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ABSTRACT Discovery of genetic variants underlying bacterial phenotypes and
the prediction of phenotypes such as antibiotic resistance are fundamental tasks
in bacterial genomics. Genome-wide association study (GWAS) methods have
been applied to study these relations, but the plastic nature of bacterial ge-
nomes and the clonal structure of bacterial populations creates challenges. We
introduce an alignment-free method which finds sets of loci associated with bac-
terial phenotypes, quantifies the total effect of genetics on the phenotype, and
allows accurate phenotype prediction, all within a single computationally scal-
able joint modeling framework. Genetic variants covering the entire pangenome
are compactly represented by extended DNA sequence words known as unitigs,
and model fitting is achieved using elastic net penalization, an extension of stan-
dard multiple regression. Using an extensive set of state-of-the-art bacterial pop-
ulation genomic data sets, we demonstrate that our approach performs accurate
phenotype prediction, comparable to popular machine learning methods, while
retaining both interpretability and computational efficiency. Compared to those
of previous approaches, which test each genotype-phenotype association sepa-
rately for each variant and apply a significance threshold, the variants selected
by our joint modeling approach overlap substantially.

IMPORTANCE Being able to identify the genetic variants responsible for specific
bacterial phenotypes has been the goal of bacterial genetics since its inception and
is fundamental to our current level of understanding of bacteria. This identification
has been based primarily on painstaking experimentation, but the availability of
large data sets of whole genomes with associated phenotype metadata promises to
revolutionize this approach, not least for important clinical phenotypes that are not
amenable to laboratory analysis. These models of phenotype-genotype association
can in the future be used for rapid prediction of clinically important phenotypes
such as antibiotic resistance and virulence by rapid-turnaround or point-of-care tests.
However, despite much effort being put into adapting genome-wide association
study (GWAS) approaches to cope with bacterium-specific problems, such as strong
population structure and horizontal gene exchange, current approaches are not yet
optimal. We describe a method that advances methodology for both association and
generation of portable prediction models.
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Bacterial genomics has recently entered an era of “big data.” Single cohorts with 104

to 105 samples, 108 genetic variants, and corresponding extensive high-quality
metadata are now publicly available (1, 2). In the context of bacterial populations, the
challenge is to take large data sets consisting of whole genomes and metadata such as
measured antimicrobial resistance or host disease status and identify genetic variants
associated with antimicrobial resistance, host specificity, or virulence phenotypes. With
enough independent observations, hypothesis-free machine learning methods can
generate models which predict the phenotype of new isolates and potentially tell us
something about the underlying genetic mechanisms. A deluge of recent papers have
applied general predictive models to such data sets and have mostly showed high
accuracy (3–8). However, some commentaries have been more cautious in their con-
clusions (9, 10).

The overall problem of relating microbial genotype to phenotype has generally
been approached by genome-wide association study (GWAS) methods (11–13). Such
methods determine whether there is sufficient evidence to conclude that a specific
variant explains some proportion of the variation of a trait, after accounting for as many
statistical artifacts as possible. Generally, these methods start by taking the following
approach: consider the association between a phenotype and a single variant, evaluate
this association while accounting for known covariates, including population structure,
and then “scan” this test along the whole genome one variant at a time. Ideally,
associated sets of variants will be investigated further to find causally associated
variants within these sets of linked loci (known as fine-mapping), but even in the best
case, this is extremely challenging (14, 15). It is particularly crucial for microbial GWAS
methods to incorporate a correction for population structure in each test, the specifics
of which vary between methods and data sets. Further adjustment may be necessary
if confounders are genetically stratified due to sampling strategy. Despite the required
adjustments, the simplicity of this method is one of its great strengths: it is quick and
easy to apply, understand, and visualize. Useful extensions which allow the estimation
of heritability (16), the proportion of phenotypic variance explained by genotype, and
prediction of phenotype (by forming linear predictors from significant variants [17]) are
also relatively simple to implement.

Large cohorts of bacterial sequences have also been a tempting target for machine
learning and “deep learning” methods such as convolutional neural networks, which
are able to relate arbitrary high-dimensional inputs to measured outputs with high
accuracy and without the need for specialized model descriptions for each new
problem (18). Rather than assessing evidence for association of individual variants as in
GWAS, these methods instead aim to find a set of variants and a mapping to predict a
trait as accurately as possible. They are potentially broadly applicable to any problem
with vast amounts of data, though they perform best when the number of data points
exceeds the number of dimensions. Unsurprisingly their uptake in sequence analysis
(19, 20) and bacterial genomics specifically has been rapid (4, 5, 21). In general, the
predictive variants in the identified sets may not fully overlap those significant by
themselves, and the mapping does not necessarily lend itself readily to the same
interpretation as P values in a GWAS.

However, some issues crucial to understanding bacterial populations remain unad-
dressed. First, bacterial populations tend to exhibit a strong population structure,
meaning samples cannot be treated as independent. In the context of prediction, this
can result in the selection of features unrelated to the phenotype but common to the
background of associated strains (lineage effects). While not necessarily a problem in
the training data set, if new data are drawn from different strains, this can lead to much
poorer prediction than expected. Examples of this effect are ubiquitous in artificial
intelligence, for example, automatically designed clocks which only work in the lab they
were built (22, 23). In human genetics, a similar problem has arisen due to an
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overrepresentation of samples of European ancestry in genotype databases. This has
led to polygenic risk scores, which were originally thought to be highly accurate
predictors of disease liability, to have significantly lower accuracy in non-European
ancestry samples, which make up most of the global population (24). Additionally,
these methods are unable to deal with missing input data. Variant calling, either by
read pileup to generate single nucleotide polymorphisms (SNPs) or from a graph, when
conducted separately for each population, is likely to produce disparate input sets, and
with very different minor allele frequencies. Without using a method which produces
consistent variant calls in test data sets, the accuracy of predictive models is likely to be
heavily overstated. As well as methodological approaches, more representative sam-
pling of the pathogen population which does not oversample clonal lineages may be
advisable.

Here, we set out to develop a method which combines the desirable attributes of
both of these classes of approaches when analyzing the genetics underlying bacterial
traits. We wished to retain the simplicity and interpretability of traditional GWAS
approaches and combine this with the flexibility and accuracy of machine learning
methods which can be fitted to the entire data set at once. These models were
previously applied to human GWAS data sets for inference (25–27) and prediction (28).

This pangenome-wide approach reflects the polygenic nature of complex traits better
than older fixed effect methods which must select only some population structure cova-
riates to include (29). Unlike marginal tests (the standard single predictor test in GWAS), a
genome-wide regression approach gives rise to an increase of resolution when sample size
increases, as was previously noted in human GWAS (30–32). Additionally, simultaneously
analyzing predictors together in a regression model means that interactions and correlation
between the predictors (e.g., population structure) may be included implicitly (33).

Using large genomic data sets from four different species and sixteen varied
phenotypes, we find that an elastic net model (33) selects similar variants to a GWAS
and does not sacrifice its major advantage of quantitative model interpretability. Using
simulated data, we demonstrate improved power, but an increase in false-positive rate,
compared to that of linear mixed models. We illustrate this use in practice on antibiotic
resistance phenotypes in two species and show further results which find similar
accuracy between new machine learning and simpler approaches, consistent with
previous studies (4, 5, 34).

Our approach models the entire pangenome of the population to include the large
proportion of variation which resides in the accessory genome. It explicitly addresses
issues of population structure and consistent performance between trained and new
(test) data sets. The method is broadly usable, not requiring programming knowledge
or manual adjustments for new data sets, and allows for the sharing of models between
researchers. We have implemented the elastic net model in the pyseer microbial
package as a new “prediction” module and consistent pangenome variant calling in
two further packages. An extensive tutorial for all of these methods is available online
(https://pyseer.readthedocs.io/en/master/predict.html).

