase ii promoter 0.012 0.116

Protein dimerization activity 0.008 0.118

Transcription from RNA polymerase ii promoter 0.014 0.118

Biopolymer metabolic process 0.004 0.119

Regulation of transcription 0.014 0.119

Response to wounding 0.016 0.122

Positive regulation of transcription 0.006 0.122

Regulation of metabolic process 0.012 0.133

Positive regulation of nucleobasenucleosidenucleotide and nucleic acid  
metabolic process

0.006 0.135

Transcription 0.019 0.135

Negative regulation of RNA metabolic process 0.010 0.136

Regulation of cellular metabolic process 0.012 0.138

Negative regulation of nucleobasenucleosidenucleotide and nucleic acid  
metabolic process

0.010 0.143

Negative regulation of transcription DNA dependent 0.010 0.155

Cellular macromolecule catabolic process 0.012 0.170

Protein homodimerization activity 0.020 0.172

Regulation of gene expression 0.002 0.180

Apoptosis go 0.020 0.183

Anti apoptosis 0.036 0.186

G1 s transition of mitotic cell cycle 0.041 0.187

Programmed cell death 0.020 0.187

DNA binding 0.013 0.189

DNA metabolic process 0.006 0.191

Protein domain specific binding 0.029 0.191

Negative regulation of cellular process 0.012 0.192

Transcription factor activity 0.038 0.195

Positive regulation of transcription from RNA polymerase ii promoter 0.044 0.195

Nucleus 0.002 0.196

Regulation of programmed cell death 0.002 0.202

Negative regulation of biological process 0.014 0.204

Nuclear lumen 0.046 0.206

(Continued)
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the microarray data (Fig.  4). All genes were consistently 
upregulated in stimulated samples relative to unstimulated, 
with the exception of p53, once again indicating a regulated 
response after stimulation in 6 of the 11 dogs.

Discussion
The phenotype of lymphomas derived from mature lymphocytes 
may vary considerably but is usually indicative of an activated 
lymphocyte state. Identification of TSG expression profiles 

associated with an activated lymphocyte phenotype in dogs can 
be used to distinguish between normal and pathogenic expres-
sion profiles. Here, we isolated cells from blood, considered 
to represent a naive phenotype, and stimulated them in vitro. 
Overall, 554  genes assembled from a human TSG database 
were annotated in a canine microarray dataset. Analysis of all 
genes simultaneously revealed no clustering of gene expression 
between stimulated and unstimulated samples. Conversely, 
gene subsets from this TSG dataset including genes sets from 

Table 2. (Continued)

Gene Set Name Nominal  
P-Value

FDR 
Q-Value

Protein complex 0.024 0.208

Regulation of binding 0.060 0.213

Macromolecular complex 0.024 0.213

Catabolic process 0.043 0.229

Cellular catabolic process 0.043 0.234
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Figure 1. Cluster analysis of top 10 most downregulated and top 10 most upregulated TSG in stimulated and unstimulated cells. Clustering of 
samples is shown across the top of the image. Samples denoted with the “P” suffix were stimulated with PHA. Expression level increases from green 
(downregulated) to red (upregulated). Sample SM4P has no paired unstimulated sample.
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Molecular Signatures Database did distinguish variation in 
gene expression of stimulated and unstimulated samples.

The lack of any distinctive clustering pattern in the 
analysis of the entire set of TSG suggests that TSG expres-
sion responded variably to the stimulation protocol used in 
this study. This method induces a relatively low level of acti-
vation in the immediate-early period of gene responses. The 
lack of distinctive patterns is perhaps not surprising given 
the large number of genes in the total group. A distinct pat-
tern of expression between stimulated and unstimulated 
cells could be seen in a subset of 20 TSG genes consisting 
of 10 most upregulated and 10 most downregulated genes. 
Functional annotation of this TSG subset highlighted the 
role of these genes in cellular response pathways, regulation 
of cell death and apoptosis, differentiation and activation 
of leukocytes, and negative regulation of cell proliferation. 
Distinct expression patterns of genes from similar func-
tional groups following activation have been identified in 
both humans and mice.26–29 These genes highlight that 
under- and overrepresented genes in an activated phenotype 
may be useful for discrimination.

