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Abstract
We construct a universal epidemic curve for COVID-19 using the epidemic curves of eight nations that have reached satu-
ration for the first phase and then fit an eight-degree polynomial that passes through the universal curve. We take India’s 
epidemic curve up to January 1, 2021 and match it with the universal curve by minimizing square-root error between the 
model prediction and actual value. The constructed curve has been used to forecast epidemic evolution up to February 25, 
2021. The predictions of our model and those of supermodel for India (Agrawal et al. in Indian J Med Res, 2020; Vidyasagar 
et al. in https​://www.iith.ac.in/~m_vidya​sagar​/arXiv​/Super​-Model​.pdf, 2020) are reasonably close to each other considering 
the uncertainties in data fitting.
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Introduction

Universality is an important paradigm of science. In this 
framework, varied natural phenomena are explained in a sin-
gle framework. For example, Newton showed that the gravi-
tational force that acts between planets and stars is same as 
that Earth exerts on objects on its surface (Verma 2016); 
he derived universal theory of gravitation based on these 
observations. All kinds of phase transitions are classified as 
first- or second-order transitions (Wilson and Kogut 1974). 
Materials are classified as insulators, metals, or semiconduc-
tors using the theory of band structures. Note that the materi-
als are very different, yet, there is a universal theory due to 
a common dynamics of electron hopping in different kinds 
of materials. Similarly, we have universal theory of hydro-
dynamic turbulence (Leslie 1973; Verma 2019). Biologi-
cal growth too is described by certain universal dynamics 

(Goriely 2017). Pingala–Virahanka–Fibonacci numbers and 
golden mean are used to describe many biological patterns.

In the early phase, an epidemic grows among the sus-
ceptible population in an exponential manner, somewhat 
similar to biological growth (Goriely 2017; Bjørnstad 2018; 
Daley and Gani 2001). This growth saturates after some 
time due to nonlinear effects (Bjørnstad 2018; Daley and 
Gani 2001). The growth rates and saturation levels of an 
epidemic depends on the many parameters, such as popula-
tion’s immunity levels, health care facilities, climate, nature 
of intervention (social distancing, lockdowns), etc. Still, the 
growth and saturation dynamics of an epidemic at differ-
ent locations are somewhat similar. However, the levels of 
the epidemic may depend on various factors. These features 
were highlighted in Verma et al. (2020) where they showed 
that the epidemic curves follow a sequence of power laws 
before saturation (called flattening of the curve). Similarly, 
Schüttler et al. (2020) showed that I(t) or total death count 
could be modelled using the error function. Martelloni 
(2020) attempted universal forecast based on epidemic data.

Based on these observations, we attempted to construct 
a universal curve for COVID-19 epidemic using the data of 
several nations. We observed that the epidemic data for the 
first wave of 8 nations follow a universal curve when scaled 
with the maximum time and maximum infection counts. 
The universality in COVID-19 epidemic is somewhat sur-
prising considering significant differences in demography, 
government actions, lockdown conditions, etc. cross nations. 
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However, we believe this universality to be due to underly-
ing basic dynamics of epidemic growth (epidemic spread by 
contacts and nonlinear effects) (Verma et al. 2020; Schüttler 
et al. 2020). We make a cautionary remark that this issue 
needs to investigated extensively with more data (e.g., more 
countries, data for second and third waves, etc.). Still, this 
preliminary finding is very interesting and useful. For exam-
ple, we use the universal epidemic curve for COVID-19 to 
forecast epidemic evolution for India.

The COVID-19 pandemic, one of the most devastating 
disasters in the last 100 years, is raging around the world. 
As of January 12, 2021, the total infection count is around 
90 million, and the total death cases crossed 1.9 million 
(WorldOmeter 2020). The whole world is trying to miti-
gate the pandemic; an essential input for this effort is the 
prediction of epidemic evolution because it allows policy-
makers to prepare and plan countermeasures. For the same, 
some modellers try to model the epidemic using a set of 
differential equations, while others employ data-driven algo-
rithms (including machine learning). Even though our model 
belongs to the latter class, for completeness and contrast, 
we summarize key models that are based on differential 
equations.

The SIR model, constructed by Kermack and McKend-
rick (1927), was one of the first models of epidemic evolu-
tion. In this model, the variables S and I describe the num-
bers of susceptible and infected individuals, respectively, 
while the variable R represents the removed individuals who 
have either recovered or died. When the epidemic has sub-
sided, I = 0 , but S and R take different values depending on 
the initial condition and state of the population. SEIR model, 
a generalization of SIR model, includes exposed individuals, 
E, who are infected but not yet infectious (Bjørnstad 2018; 
Daley and Gani 2001). The SEIR model has a richer phase 
space description.