RESULTS
Method overview. The elastic net uses a linear prediction model as with a standard

linear regression run between a phenotype and all genetic variants and tries to find
slopes (effect sizes) for all the variants which best predict the phenotype. A shrinkage
term (�) is used to prevent overfitting, adding a cost to each fitted slope proportional
to its value. This has the effect of making many of the genetic variants have a slope of
zero, and so they can be removed from the model entirely. To predict the phenotype
in new samples, these fitted slopes form a simple linear model that can be applied to
a new set of input variants. Furthermore, this also allows the calculation of R2, the
variance in phenotype due to the variance of all genetic effects—the heritability (total
effect of genetics) of the phenotype.

We use an alignment-free representation variation as input. Alignment-free ap-
proaches have proven particularly popular in bacterial populations, removing the need
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for selection of a particular reference and simultaneously modeling both gene content
and sequence variation (11, 12, 35). Many methods have previously used k-mers, which
are short sequence words of length k. The DBGWAS method proposes connecting the
overlaps of these k-mers in a compressed de Bruijn graph (DBG) so that k-mers are
extended using adjacent sequence information in the population, forming unitigs
present in exactly the same set of samples as their constituent k-mers (36). We followed
the same approach here.

As the elastic net includes predictors that are correlated due to population structure
in the same model fitting, it will typically downweight these, to some extent incorpo-
rating this evolutionary history into its model. However, as we note below, effect size
alone does not have the same interpretation as a P value from GWAS and must be
considered along with minor allele frequency (MAF) and other confounders. To include
a population structure explicitly in the model, we first divide the population into strains
(or lineages). Each sample’s contribution to the fitting is then downweighted by the
prevalence of the strain in the elastic net so that repeated observations of the same
genotype count for less, known as “sequence reweighting.” We also use this to select
the value shrinkage term �. We designed a “leave-one-strain-out” (LOSO) cross-
validation rather than randomly leaving samples out. This aims to avoid correctly
predicting the strain (which is frequently correlated with phenotype) rather than the
phenotype itself, since such an approach is less robust when common strains dominate
the data or when the fitted population model is not representative of a population in
which predictions will be made. When applied together, we refer to this as a “weighted”
model, as opposed to “unweighted” models which use neither of these adjustments.

Prediction within and between cohorts without sacrificing model interpretabil-
ity. Whole-genome models can be used to construct a linear model to predict pheno-
types in new data. In this section, we evaluate these predictions compared to those of
other models and variant calling methods using a variety of data sets and phenotypes.

(i) Mycobacterium tuberculosis resistance is equally well predicted by the elastic
net. We first evaluated the predictive performance of our models, with and without
population structure control, compared to that of a more complex deep learning
model. We used an M. tuberculosis data set with antibiotic resistance to four first-line
antibiotics (rifampin, isoniazid, ethambutol, and pyrazinamide). As M. tuberculosis has
no accessory genome and minimal core gene variation (37), comparison with more
complex models and a SNP alignment is possible. Previous work has evaluated the use
of a multitask deep neural network and, when comparing this to lasso regression, found
comparable accuracy (5). Using the same input of �6,500 SNPs and short insertion/
deletions across the allele-frequency spectrum for 3,566 samples (split into training and
test data sets) led to average false-negative rates of 2% � 3% in the unweighted model
and 3% � 4% in the weighted model and false-positive rates of 11% � 8% in the
unweighted model and 12% � 10% in the weighted mode. The elastic net therefore
gives similar performance to the lasso as well as the more complex neural network (see
Table S1 in the supplemental material), as was also shown by the original study authors
(5). It is, however, much easier and faster to run on standard hardware (run time of �1s
on a central processing unit [CPU] versus �3 min on a high-end graphics processing
unit [GPU]) and gives results which are far more readily interpretable.

In this case, the weighted model generally performs slightly worse than an un-
weighted model. The population structure of this sample is relatively simple, with four
distinct lineages. This is likely well captured implicitly by the unweighted model, and so
the categorical weighting is of lower resolution. Sequence reweighting is instead
expected to be more effective in data sets with more complex structures or when
adding in samples which are genetically distant from the training set (38, 39), which we
explore further in the next section. Applying these weights allowed us to easily see that
the majority of errors occurred in lineage I, which has deep branches forming genet-
ically separated subclades, with generally perfect prediction in the other three lineages.

(ii) Prediction of pneumococcal resistance using different variant types. We also
investigated the advantages of the use of unitigs over other variant calling methods.
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Using the same Streptococcus pneumoniae antimicrobial resistance in children (SPARC)
data set described above for �-lactam and erythromycin resistance, we compared
computational resources and prediction accuracy using SNPs, k-mers, and unitigs
(Table 1).

We found that for �-lactam resistance, all three variant types gave similar predictive
accuracy, with the elastic net able to select a small proportion of the total input variants
in each case and apparently fairly insensitive to the far greater noise present in the
higher dimensional variant types. As this resistance is due to allelic variation in core
genes, we expect all three types to tag the causal variation equally well. For erythro-
mycin, where causal variants are not all found in core genes, we observed a reduction
in the false-negative rate when using unitigs. Computational usage increased roughly
as NM (N, number of samples; M, number of variants). For common variants, M reaches
an asymptote for a given population: the main requirement is therefore based on N. For
all methods, the CPU time was modest, but memory usage may pose a problem. SNPs
are tractable on a laptop, but unitig analysis likely requires a computing cluster for the
model fitting (using a fitted model on test data requires negligible resources). k-mers
require an enormous amount of memory, which would not scale to larger data sets.
Though the unitig analysis was easy to schedule on our cluster, future improvements
to reduce memory use could include accessing the variants as they are needed from a
disk or fitting the elastic net in chunks, with resampling (40, 41).

(iii) Reduced intercohort accuracy is ameliorated with consistent genetic calls
and population structure control. Random splits of single data sets in test and
training data, while convenient for analysis, may mask inter-data set differences such as
class imbalance (different resistance rates), unobserved lineages, and technical errors
(variant calling) (10). To test a more realistic example, where a previously fitted model
is used to predict resistance status in new unobserved data, we set up a prediction
experiment using genomic data from three large very different pneumococcal cohorts
with �-lactam resistance: SPARC (603 U.S. children covering introduction of vaccine);
Maela (3,162 unvaccinated infants and mothers); global pneumococcal sequence (GPS)
(5,820 globally distributed samples, mostly vaccinated). We counted unitigs for each
population and used these to train a predictive model. These models were evaluated
on the data they were trained on and on the other two cohorts by using consistently
named unitigs from unitig-caller (Table 2). The resources used were as follows: SPARC,
5 Gb random access memory (RAM), 0.6 h; Maela, 30 Gb RAM, 2.5 h; GPS, 3.1 h. The
majority (�80%) of the CPU time used was for reading variants from text files, making
subsequent fitting faster. The distributions of unitig sizes are shown in Fig. S1.

Between-cohort predictive accuracy was considerably lower than within-cohort
accuracy but still outperformed an intercept-only model in all cases. The use of unitigs
proved successful: repeating the SPARC-Maela comparisons with SNPs led to extremely
poor predictions for every sample, as the selected SNPs were called as missing in the
other cohort, leading to a mean value prediction for every sample (true negatives,
1,661; false positives, 0; false negatives, 1,282; true positives, 0). To fix this issue with
SNPs would likely require a labor-intensive mapping and joint recalling of variation,
whereas with sequence elements, the simple search implemented in unitig-caller can

TABLE 1 Predicting antibiotic resistance in the SPARC collection using different variant typesa

Variant type Phenotype No. selected FPR (%) FNR (%) CPU time (min) Memory usage (Gb)

SNPs (90,000), 3.6 Mb on disk �-Lactam 4,374 3 7 4.4 1.3
Erythromycin 2,341 3 63 4.1 1.3

Unitigs (730,000), 25 Mb on disk �-Lactam 8,247 5 7 49.7 18
Erythromycin 1,591 9 39 52.6 6.9

k-mers (10 million), 603 Mb on disk �-Lactam 15,121 6 7 420 212
aUsing a training/test split of 2:1, prediction accuracy of two phenotypes was tested using 90,000 SNP calls from mapping to a reference genome, and with 730,000
unitigs. We also tested prediction using 10 million variable-length k-mers to illustrate the heavy computational resource use in even a relatively small data set. File
sizes are for the sparse data structures we employ.
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be used. To deal with missing unitig data, which may truly be missing or miscalled, we
assumed it was all truly missing. On the same SPARC-Maela comparison (false-negative
rate [FNR], 0.007; false-positive rate [FPR], 0.239; R2, 0.439), this gave very similar results
to those using mean allele frequency [AF] imputation for missing unitigs (FNR, 0.008;
FPR, 0.232; R2, 0.453).