Expression profiles of TSG within significantly enriched 
gene sets provide additional candidates for distinguishing 

between activation states. TSG associated with GO gene sets, 
including regulation of cellular metabolism, transcription, 
catabolic processes, apoptosis, and inflammatory responses, 
were significantly enriched in activated cells highlighting the 
importance of these biological functions in leukocyte activation. 
Most notable are the enriched hallmark gene sets consisting of 
three well known cell regulation pathways. The p53 pathway 
identified is important for cellular response to stress signals 
and initiation of cell cycle arrest and apoptosis.30 p53 muta-
tions and dysregulation of the p53 pathway are frequent events 
in tumorigenesis.31,32 An NF-kB regulatory pathway was also 
enriched in activated cells, important in innate immunity and 
inflammatory response. Activation of target genes within this 
pathway can lead to stimulation of lymphocyte proliferation 
and inhibition of cell death and apoptosis.33,34 The third hall-
mark gene set, the mTORC1 signaling pathway, is commonly 
activated during T-cell activation and has been shown to 
regulate cell growth and proliferation.35,36 Mutations to TSG 
regulating the mTOR pathway have been associated with 
human disease, inactivation of downstream targets leading to 
upregulation of vascular endothelial growth factor (VEGF) 
expression and promotion of tumor angiogenesis, supporting 
the use of mTOR as a target in cancer therapies.37–39 The roles 
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Figure 2. Cluster analysis of TSG in hallmark gene sets significantly enriched with stimulated cells. Samples denoted with the “P” suffix were stimulated 
with PHA. Expression level increases from green (downregulated) to red (upregulated). Sample SM4P has no paired unstimulated sample.
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of these gene sets in regulating lymphocyte activation, prolif-
eration, and potentially cancer development highlight them as 
new targets for expression profiling to develop a more extensive 
activation phenotype.

Genes selected as candidates based on known association 
with lymphoma in human, canine, and mouse studies included 
p15, p18, p19, p21, p27, and p53. Activation had a marked 
effect on four of these genes, p18, p19, p21, and p27, result-
ing in a distinct pattern of gene expression in the microar-
ray analysis in seven dogs. This may reflect the interrelated 
functional role of these genes in regulating cell cycle.40 There 
is some clustering of these genes within the analysis. Some of 
these genes belong to the cyclin-dependent kinase inhibitors. 
Members of the INK4 family encode the genes represented 
by the cluster, including p15, p18, and p19. These genes are 
involved in the inhibition of cyclin-dependent kinases 4 and 
6, which are critical for phosphorylation of the retinoblas-
toma protein in regulating cell cycle progression. The p21 and 
p53 gene expression profiles are also clustered; p21 is also a 
regulator of cyclin-dependent kinases and is in turn regu-
lated by expression of p53. The other notable inclusion, p27, 

is encoded by the CDKN1B gene. It is also a potent regulator 
of CDK2.

Primers for p14, p15, p18, p19, p21, p27, and p53 showed 
consistent amplification of target products and will be useful 
for further canine studies. Amplification of p16 was not suc-
cessful in this study despite repeated attempts and redesign. 
Primers for canine p16 have been described, based on a design 
within the third exon, but these do not distinguish any residual 
DNA in samples.41 The results of qRT-PCR were comparable 
with those of microarray but across a greater dynamic range 
and only within the six dogs used. An exception was p53, 
which was downregulated substantially in stimulated samples 
when compared to microarray data. The microarray did not 
have any probes representing p14, so it could not be compared. 
There have been a number of developments toward specialized 
arrays based on a subset of genes that are significant in cancer 
analysis, including canine cancer.42,43

When analyzed as a group, the pattern of expression of 
candidate TSG discriminated the activation status of leuko-
cytes, that is, between stimulated and unstimulated samples, 
within six dogs. The expression pattern, however, failed to 
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Figure 3. Cluster analysis of selected candidate TSG in stimulated and unstimulated cells. Samples denoted with the “P” suffix were stimulated with 
PHA. Expression level increases from green (downregulated) to red (upregulated). Sample SM4P has no paired unstimulated sample.
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discriminate between the remaining five dogs. Potential still 
exists for these genes to be used as candidates for distinguish-
ing between a normal leukocyte activation phenotype and a 
pathogenic phenotype in lymphoma. Human studies have 
described differential patterns of expression for p14, p15, 
p16, p21, p27, and p53 from patients with varying forms of 
lymphoma.12,44–47 In addition, the CDKNs p18 and p19 have 
been linked to a variety of other cancers in humans but have 
yet to be extensively studied in the context of lymphoma.48,49 
All of the candidate genes included in this study have been 
deleted in mice and resulted in increased susceptibility  
to lymphoma.50

The results presented here suggest that TSG subsets can 
be used to characterize an activated leukocyte phenotype in 
dogs, which may provide a test set for further analysis of canine 
lymphoma samples. Expression patterns within TSG subsets 
were able to distinguish between activated and resting cells in 
the individuals included in the study; however, these need to 
be validated in a larger sampling of dogs. The ability to dis-
tinguish between a normal activation phenotype and a patho-
genic phenotype associated with lymphoma development, 
using the candidate genes and TSG subsets identified in this 
study, offers the potential for use in diagnostic testing.
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