SEIR model cannot capture the complexities of COVID-
19. For example, persons with asymptomatically-infected 
persons spread of the COVID-19 virus very fast, hence 
such individuals are called super-spreaders. Also, lock-
downs, social distancing, and other restrictions are impor-
tant parameters for the epidemic evolution. Vaccination and 
travel restrictions too play a crucial role for the epidemic 
growth. Considering the impact of COVID-19 on economy 
and public health, researchers have made many epidemic 
models (e.g., see Hethcote 2000; Marathe and Vullikanti 
2013; López and Rodo 2020 and references therein). Here, 
we list only some of these models.

Peng et al. (2020) constructed a seven-variable model 
that includes quarantined and death variables and pre-
dicted that the daily counts of exposed and infectious 
individuals in China would be negligible by March 30, 
2020. Chinazzi et al. (2020) and Hellewell et al. (2020) 

studied the effects of travel restrictions and isolation on 
epidemic evolution. Mandal et al. (2020) constructed an 
India-specific model that includes intercity connectivity. 
Shayak et al. (2020) modelled epidemic evolution using 
delayed-differential equations. In addition, Rahmandad 
et al. (2020) has also used a model to predict Indian epi-
demic growth.

As described earlier, asymptomatic carriers are super-
spreaders of COVID-19. Hence, attempts have been made 
to model the effects of super-spreaders. In particular, Liu 
et  al. (2020) constructed a susceptible-asymptomatic-
infected-removed (SAIR) model that takes into account 
this important factor. Ansumali et al. (2020) and Robinson 
and Stilianakis (2013) generalized this model by incorpo-
rating various factors such as lockdowns and herd immu-
nity. Recently, Vidyasagar et al. (2020) and Agrawal et al. 
(2020) have adopted SAIR model to study the epidemic 
evolution in India; this model, termed as supermodel, has 
many predictions. For example, it predicted 10.6 million 
cases by the end of 2020, which is quite close to the actual 
count of 10.286 million on December 31, 2020.

Data-driven models are also used for epidemic fore-
cast. For example, Sharma and Nigam (2020) employ 
time series analysis to forecast epidemic growth in India. 
Recent analysis of COVID-19 data reveals that the epi-
demic curve begins with an exponential growth, after 
which it follows a sequence of power laws (Ziff and Ziff 
2020; Komarova et al. 2020; Manchein et al. 2020; Blasius 
2020; Cherednik 2020; Chatterjee et al. 2020; Verma et al. 
2020; Marsland and Mehta 2020; Singer 2020; Asad et al. 
2020; Ranjan 2020). The epidemic curve flattens after 
square-root growth. Using the recorded epidemic data 
(first wave) of eight nations, we construct a universal epi-
demic curve for COVID-19 by appropriate normalization.

The above universal behaviour (Manchein et al. 2020; 
Martelloni 2020) can be utilized to predict epidemic evo-
lution in various countries. In this paper, we fit India’s 
epidemic curve on the universal curve by minimizing of 
rms (root mean square) error between the model predic-
tion and the actual numbers. Even though India’s epidemic 
curve has not yet saturated, the fit function describes the 
present data quite well. In particular, the model predic-
tions for the five weeks between December 11, 2020 
to January 14, 2021 are in general agreement with the 
observed data (within an error bound of 137%). In this 
paper, we argue that our predictions are reasonable con-
sidering the fact that the present daily counts of infections 
are under-reported. Note that at present, the testing rates 
have decreased and that many people are getting cured of 
COVID-19 quite easily (hence, go unreported).

In the next section, we construct a universal epidemic 
curve using the epidemic data of several countries.
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Construction of a Universal Epidemic Curve

To construct a universal curve for the COVID-19 epidemic, 
we consider the first-wave epidemic evolution of eight coun-
tries: France, Spain, Italy, Switzerland, Turkey, Netherlands, 
Belgium, and Germany. We choose these countries because 
the first-wave infections for them have saturated. We take 
the data from EU Open Data Portal Covid-19 (2020) and 
WorldOmeter (2020) websites. The starting dates of the data 
collection for these countries are given in Table 1.