Depending on the specific model and data set combination, errors can much more
commonly be type I or type II, possibly reflecting class imbalance, despite overall
resistance rates in the pneumococcus being stable (42). The GPS cohort gave the worst
performing model, despite it being the largest collection. This is a very genetically
diverse sample, which introduces more potential for confounding lineage effects to
enter the model. Furthermore, this cohort is a mix of sequences isolated from cases of
asymptomatic carriage and disease, whereas SPARC and Maela contain only asymp-
tomatic carriage cases. The GPS cohort is enriched with more-virulent strains, which
have more frequently faced treatment with antibiotics and have a higher rate of
resistance (1, 43).

We also note that the area under the curve (AUC) of the receiver operating
characteristic (ROC) is misleadingly high (0.9185/0.9728 for the weighted/unweighted
GPS model) and would encourage the reporting of error rates as more intuitive
summaries of accuracy for bacterial traits such as resistance.

We found that sequence reweighting generally reduced prediction accuracy for this
phenotype, although it is the LOSO strategy in particular which gave slightly more
representative accuracy estimates for out-of-cohort prediction (when comparing within
data set with between data set prediction, R2 was 72% higher with sequence reweight-
ing versus 82% higher without sequence reweighting), and more of the selected
variants were in the causal loci.

(iv) Virulence phenotypes can be predicted with sequence reweighting, pre-
venting overestimation of accuracy. Most work on prediction of bacterial phenotypes
has focused on antibiotic resistance, but many more complex phenotypes relating to
bacterial virulence are now available. For these phenotypes, which are under weaker or
no selection, instead of a few strong effects, multiple smaller effects are expected in the
genome (44–46). Therefore, a model which may include more of these effects, which
would be missed with a P value threshold, may be expected to perform well.

We applied our method to predict the duration of asymptomatic carriage in a subset
of the Maela cohort, which can easily be visualized in the manner of a linear regression
(Fig. 1). We show the observed versus predicted values for the training and test sets,
both with and without sequence reweighting. In the unweighted training set, R2 (and
heritability [h2]) was 0.89 (Fig. 1, top left), but the test R2 was only 0.27 (Fig. 1, bottom
left), showing clear overfitting. With sequence reweighting and LOSO, the training and
test estimates were much closer (0.37 and 0.28, respectively) (Fig. 1, right). In this case,
sequence reweighting gave a more realistic heritability estimate. h2 was previously

TABLE 2 Comparison of intra- and intercohort prediction accuracya

Model
No. of selected unitigs
(% in pbp genes)

Accuracyb

SPARC data Maela data GPS data

FNR FPR R2 FNR FPR R2 FNR FPR R2

Sequence reweighting
SPARC 5,251 (10) 0.063 0.024 0.837 0.007 0.239 0.439 0.149 0.134 0.505
Maela 6,645 (14) 0.446 0.005 0.276 0.082 0.042 0.760 0.029 0.382 0.425
GPS 894 (4) 0.011 0.411 0.447 0.144 0.177 0.458 0.094 0.200 0.545

Without weighting
SPARC 7,261 (10) 0.040 0.013 0.901 0.012 0.163 0.487 0.165 0.130 0.487
Maela 8,705 (9) 0.397 0.011 0.339 0.063 0.036 0.805 0.049 0.322 0.449
GPS 7,511 (2) 0.050 0.152 0.656 0.319 0.026 0.452 0.129 0.037 0.864

aFor each prediction, the error rates are listed along with overall R2. For SPARC and Maela, phenotype was binary (resistant/sensitive); for GPS, phenotype was
continuous (MIC). Where conversion was needed, we applied the standard breakpoint of MIC � 0.12 mg/liter for resistance.

bShaded cells are within-cohort. FNR, false-negative rate; FPR, false-positive rate.
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estimated to be 0.634 using phylogenetic pairs, and 0.445 using restricted maximum
likelihood (REML)—these may be overestimates, especially as the revised estimates
introduced here used more information from the genome.

We also tested virulence prediction in two streptococcal species, which would be a
useful application for routine pathogen surveillance but has not been as thoroughly
explored as resistance prediction. Using Streptococcus pneumoniae isolated from Dutch
adults, we fitted a model which selected 9,701 unitigs. This model was able to predict
meningitis versus carriage genomes (test FPR, 0.059; FNR, 0.12) and gave a similar h2

estimate to that originally reported (0.65 versus 0.70). Comparing tissue infection with
carriage of Streptococcus pyogenes gave a model with 5,817 unitigs, which had a higher
error rate than the S. pneumoniae model (test FPR, 0.24; FNR, 0.25), but the phenotype
also had a correspondingly lower h2 estimate of 0.343. Detailed performance of these
models is given in Table S2.

Power and false-discovery rate compared to GWAS using simulated pheno-
types. To test the characteristics of the elastic net compared to GWAS approaches, we
simulated phenotype data from the Maela population (3,162 S. pneumoniae genomes)
(Table 3) using previously defined SNP variation (47). We chose either 5, 25, 100, or 300
true causal variants with an effect size of 4 (similar to a penetrant antimicrobial
resistance variant) either

● chosen uniformly at random across the genome, after linkage disequilibrium (LD)
pruning (no variants with R2 � 0.9).

● chosen uniformly at random from 1 to 3 prespecified genes (pbpX-pbp2x, penA-
pbp2b, and pbp1a).

FIG 1 Prediction of carriage duration and the effect of sequence reweighting on heritability estimation. For the same training/test
split, each panel shows observed log(carriage duration) values on the x axis and model-predicted values on the y axis, with a fitted
linear regression. (Left) Unweighted model on the training data (top) and test (bottom). (Right) The same for the model with sequence
reweighting.
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We chose the first setting to emulate a polygenic trait, with many variants of roughly
equal effects associated across the genome. LD pruning was only used to select causal
variants, and all variants were used as input to the model. The second setting more
closely resembles antibiotic resistance, where multiple alleles in either one or a small
number of genes contribute to the effect, with multiple occurrences independent of
genetic background. We ran the elastic net (� � 0.01) and lasso regression (� � 1) as
well as both GWAS models (fixed effects and linear mixed model) previously imple-
mented in pyseer. Variants were output by the genome-wide model if they had a
nonzero coefficient and by the GWAS models if their P value exceeded a significance
threshold of 0.05 after Bonferroni correction. For each simulated data set and method,
counting true positives (TP), true negatives (TN), false positives (FP), and false negatives
(FN), we calculated the power, the proportion of true causal variants in the output:
TP/(TP � FN). This allowed us to analyze the overlap of selected variables which gave
good prediction with those found in a GWAS, which are individually associated with a
phenotype of interest and may therefore provide mechanistic insight into the trait
being analyzed. We also calculated the proportion of false positives in the output, the
number of variants selected in the output which are not true causal variants divided by
the total number of variants being tested: FP/(TP � FP � FN � TN). This is a measure
of the “noise” in the selected predictor set.

First, our simulations were able to show that using the correlation filtering step
(reducing input size by 25%) reduced power on average by 4% and 8% in the worst
case (see Table S3), where many small-effect variants are spread across the genome and
with no appreciable power loss with smaller or more concentrated causal variants. The
sample correlation values are positively skewed due to population structure, and so
filtering all variants with a sample correlation below the mean value rather than a
quantile leads to an unacceptably high loss of power, as many causal variants would be
removed. This quantile filter can therefore be used on large data sets to reduce CPU
and memory usage with little effect on the variants selected, but if possible, the full set
of variants should generally be modeled in its entirety.

Over all of our simulations, we found that either the elastic net or a fixed-effect
GWAS had the highest power depending on the setting, and both always had higher
power than the linear mixed model (Fig. 2 and Fig. S2). This is consistent with
expectations from prior literature in multicellular organisms (25, 26, 40). The elastic net
performed better in situations where the heritability was low or causal variants were
spread out across the genome. This is expected for less penetrant traits such as carriage
duration (44) and transmissibility (48). There was slightly lower power for all methods
with binary phenotypes, and this decrease was more pronounced in the linear mixed
model, possibly due to being the only model that used a Gaussian error structure in
both settings.

However, in exchange for reduced power, the linear mixed model consistently
showed the best control of false positives in all settings, always �5%. In contrast, the
fixed-effect model had a much greater false-positive rate than any other method, which
grew both with sample size and heritability. The elastic net’s false-positive rate was
typically �5% and was robust across the ranges of heritability tested, though it
increased slightly with larger sample sizes as more variants were included in the fitted
model. With such a large number of variants, even a small false-positive rate can be
problematic, and so combining selected variants with a ranking by P value from a
GWAS is important. It is possible to do this with least angle regression (49) in lasso
regression, but due to the large number of variants, a P value from GWAS is most
convenient.

We also tested lasso regression on the same footing, which is the other extreme of
the � setting in the elastic net. For smaller numbers of causal variants, performance was
similar to that of the linear mixed model both in terms of power and false-positive rate,
in some cases having slightly higher power. However, when the number of causal
variants was higher, the amount of sparsity introduced was too high, reducing power
below that of other methods (though false-positive rate was low in all settings for the

Pangenome-Wide Associations and Prediction in Bacteria ®

July/August 2020 Volume 11 Issue 4 e01344-20 mbio.asm.org 9

https://mbio.asm.org


same reason). As the number of causal variants is generally not known a priori, we
would therefore always recommend the elastic net with a small � over the lasso.

These results show that the variants selected by the elastic net are causal at similar
rates to those with GWAS methods. The elastic net’s selected variants can be used as
an effective trade-off between the regimes of the two commonly used GWAS models,
having higher power than the linear mixed model and a lower false-positive rate than
fixed-effect models. As many bacterial GWAS results must be followed up with lab work,
these results suggest a dual approach of variable selection with the elastic net followed
by ranking results with the linear mixed model may be useful when the first set of
variables selected is large. This is possible in a single step in pyseer.

Whole-genome model of bacterial phenotypes enables heritability estimation
and combination with association mapping. (i) Variant selection for pneumococ-
cal antimicrobial resistances. Next, we tested whether our method selects causal
variants for some phenotypes where these are known and compared our results to
those from GWAS approaches. First, we analyzed a well-studied phenotype and data
set: sensitivity/resistance to �-lactams in the SPARC cohort of 603 S. pneumoniae

FIG 2 Power and false-positive rates in the simulation study set up to resemble antibiotic resistance genotype-phenotype architecture.
(Top) The effect of sample size, with 100 causal variants in the pbp2x gene and a binary phenotype. (Bottom) The effect of phenotype
heritability, with 50 causal variants spread across the three pbp genes and a continuous phenotype. Multivariate methods tested were the
elastic net with default � (red) and Lasso regression (orange). Univariate methods were the fixed effects/seer model (blue) and the
FastLMM linear mixed model (green).
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genomes. Resistance is mainly conferred by allelic variation of three genes (pbp1a,
pbp2b, and pbp2x), which are easily detected by most GWAS and machine learning
methods with SNP calls as input (47, 50) Though the regions are always correctly
identified, the specific variants detected are not identical between methods (51).

Figure 3 shows the results of this analysis. With both the elastic net and linear mixed
model plus cutoff, penA-pbp2b and pbpX-pbp2x are clearly the strongest hits. pbp1a is
also selected by both methods, and while it can be seen on both Manhattan plots, it
is slightly clearer in the gene summary plot for the elastic net, due to the larger number
of SNPs selected in the gene. Taking hits with a P value above a threshold results in a
very clean result for the linear mixed model (LMM) with this strongly selected pheno-
type; only a few noncausal genes are included, usually with only a few SNPs and much
lower ranking than the causal genes. The elastic net selects many more noncausal SNPs
across the MAF spectrum, though combining with P values and number of hits allows
these to be effectively filtered. It should be noted that effect size does not appear to
be an effective filtering criterion without taking into account minor allele frequency,
which may have implications for other machine learning methods where a P value
cannot easily be integrated. Both methods calculate comparable heritability estimates
for this trait, for the LMM, h2 � 0.89, and for the elastic net, h2 � 0.81.

We then undertook a more challenging analysis, using unitigs to investigate anti-
microbial resistances in the larger Maela cohort (3,162 S. pneumoniae genomes). We
previously attempted GWAS on this data set using a fixed-effect GWAS model in the
original description of our SEER software (12). We did not analyze tetracycline resistance
or chloramphenicol resistance, as these are driven by single elements which were easily
detected with the previous method. We instead used trimethoprim and erythromycin
resistances. Trimethoprim resistance is expected to have two causal loci (folA-dyr and
folP) due to being administered jointly with sulfamethoxazole as co-trimoxazole (52).
Indeed, using our method on trimethoprim, the two causal loci are clearly identified
and are the most highly ranked on a Manhattan plot (Fig. S3); applying sequence
reweighting makes little difference to the result. Erythromycin resistance has multiple
causal mechanisms (ermB, mel, and mef) which were not easily found in our previous
attempt. Again, the erythromycin results contained many peaks in their Manhattan
plots (see Fig. S4). When we mapped the unitigs directly to resistance genes, we found
significant results in ermB (9 hits, minimum [min] P � 10�47), mel (12 hits, min P �

5 	 10�42), and mef (6 hits, min P � 5 	 10�42). While this was clearly more successful
than our previous analysis, when considering the noise when mapping to a single
reference, these causal mechanisms would not stand out (see Fig. S5). So, while our
method reduced the computational burden of the analysis through the use of unitigs,
it was not able to easily resolve the causal mechanisms in this challenging example.
This suggests that both single variant tests and whole-genome models would struggle
to arrive at true causal predictions under such circumstances. More flexible black box
machine learning type approaches may help to improve prediction accuracy in these
cases but were outside the scope of this study due to difficulty in interpreting the
models in terms of causal variants.

(ii) Heritability and mapping of gonococcal resistance. We also applied our
method to a combined cohort of 1,595 Neisseria gonorrhoeae genomes where resis-
tance to five different antibiotics has been measured. These data were previously used
to do GWAS using an LMM, with selected loci then entering a reduced dimension
epistasis analysis (53).

The mapping of resistance genes for these antibiotics using our approach was
similar to this GWAS. The original analysis looked at �8,700 SNPs with a MAF of �0.5%;
we used 5.3 	 105 unitigs with a MAF of �1%. Azithromycin (AZI) had 4,612 unitigs
selected, with the top hits mapping to the four 23S rRNA sequences in the genome. The
original analysis only identified a SNP in one of these repeated rRNA sequences, likely
due to the impossibility of mapping variation in these repeats at a single base level: this
is an advantage of being able to report multiple mappings of sequences at the final
stage. Cefixime (CFX) identified the penA region, as in the original analysis, and also
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FIG 3 Elastic net and linear mixed model with SNP-based penicillin resistance. (Top) Manhattan plot of the selected elastic net variants, with a Bonferroni-
adjusted significance threshold in red. The three biggest peaks are in the causal pbp genes. (Middle) The same result with the LMM, taking only those SNPs
above the significance threshold. (Bottom) Summary of the genes selected by both methods (left, elastic net; right, LMM), maximum P value, and average
absolute effect size within each gene.
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suggested an association in the promoter of opaD. Ciprofloxacin (CIPRO) had hits
throughout the genome, as in the original analysis and similar to the analysis of
erythromycin described above— combining the LMM with the elastic net may reduce
candidate regions in these cases. Penicillin (PEN) had a hit in the porB region, as in the
original analysis, along with hits in lgtE, mexB (and efflux pump), and a prophage.
Tetracycline (TET) similarly had a replicated hit in the porB region, along with the cysN
promoter, an alternative pilE allele, and rsmE (a ribosomal methyltransferase). These
Manhattan plots can be seen in Fig. S6. The WHO N strain (54) contains plasmids with
blaTEM and tetM, causal for PEN and TET, respectively, to which we can also map unitigs
rather than needing to recall variation with respect to this reference panel. This
confirms further hits to these genes. Our method therefore broadly replicated the
results from the LMM and added new candidate hits due to testing unitigs rather than
just SNPs, as expected.