The epidemic curves, I(t) vs. t, for the above nations look 
quite different. However, these curves collapse to a single 
curve (approximately) when we normalize their I(t) and time 
t by Imax and tmax respectively. Imax and tmax for each country 

are defined as the values of I(t) and t on 30th June 2020 
(see Table 1). See Fig. 1 for an illustration. In the figure, 
the dashed curves represent I(t) for individual countries, 
whereas the solid black curve represents an average of I(t)’s 
of the eight countries. We term the solid curve as the univer-
sal epidemic curve for COVID-19. Note that the universal 
curve starts with an exponential part, and then it follows 
various power laws before saturation (see Fig. 2 and the first 
row of Table 2). Also refer to references (Chatterjee et al. 
2020; Verma et al. 2020; Blasius 2020; Marsland and Mehta 
2020; Singer 2020; Asad et al. 2020) for further details on 
various power-law regimes of the epidemic curves.

For modelling and forecast, it is convenient to fit a single 
function that passes through the universal epidemic curve of 
Fig. 1. For the same, we choose an eighth-order polynomial 
that fits from t∕tmax = 0 to 1. For simplification, we include 
the exponential regime in the interpolating polynomial. 
Note that the uncertainty in the transition region between 
the exponential part and power-law regime would introduce 
additional errors. This polynomial fit is listed in the second 
row of Table 2. Note however that eighth-order polynomial 
does not describe well the exponential phase of the universal 
curve; it shows oscillations in this range.

Here, we make a cautionary remark that the above uni-
versal curve was constructed using the epidemic data of 
eight nations that have similar geographical conditions and 
cultural milieu. We need more data and careful analysis for 
a definitive conclusion and for detecting anomalies. These 
works will be carried out in future.

In the next section, we will model Indian epidemic curve 
using the derived universal curve.

Table 1   A listing of Imax and tmax for the epidemic curves of eight 
nations used for the construction of universal curve. For the coun-
tries, the start dates of the analysis are given in brackets, while the 
end dates for all of them are taken to be June 30

Countries (start date) Imax tmax

France (February 24) 164,801 128
Spain (February 26) 296,351 126
Italy (February 21) 240,578 131
Switzerland (February 26) 31,714 126
Turkey (March 12) 199,906 111
Netherlands (February 27) 50,273 125
Belgium (February 29) 61,427 123
Germany (February 23) 195,832 129

Fig. 1   Normalised I(t) plots of 
eight countries yield universal 
curves. The solid black curve 
represents an average of the 
plots for the eight nations
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Modelling Indian Epidemic Curve Using 
the Universal Curve

After the construction of the universal epidemic curve for 
COVID-19, we attempt to overlap the Indian epidemic 
curve on the universal curve by employing appropriate 
normalization. The real-time data on India’s Infection 
count were accessed from EU Open Data Portal (Covid-
19  India cases tracker 2020) and WHO websites from 
March 4, 2020 to January 14, 2021. Since India’s I(t) curve 
is yet to reach saturation, we cannot determine tmax and Imax 
from the epidemic curve. Therefore, we estimate tmax and 
Imax by an optimization procedure that involves minimiz-
ing the rms error between the predicted value (using the 

universal curve) and the actual data from March 4, 2020 
to January 1, 2020. We outline the optimization procedure 
in Algorithm 1.

We estimate tmax and Imax by minimizing the following 
function:

where P(t∕tmax) is the polynomial fit for the universal func-
tion, which is listed in Table 2. We estimate tmax and Imax 
for which the above error is minimum (see Algorithm 1). 
This process converges towards a unique minimum with 
Imax = 16.22 million and tmax = 722 days (approximately 2 
years) for which the error (Eq. 1) is 0.319. See Fig. 3 for an 
illustration.

Using the above parameters we obtain maximum over-
lap between the observed epidemic curve and the universal 
curve. See Fig. 4 for an illustration. In the same figure, we 
also plot İ(t) , derivative of I(t) , which corresponds to daily 
infections (Verma et al. (2020)). We employ Python’s gra-
dient function for the derivative computation. We observe 
that İ(t) computed using the fit function matches with the 
observed daily cases quite well. We expect to get a better fit 
at a later date when more data would be available.

(1)Error =

[

∑

t

[P(t∕tmax) − I(t∕tmax)∕Imax]
2

]1∕2

,

Fig. 2   Exponential and power-
law regimes of the universal 
curve exhibited in Fig. 1

Table 2   First row: best fit curves for the exponential and power law 
regimes of the universal curve (refer to Fig. 2), second row: a poly-
nomial fit for the universal curve of Fig. 1. The error (standard devia-
tion, std) between the polynomial and black solid curve of Fig. 1 is 
0.089. Here t� = t∕tmax

Figure Details Best-fit functions with errors

Best-fit curves for 
various regimes 
shown in Fig. 2

1. 8.31e0.44t′ (±3.81%)
2. 44.54e0.24t′ (±5.35%)
3. 3228.69t� − 63346.48 (±2.26%)
4. 14745.83