We also calculated the narrow sense heritability h2 using our elastic net and unitig
method and compared these to those calculated with previous methods (Fig. 4). Our
estimates were very similar to those of hSNP

2 from the original paper, though consistently
slightly higher (3% � 7%), which may be a result of including more of the population
variation through unitigs. Using a simple estimate of shared sequence content as the
kinship matrix led to a likely overestimate of heritability. For these antibiotics, we
expect high h2, approaching 1, as we discover further causal mechanisms and include
them in the model (55). These estimates are consistent with this expectation but are
difficult to evaluate quantitatively. It is challenging to evaluate the accuracy of herita-
bility estimates, as the true biological value cannot easily be measured in bacteria and

FIG 4 Heritability estimates for antibiotic resistance in the combined N. gonorrhoeae data set, using
different methods. For each of the five antibiotic resistances measured in this data set, we report the
narrow-sense heritability (h2) from our elastic net method and unitigs (gray), the limix method imple-
mented in pyseer, using sequence distance (gold) or phylogeny (blue), and the restricted maximum
likelihood (REML) approach used in the original publication (green). For limix estimates, 95% confidence
intervals (CIs) were calculated with FIESTA (82). These are not shown for the phylogeny method as they
span a range wider than the plot (0.11 to 1).
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measurement via simulation is often circular, where methods used to generate the
simulations necessarily perform best.

DISCUSSION

In this paper, we developed a microbe-specific implementation of a machine
learning tool and showed how this can be used to better understand the link between
bacterial genetic variation and phenotypic variation. We argue that the sophistication
of the prediction model itself is generally less important than three other factors: the
data set itself, creating a method with careful genomic data management, and incor-
porating knowledge specific to bacterial populations. We addressed these issues as
follows. Pangenomic variation was covered using a unitig definition of population
variation, which we showed to be scalable, unlike k-mers, and better suited to analyzing
accessory genome variation and inter-data set consistency, unlike SNPs. Population
structure was accounted for explicitly using sequence reweighting and leave-one-
strain-out cross-validation. We maintained a clear link between our resulting models
and underlying genetics by combining linear models with a suite of tools to interpret
the variants selected in the model. This had the further advantage that it significantly
reduced the number of sequence elements to be processed after association. Using
selected unitigs allowed for a much smoother use of the interactive plotting software
phandango (56), which is one of the fastest ways to interpret bacterial GWAS results.

Our method is interpretable, and selected variants contain a high proportion of
causal variants in simulations. We compared power and false-positive rate to selection
with a P value threshold using simulations, and using real data from two species
showed how this method can be combined with GWAS approaches to understand
resistance and epistasis. LMMs are the best GWAS approach but mostly excel in cases
where a trait is polygenic and has evolved multiple times, as is the case with many
causal antibiotic resistance markers (11). If causal variants are more closely correlated
with lineage, as may be the case for less strongly selected phenotypes, the LMM has
reduced power, whereas the elastic net includes these groups of variants more effec-
tively than previous fixed-effect models. This has recently been shown in an indepen-
dent set of simulations (57). It is also worth noting that in highly clonal settings, the
LMM can suffer from a very high false-positive rate unless the kinship matrix is carefully
chosen (57, 58). Depending on the genetic architecture of the phenotype, which is
rarely known a priori, one of these two methods may have a more desirable power/
false-positive trade-off. The option to combine selection with the elastic net and
ranking from the LMM appears to be useful in some challenging intermediate cases. An
alternative approach is to associate LMM variants with lineages themselves marginally
associated with the phenotype, as proposed in the bugwas package (11). The elastic net
would be preferable where individual lineage associations are weak but causal, and the
entire lineage block would be rejected.

We also obtain useful estimates of trait heritability, some of which show evidence
that previous approaches may have overestimated this quantity. For the purposes of
prediction, on a simple data set, we replicated the result that regularized linear models
perform similarly to more complex deep learning methods. We also applied our
method to a range of data sets from different species and phenotypes, including
resistance, carriage duration, and virulence. Though our models generally performed
well when measured on error rates, an experiment with models on three separate
cohorts showed how accuracy falls outside the target data set. External data sets may
have different strain compositions due to different biases toward more- or less-virulent
strains, geographical separation, vaccine use, or antibiotic consumption in the popu-
lation. We would reiterate the caveat that while these models can be useful, high
accuracy on test data should not be taken as a general measure of confidence (9). Batch
differences such as genotyping methods between cohorts exaggerate this problem,
and so a consistent approach (such as the one we provide here) should be used.
Unsurprisingly, curated resistance sets—the result of decades of research—still gener-
ally perform better, although even this in silico method loses accuracy between data
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sets (34). Less-well-understood and potentially polygenic phenotypes such as virulence
offer an attractive target for our model, as we demonstrated on two streptococcal
pathogens.

Along with these theoretical advances, our package has a number of practical
advantages. All of the elements of our method are freely available, well documented,
and part of a continuous unit-testing framework. Users can construct and evaluate
models easily, without the need for programming experience, with options which
retain the flexibility to modify the model parameters. There is no need for specialist
hardware such as the graphics cards needed to fit large deep learning models. The
models themselves are saved in a human-readable format, are easy to share and reuse,
and have minimal hardware-specific requirements.

Our method does remain limited due to its reliance on the elastic net. Higher order
interactions are difficult to include, as they make the size of the input space increase
greatly, whereas in other machine learning approaches such as random forests, these
are included naturally in the model structure. Simultaneous selection of both hyper-
parameters � and � is more challenging due to a greatly increased search space in
cross-validation, and so we rely on a heuristic selection of �. For larger data sets, the
requirement to store the entire variant matrix in memory to fit the elastic net can easily
exceed available memory. This could be solved by storing this matrix as a file on a disk
and memory mapping this file, or reading rows only as needed (40). Our implementa-
tion cannot currently incorporate prior information on input variants, such as known
association with antimicrobial resistances, though extension to either an ensemble
model or Bayesian regression would be possible. As we have introduced a general
framework for variant input/output in pyseer, we hope to include further machine
learning approaches which allow trade-off of these advantages and disadvantages in
the future.

The effect sizes from the elastic net do not necessarily indicate the significance of
individual variants, as they are optimized for prediction; even after reweighting se-
quences, nonzero effects form a much larger set than true causal variants and are
spread across the genome rather than specifically mapping to a causal region. The
combination with P values from a well-performing GWAS method, such as the linear
mixed model, helps if the user requires this interpretation. We would expect the same
to be true for other machine learning methods and would generally caution against
making a “GWAS-type” inference based on predictor importance or similar measures.
We also did not perform a thorough comparison with other available machine learning
methods; there are many choices, with well-known characteristics, which have previ-
ously been shown to perform similarly well at this task (10).

More broadly, we have considered techniques routinely used in the analysis of
modern data sets, which are generated frequently with high-throughput methods.
These can be adapted to perform fundamental tasks in bacterial genomics in ways
which are useful and that scale with our ambitions to discover causal drivers and
predict phenotypes from genome variation. Collections of high-quality whole-genome
sequences are now available at a scale that would have been unfathomable just a few
years ago. Many of these data sets are publicly available already, and many more are
being generated from new larger projects and routine surveillance by public health
agencies. Care must be taken to ensure the unique properties of bacterial populations
are properly modeled and that we use appropriate measures of success. Complex
models should be compared to simple models (59, 60), not just in terms of accuracy but
also for their ability to look at underlying biology. In many cases, the limiting factor is
unlikely to be model flexibility. With our pangenome-spanning penalized regression
models, we hope to have made useful and usable contributions that respect these
principles.

MATERIALS AND METHODS
Preparation of data sets. Table 3 shows a summary of the data sets used in this paper. Sequence

assemblies were available from the original publications, with the exception of one N. gonorrhoeae study
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(61). For this study, we downloaded the read data, removed adapter sequences with trimmomatic (62)
v0.36, and assembled them with SPAdes v3.11 (63) using the --only-assembler and --careful options. For
all data sets, we then called unitigs from each sample’s sequence assembly using a k-mer length of 31,
and low-frequency unitigs (AF � 1%) were discarded. For the Massachusetts and tuberculosis (TB) data
sets, additional genetic data were available. For the TB data set, we used the variant call matrix provided
by the study’s authors (5). Not all phenotypes were available for all samples from this study. For the
Massachusetts and Maela data sets, we used SNP calls from an earlier GWAS in this population (47).
Where a split into training and test data was needed, this was performed at random in the ratio 2:1. When
including a cluster assignment to account for population structure, we used the previous assignments
from PopPUNK where available (64). For TB, we used the major lineage as the cluster. When MICs
indicated antibiotic susceptibility, this phenotype was first log transformed before any downstream
analysis. Other phenotypes were used as originally reported.

To generate simulated data used for testing power and false-discovery rate against a ground truth, we
simulated phenotypes but used observed SNP genotype data from the Maela data set to ensure a realistic
genetic model for bacterial population structure. Phenotypes were simulated using GCTA (16), either as
continuous or as binary using a liability threshold model. Then, to assess the power of the methods with
respect to the sample sizes, we randomly choose subsamples with 500, 1,000, 2,000, and 3,000 samples (with
h2 fixed at 0.5). Separately, using 3,000 samples, h2 was varied at 0.1, 0.3, 0.6, and 0.9. We did not use fewer
than 500 samples, as we expect a significant decrease in discovery power (12). LMM and fixed-effects models
were run using default settings in pyseer (10 multidimensional scaling [MDS] components and kinship matrix
estimated from shared distance to the root of a phylogeny). We used a fixed-effect size of 4, a relatively high
effect size typical of that found for antimicrobial resistance SNPs, which have been found to range between
roughly 2.5 to 7 for this data set (45), and higher than virulence effects which have been found to range
between 0.1 and 1 in the Netherlands data set described above (43).

Elastic net model. We use a high-dimensional regression model which includes all genetic variants
and covariates of interest x�. Typically, this is not possible using classical inference methods such as the
least-squares estimator, as the number of genetic predictors m exceeds the number of samples N,
leading to an underconstrained system. The elastic net defines such a function (33, 65), mixing L1 (lasso)

and L2 (ridge) penalties, which is minimized with respect to the values of the intercept b0 and slopes b�:

min
b0,b

1

N�i�1

N

wil(yi, b0 � bTxi)
2 � ��(1 � �)�b�2

2 ⁄ 2 � ��b�1� ,

where N is the number of samples, wi are positive weights (with a sum equal to N), l() is the link function
(linear or logit for continuous or binary phenotypes yi, respectively), � � 0 is the magnitude of the
penalty, and 0 � � � 1 is the amount of mixing between L1 and L2 penalties. Minimizing this function
reduces the squared distance between predicted and observed values when � � 0; as � increases,
predictors are shrunk toward zero to trade-off prediction accuracy with overfitting.

Given the strong linkage disequilibrium present in bacterial populations (11, 66), many genetic variants
are strongly correlated across long distances. Randomly selecting a single representative variant from such a
group will likely lead to greatly varied biological conclusions, and so including the entire block with suitable
lineage annotation is preferred (11). For this reason, the elastic net has been shown to be especially useful
when the variables are dependent (33). We compare this selection with the lasso in our simulations. The value
of � can be changed by the user, should they wish to opt for a sparser model.

Two important parameters which are not directly set using the data are � and �. The amount of
penalty � is set by cross-validation, using a default of 10-fold to pick the value of �, which maximizes the
cross-validated R2 value of the model over the test data. The user can change the number of folds. The
amount of mixing (�) between L1 penalties, which lead to sparse predictive models with mostly zero
valued slopes, and L2 penalties, which lead to models with shrunken but nonzero predictors, could also
be chosen by cross-validation to maximize prediction accuracy. However, we propose users choose a
value of around 0.01 throughout (all experiments reported here use � � 0.01). A sparse model is
preferred for prediction for speed and easier consistency between populations, but this leads to a loss
of power in the context of GWAS, as potentially causally related predictors may be removed from the
model (Fig. 2 and S2 in the supplemental material). Introducing even a small L1 penalty in this way
removes a large fraction of variants unconnected with the phenotype.

By virtue of the fact that all pangenomic variation enters this model, if a linear additive model of
heritability is assumed, which it typically is in bacterial GWAS (44, 45, 67), the value of R2 calculated from
the fit of the elastic net,

R2 � 1 �
�y � X�

^

enet�
2

�y � y��2 ,

also serves as an estimate of the narrow-sense heritability h2. As R2 measures the variance explained by
the model’s predictors, in this case all genetic features, this is equivalent to the proportion of phenotypic
variance �p

2 explained by genetic variation �g
2, the definition of h2. This provides a lower bound on h2,

because the Lasso-type estimator is biased (68), and it tends to shrink some coefficients with weak effects
toward zero, though these weak effects may have a significant effect on the trait variability.

Efficiently modeling the entire pangenome. Bacterial populations vary greatly in their sequence
content, and mapping short variation within their core genes (coding sequences shared by all members of the
population) is generally insufficient to capture all of the variation within the samples. In particular, accessory
gene content has been shown to be associated with core variation (64), be associated with clinically relevant
phenotypes (12, 69), and be useful for predicting the evolution of the population (70, 71).
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Early bacterial GWAS methods used k-mers, sequence words of fixed or variable length, to assay
variation throughout the population independent of gene annotation or variant calling method (11, 12,
35). The set of common k-mers (1% to 99% frequency) is vast, particularly in the large and genetically
diverse populations which are most amenable to GWAS. Efforts to model all of these sequence elements
simultaneously are potentially computationally intractable, as these words will not fit in main memory
and model fitting takes an extremely long time. In the S. pneumoniae data sets, we observed a 13- to
18-fold reduction in the number of unitigs compared to that of k-mers.

We used two techniques to circumvent this issue while still including as much pangenomic variation
as possible. Following the idea of screening methods in ultrahigh-dimensional data (72, 73), we used the
absolute value of the sample correlation as a screening criterion for each variant:

|cor(y, x)| � |�y�, x� � | � |	yi� xi�|

where y� and x� are the standardizations of y and x (defined as phenotype and variant as above) such that

� x�i � 0,� x�i
2 � 1,� y�i � 0,� y�i

2 � 1.

This is the “correlation filter.” Using a single threshold on the mean value for this correlation would lead
to a large number of variants being removed before modeling, which is appealing computationally but,
in our simulations, led to a loss of power. We instead removed the lowest quartile, which maintained
power but did not reduce model size as much. The size of the quantile to remove can be set by the user.

We also followed the method used in DBGWAS (36), which after counting fixed-length k-mers,
constructs a compressed de Bruijn graph (DBG) of the population. Nodes in this compressed graph are
extensions of adjacent k-mers in the raw graph with the same population frequency vector and whose
sequences are referred to as unitigs. These unitigs greatly reduce the redundancy present in raw k-mer
counts by combining those with the same patterns and are generally easier to functionally interpret due
to their longer length. We followed the same method as step 1 of the DBGWAS package, which uses the
GATB library to construct a compressed DBG (74), and then reported frequency vectors of each
unitig/node and unique pattern in a format readable by pyseer. We used a k-mer length of 31 throughout
to count unitigs, as this was previously shown to maximize association power (36). This length can also
be set by the user. We reimplemented this approach as a standalone package (https://github.com/
johnlees/unitig-counter), also including tools to extend unitigs by traversing neighboring nodes in the
graph, and calculate distances between unitigs based on the graph using Dijkstra’s algorithm.