√

t� + 3354.79 (±1.55%)
A polynomial that 

fits with the univer-
sal curve of Fig. 1

1) −240.5t�8 + 1130t�7 − 2194t�6

+ 2253t
�5 − 1288t

�4 + 389t
3 − 50.26t

�2

+ 2.539t
� − 0.03237
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Fig. 3   For India’s epidemic 
curve, contour plots of 
log(Error) as a function of 
Imax and tmax , where Error is as 
defined in Eq. (1). The small 
dot at the center of the figure 
represents Imax = 16.22 million 
cases and tmax = 722 days that 
yields minimum Error

Fig. 4   For India, the normal-
ized cumulative infection count 
(solid red curve), I(t)∕Imax , and 
daily infection count (solid blue 
curve), İ(t)∕Imax . These curves 
overlap quite nicely with the 
universal curve and its deriva-
tive, which are represented 
using dashed curves
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In the next section, we will compare the predictions of 
our model with the actual data.

Comparison Between Model Predictions 
and Reported Data for India

Once India’s epidemic curve I(t) has been constructed, 
we can predict infection count at any date. For simplicity, 
we employ the eighth-order polynomial for this purpose. 
In Fig. 5 we present the model predictions of I(t) and İ(t) 
from July 1, 2020 to March 1, 2021 using red and blue 
curves respectively. In the same figure, we also present the 
reported cumulative and daily counts using black dashed 
curves.

In Table 3, we list the weekly new cases, along with 
model predictions, for India. Note that the model pre-
dictions are reasonably close to the actual data. The 
maximum error between the prediction and actual data 
is approximately 137%. We argue that such large errors 
are expected for COVID-19 because the current infection 
counts are under-reported. Since COVID-19 is reasonably 
well managed at present with many patients getting cured 
of COVID-19 at home; many such cases are not added 
to the main tally. In addition, there are uncertainties in 
mathematical modelling.

Regarding the forecast, the universal curves indi-
cate that the linear regime ( I(t) ∝ t ) starts at around 
t∕tmax = 0.25 . For India, t∕tmax = 0.25 translates to the 
last week of September 2020. Note that the daily cases 
are approximately constant in the linear regime, but they 
decrease after the linear regime.

Fig. 5   For India, model predic-
tions of I(t) (solid red curve) 
and İ(t) (solid blue curve) for 
the duration of July 1, 2020 to 
March 1, 2021 using polyno-
mial of Table 2). The dashed 
black curves represent the 
corresponding reported counts. 
Note that the solid curves of 
Fig. 4 corresponds to data up 
to 01/01/2021. Also refer to 
Table 3
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Comparison with Other Leading Epidemic 
Models for India

As described in Sec. 1, there are interesting low-dimensional 
models of epidemic evolution. These models are refinements 
of the SEIR model. In this section, we compare our model 
predictions with some of the leading epidemic models for 
India. In one such model, Rahmandad et al. (2020) fore-
casted that in early 2021, the daily infections count in India 
will reach 0.287 million (2.87 lacs). Also, refer to Song et al. 
(2020). Our model predicts much lower counts for 2021, 
which is consistent with the observed counts. For example, 
we predicted 43.7 thousand new infections on December 31, 
2000, which is around two times the actual number of 19046 
(WorldOmeter 2020). This number is reasonable considering 
the uncertainties in numerical modelling and data collection.

India’s supermodel (Vidyasagar et al. 2020; Agrawal et al. 
2020), which is based on the SAIR model (Ansumali et al. 
2020; Robinson and Stilianakis 2013), has gained major 
prominence recently. This model predicts that India may 
have reached herd immunity with around 38 crores (380 mil-
ions) of the population either infected or having antibodies. 
One of the predictions of supermodel is that the infection 
counts at the end of 2021 would be 10.6 million, which is 
quite close to actual number of 10.286 million on December 
31, 2020.

The predictions of our model are similar to those of 
supermodel. For example, we predict that total infections 
on December 31, 2020 to be 11.1 million, which is slightly 
larger than the prediction of the supermodel. In addition, 
for the week of January 1–7, 2021, our prediction for the 
weekly infection count is approximately 300 thousands, 
which is approximately 2.3 times larger than reported num-
ber. We believe that our predictions are reasonable because 
of the large errors in the fitting algorithm, as well as in data 

uncertainties. For example, the present testing rate is much 
lower than that in the past. Also, many people, who recover 
quite easily from COVID-19, go unreported. Considering 
these factors, we believe that the reported COVID-19 counts 
are several times lower than the actual numbers.

Discussions and Conclusions

The first-phase of the epidemic curves for the eight coun-
tries–France, Spain, Italy, Switzerland, Turkey, Netherlands, 
Belgium, Germany–collapse into a single curve when nor-
malized with max infection ( Imax ) and total time duration 
( tmax ). We construct a universal curve for the COVID-19 epi-
demic by averaging over the above eight curves. In addition, 
we fit an eighth-degree polynomial for the universal curve.

Demography, government actions, lockdown conditions, 
and other factors have strong impact on COVID-19 epidemic 
evolution. However, as described in the introduction, due 
to certain similarities in growth and saturation dynamics 
of epidemic evolution, epidemic curves of different nations 
collapse into a single curve after proper normalization. Note 
that the individual epidemic curves are quite different due 
to local factors.

Chatterjee et al. (2020) studied the second phase of the 
epidemic curve for the whole world and observed it to have 
certain similarities with the first phase of the epidemic 
curve. However, there are instances when the second and 
third waves of the epidemic are very different from the first 
wave. For example, the present wave of the epidemic curve 
for Germany has many oscillations (WorldOmeter 2020). 
Given these uncertainties, we cannot extrapolate that the 
universal epidemic curve presented in this paper would 
work for the second and third waves of the epidemic. We 
plan to study this aspect in near future.

Table 3   For India, model 
predictions of new COVID-19 
cases on weekly basis using 
the universal curve (the best-fit 
polynomial of Table 2). The 
first six rows are for year 2020 
and the later rows are for year 
2021

Week Actual weekly new cases (in 
thousands)

Predicted cases with 
percentage errors (in 
thousands)

India: week-I (Dec 4–Dec 10) 232 361 (56%)
India: week-II (Dec 11–Dec 17) 189 346 (83%)
India: week-III (Dec 18–Dec 24) 167 330 (98 %)
India: week-IV (Dec 25–Dec 31) 143 315 (120%)
India: week-V (Jan 1–Jan 7) 129 300 (132 %)
India: week-VI (Jan 8–Jan 14) 120 284 (137 %)
India: week-VII (Jan 15–Jan 21) NA 270
India: week-VIII (Jan 22–Jan 28) NA 256
India: week-IX (Jan 29–Feb 4) NA 243
India: week-X (Feb 5–Feb 11) NA 230
India: week-XI (Feb 12–Feb 18) NA 219
India: week-XII (Feb 19–Feb 25) NA 208



412	 Transactions of the Indian National Academy of Engineering (2021) 6:405–413

123

We make a cautionary remark that the universal curve 
has been constructed using the epidemic data of eight 
nations during the first wave. These nations have demo-
graphic and climatic homogeneity. In future we will study 
the epidemic curves of other nations, as well as those 
during second and third waves. Also, even though some 
Indian states observed first and second waves of COVID-
19 epidemic, the cumulative count for India is going 
through the first wave of the epidemic (see Fig. 4).

The discovery of the universal epidemic curve gives us 
an interesting handle for forecasting the epidemic evolu-
tion. An advantage of this approach over others is that it 
is purely data-driven. Hence, we do not need to model 
various parameters and terms of the differential equations 
of the model. However, a disadvantage of our method is 
that we do not have any control parameter. For example, 
SAIR model can be tuned by changing the coefficients of 
some terms of the differential equations, but we cannot do 
so in our data-driven model.

We compared India’s reported epidemic curve with the 
universal curve with appropriate scaling. Using an opti-
mization algorithm, we showed that India’s present epi-
demic curve overlaps with a part of the universal curve. 
This discovery enables us to forecast epidemic evolution 
in India. We observe that our predictions match with the 
observed data quite well in spite of so many uncertainties. 
Note, however, that our predictions tend to be systemati-
cally larger than the actual data, which could be due to 
uncertainties in data and due to errors in mathematical 
modelling.

Our model predicts that the daily counts of India’s 
COVID-19 epidemic are falling rapidly; this observation 
is consistent with the recorded data. Also, the predictions 
of our models and those of the supermodel are reasonably 
close to each other. We believe that the present trend will 
continue till saturation of the curve, except when COVID-
19 virus mutates in India, or when the mutated virus from 
elsewhere spreads rapidly in India.

The universal curve could be further refined using a 
more advanced algorithm, such as machine learning and 
deep neural networks. In addition, it will be interesting 
to work out the universal curves for the daily cases, as 
well as for the active cases. We are in the process of such 
extensions.

In summary, the universality of epidemic growth is a 
useful idea that can help in effective modelling of COVID-
19 pandemic.
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