Incorporating population structure. Population structure causes correlations between the genetic
variants (unitigs) that make up x�. As all of these enter our model together, this effect may be implicitly
controlled for without the need for further correction. We also wished to compare this to the use of an
explicit correction term to test which approach is more effective. This can be included in the modeling
step by a combination of three approaches: use of extra predictors in x� which account for population
structure, modifying the per-sample weights wi, or by changing the folds used in cross-validation. We
discuss each of these in turn.

Fixed-effect models typically use a principal components-type analysis to include the main axes of
variation in the population as covariates. In a new data set, projection of variation onto these existing
axes could be used but would require large overlap between variant calls in each data set to be accurate.
Random-effect models use a kinship matrix to include the sample covariance matrix in each association.
For a new data set, this would require calculation of covariance against the original data set, which
reduces model portability.

We therefore opted to use a definition of population structure which does not introduce extra
predictors. This makes application of the model more straightforward in new data sets. The use of a
definition of clusters which naturally extends to new populations, which may have very different strain
frequencies and/or large numbers of novel clusters, further increases robustness in the face of between-
data set variation. Any method which produces discrete cluster membership definitions independent of
cluster frequency is suitable for this purpose, such as sequence type, clonal complex, or percentage
identity cutoff. We opted to use the “strain” definition provided by the PopPUNK software throughout
our analysis due to its speed and biological basis (64) However, our implementation allows any preferred
definition of cluster membership to be used.

Cluster membership for each sample x is defined as Ci(x), which is 1 if x is in cluster i or 0 otherwise.
The model is fit to all the data except the first cluster, and then its accuracy is tested on the cluster not
used in the fitting. This is repeated for every cluster to find the value of � which maximizes fit accuracy
over all these fits. This may be referred to as leave-one-strain-out (LOSO) cross-validation or leave-one-
cluster-out (LOCO) cross-validation. This is more realistic than random selection of folds, as random
samples would maintain relative strain frequencies between training and test data, whereas new
populations usually vary greatly in their genetic background (1, 10).

Furthermore, we added the sequence-reweighting option in pyseer, which defines the sample
weights as being inversely proportional to the cluster/strain size:

1

ui
� �

j�1

N

[j � Ci]

wi � ui 

N

�j�1

N
uj

.

This sequence reweighting is a commonly used definition in epistasis methods such as direct coupling
analysis and correlation-based approaches, which have recently been successfully applied to genome-
wide variation in bacterial populations (38, 39, 75).
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Phenotypic prediction while maximizing consistency between data sets. Prediction of unob-

served phenotypes yi is achieved by forming a linear predictor of nonzero slopes in b�i:

b0 � bTxi ,

to which the appropriate link function l() is then applied to convert into a probability (which can be
converted into a binary outcome using a threshold cutoff).

Predictors which are missing can either be ignored (set xi � 0) or imputed (set xi � x�, where x� is the
allele frequency in the original data set). For the unitig caller approach described below, a missing call
means a genuine absence in the data, and so we used the former approach. For variant calling methods
where missing calls may be artifactual (such as SNP calls), we use the mean value imputation approach.
The option –ignore-missing can be used to control this behavior manually.

To apply fitted models to new populations, consistency in the construction of the matrix of genomic
variants x� between data sets is important to maximize prediction accuracy. This can be highly challeng-
ing for core SNPs due to the many possible methods and individual options to extract these from
sequence reads. Sequence element presence or absence is simple to define, and so it is easier to enforce
consistency of input between data sets. The main issue with using unitigs here is that DBGs of different
sample sets will have different sequences at their nodes and, therefore, nonoverlapping unitig calls. To
solve this issue, we defined unitig sequences once in the training population. Rather than building a new
DBG in test data sets, we instead checked for the presence of unitigs previously defined in the training
population. To do this efficiently, we created and saved an Ferragina and Manzini (FM) index for each
input sequence (76), which is a substring index capable of supporting fast text searches, which we
performed in parallel for each unitig query. We implemented this as a separate package unitig-caller
(https://github.com/johnlees/unitig-caller) in C�� using the SeqAn library (77). An alternative imple-
mentation of both “counting” and “calling” unitigs is possible by constructing and querying sequences
using a single population DBG. We implemented this in the same package by creating an interface to the
Bifrost method (78).

For continuous phenotypes, we report R2 to describe prediction accuracy. This is more difficult to interpret
with binary phenotypes, especially in the presence of class imbalance and when the imbalance deviates from
the population-wide prevalence. For binary phenotypes, we found that reporting positive statistics such as
sensitivity and specificity, or especially area under the curve (AUC), led to reports in the top decile for almost
all data sets and methods and were harder to intuitively compare between different models and data sets.
We therefore report the false-negative rate and false-positive rate along with the totals selected.

Implementation. We implemented the association model in version 1.3.2 of the pyseer bacterial GWAS
package, which is written in python (79). This takes care of reading variants in many common formats,
including the output from unitig-counter, as well as providing tools to help interpret associated sequences.
We used python bindings to the fortran glmnet package to actually fit the model, as the use of warm-starts
more efficiently solves the above equation at an array of values of � (65). Cross-validation, parallelized if
requested by the user, is used to select the value of � with the greatest R2 value, as defined above.

Variant matrices are potentially very large, and so to optimize speed and memory use, we read these
into a sparse matrix structure. Variants with allele frequency of �50% have their genotypes flipped to
increase sparsity—these sites are flipped back during prediction. This sparse structure can be saved to
disk to avoid repeated parsing of variant input files. Only haploid variant calls (0/1), allele frequency, and
sample order are saved in this file. After extracting the nonzero coefficients from the fitted elastic net,
the input variant file is reread with minimal parsing to output information about the selected variants.
A SHA256 hash of the input file is calculated to ensure consistency with the original input file.

The fitted models are saved as an associative array, with variant names as keys (either sequence or alleles
combined with chromosome and position) and allele frequencies and fitted slopes as values. New variant call
files are read with minimal parsing to extract just those sites which appear in the model, and at the end-of-file,
the appropriate imputation procedure is applied to model terms which were not found. This allows both rapid
prediction in large new data sets and an easy and portable way to share predictive models.

For fitted models, slopes, P values (adjusted by any of pyseer’s other models), and allele frequencies are
included in the output. Where the true phenotype is known, prediction accuracy is reported using R2 and a
confusion matrix if the phenotype is binary. If clusters were provided, accuracy statistics for within each cluster
are also included in the output.

We used the tools within pyseer to interpret unitigs. Specifically, we used bwa-mem with the shortest
possible seed to map unitig sequences to a single reference genome (Streptococcus pneumoniae ATCC
700669 [80]; Neisseria gonorrhoeae FA1090 [81], and WHO_N [54]). Bonferroni corrections were calculated
by using the number of unique unitig patterns as the number of tests.

The new code in pyseer includes automated tests and unit tests we wrote using test data distributed
with the package. Documentation and a tutorial are available online (https://pyseer.readthedocs.io/en/
master/predict.html).

Availability of data and materials. The pyseer package is available as source code at the GitHub
repository (https://github.com/mgalardini/pyseer; Apache 2.0 license), documented on readthedocs
(http://pyseer.readthedocs.io/), and available for install on bioconda (https://anaconda.org/bioconda/
pyseer). The unitig-counter package is available at the GitHub repository (https://github.com/johnlees/
unitig-counter; AGPL 3.0 license) and available for install on bioconda (https://anaconda.org/bioconda/
unitig-counter). The unitig-caller package is available at the GitHub repository (https://github.com/
johnlees/unitig-caller; Apache 2.0 license) and available for install on bioconda (https://anaconda.org/
bioconda/unitig-caller).

Lees et al. ®

July/August 2020 Volume 11 Issue 4 e01344-20 mbio.asm.org 18

https://github.com/johnlees/unitig-caller
https://pyseer.readthedocs.io/en/master/predict.html
https://pyseer.readthedocs.io/en/master/predict.html
https://github.com/mgalardini/pyseer
http://pyseer.readthedocs.io/
https://anaconda.org/bioconda/pyseer
https://anaconda.org/bioconda/pyseer
https://github.com/johnlees/unitig-counter
https://github.com/johnlees/unitig-counter
https://anaconda.org/bioconda/unitig-counter
https://anaconda.org/bioconda/unitig-counter
https://github.com/johnlees/unitig-caller
https://github.com/johnlees/unitig-caller
https://anaconda.org/bioconda/unitig-caller
https://anaconda.org/bioconda/unitig-caller
https://mbio.asm.org


SUPPLEMENTAL MATERIAL
Supplemental material is available online only.
FIG S1, PDF file, 0.4 MB.
FIG S2, PDF file, 1 MB.
FIG S3, PDF file, 1 MB.
FIG S4, PDF file, 1.5 MB.
FIG S5, PDF file, 0.7 MB.
FIG S6, PDF file, 2.6 MB.
TABLE S1, PDF file, 0.1 MB.
TABLE S2, PDF file, 0.1 MB.
TABLE S3, PDF file, 0.1 MB.

ACKNOWLEDGMENTS
We thank the developers of DBGWAS who wrote the majority of the code to count

unitigs, which we modified for this application. We are particularly grateful to Leandro
Ishi Soares de Lima and Rayan Chiki for helping test and debug code from DBGWAS and
GATB used in unitig-counter. We also wish to thank the developers of SeqAn 3.0 for
their help implementing the FM index in the unitig-caller package. We thank Benjamin
Schubert and Deborah Marks for providing the phylogeny for the N. gonorrhoeae data
set and Kevin Ma for advice on appropriate mapping of significant unitigs in this
species. Daniel Falush provided useful feedback on an earlier presentation of this work.
We thank Laurent Jacob for providing detailed critical feedback at multiple stages of
the manuscript.

This work was supported by the European Research Council (SCARABEE, grant
number 742158). J.A.L. received support from the Medical Research Council (grant
number MR/R015600/1). This award is jointly funded by the UK Medical Research
Council (MRC) and the UK Department for International Development (DFID) under the
MRC/DFID Concordat agreement and is also part of the EDCTP2 program supported by
the European Union. The funders had no role in study design, data collection and
interpretation, or the decision to submit the work for publication.

Conceptualization, J.A.L., T.T.M., and J.C. Data curation, J.A.L. Formal analysis, J.A.L.
and T.T.M. Funding acquisition, J.P. and J.C. Investigation, J.A.L. and T.T.M. Methodol-
ogy, J.A.L. and T.T.M. Software, J.A.L., M.G., and S.H. Supervision, J.P. and J.C. Validation,
J.A.L., T.T.M., and N.E.W. Visualization, J.A.L. and T.T.M. Writing: original draft, J.A.L.;
review and editing, all authors.

REFERENCES
1. Gladstone RA, Lo SW, Lees JA, Croucher NJ, van Tonder AJ, Corander

J, Page AJ, Marttinen P, Bentley LJ, Ochoa TJ, Ho PL, Du Plessis M,
Cornick JE, Kwambana-Adams B, Benisty R, Nzenze SA, Madhi SA,
Hawkins PA, Everett DB, Antonio M, Dagan R, Klugman KP, von Gottberg
A, McGee L, Breiman RF, Bentley SD, Global Pneumococcal Sequencing
Consortium. 2019. International genomic definition of pneumococcal
lineages, to contextualise disease, antibiotic resistance and vaccine im-
pact. EBioMedicine 43:338 –346. https://doi.org/10.1016/j.ebiom.2019.04
.021.

2. CRyPTIC Consortium and the 100,000 Genomes Project, Allix-Béguec C,
Arandjelovic I, Bi L, Beckert P, Bonnet M, Bradley P, Cabibbe AM,
Cancino-Muñoz I, Caulfield MJ, Chaiprasert A, Cirillo DM, Clifton DA,
Comas I, Crook DW, De Filippo MR, de Neeling H, Diel R, Drobniewski FA,
Faksri K, Farhat MR, Fleming J, Fowler P, Fowler TA, Gao Q, Gardy J,
Gascoyne-Binzi D, Gibertoni-Cruz A-L, Gil-Brusola A, Golubchik T, Gon-
zalo X, Grandjean L, He G, Guthrie JL, Hoosdally S, Hunt M, Iqbal Z, Ismail
N, Johnston J, Khanzada FM, Khor CC, Kohl TA, Kong C, Lipworth S, Liu
Q, Maphalala G, Martinez E, Mathys V, Merker M, Miotto P, et al. 2018.
Prediction of susceptibility to first-line tuberculosis drugs by DNA se-
quencing. N Engl J Med 379:1403–1415. https://doi.org/10.1056/NEJMoa
1800474.

3. Lupolova N, Dallman TJ, Holden NJ, Gally DL. 2017. Patchy promiscuity:
machine learning applied to predict the host specificity of Salmonella

enterica and Escherichia coli. Microb Genom 3:e000135. https://doi.org/
10.1099/mgen.0.000135.

4. Moradigaravand D, Palm M, Farewell A, Mustonen V, Warringer J, Parts
L. 2018. Prediction of antibiotic resistance in Escherichia coli from large-
scale pan-genome data. PLoS Comput Biol 14:e1006258. https://doi.org/
10.1371/journal.pcbi.1006258.

5. Chen ML, Doddi A, Royer J, Freschi L, Schito M, Ezewudo M, Kohane IS,
Beam A, Farhat M. 2019. Beyond multidrug resistance: leveraging rare
variants with machine and statistical learning models in Mycobacterium
tuberculosis resistance prediction. EBioMedicine 43:356 –369. https://doi
.org/10.1016/j.ebiom.2019.04.016.

6. Khaledi A, Weimann A, Schniederjans M, Asgari E, Kuo T-H, Oliver A,
Cabot G, Kola A, Gastmeier P, Hogardt M, Jonas D, Mofrad MRK, Bremges
A, McHardy AC, Häussler S. 2020. Fighting antimicrobial resistance in
Pseudomonas aeruginosa with machine learning-enabled molecular di-
agnostics. EMBO Mol Med 12:e10264. https://doi.org/10.15252/emmm
.201910264.

7. Naidenov BV, Lim A, Willyerd K, Torres NJ, Johnson WL, Hwang HJ, Hoyt
PR, Gustafson JE, Chen C. 2019. Pan-genomic and polymorphic driven
prediction of antibiotic resistance in Elizabethkingia. Front Microbiol
10:1446. https://doi.org/10.3389/fmicb.2019.01446.

8. Pataki BÁ, Matamoros S, van der Putten BCL, Remondini D, Giampieri E,
Aytan-Aktug D, Hendriksen RS, Lund O, Csabai I, Schultsz C. 17 January
2020. Understanding and predicting ciprofloxacin minimum inhibitory

Pangenome-Wide Associations and Prediction in Bacteria ®

July/August 2020 Volume 11 Issue 4 e01344-20 mbio.asm.org 19

https://doi.org/10.1016/j.ebiom.2019.04.021
https://doi.org/10.1016/j.ebiom.2019.04.021
https://doi.org/10.1056/NEJMoa1800474
https://doi.org/10.1056/NEJMoa1800474
https://doi.org/10.1099/mgen.0.000135
https://doi.org/10.1099/mgen.0.000135
https://doi.org/10.1371/journal.pcbi.1006258
https://doi.org/10.1371/journal.pcbi.1006258
https://doi.org/10.1016/j.ebiom.2019.04.016
https://doi.org/10.1016/j.ebiom.2019.04.016
https://doi.org/10.15252/emmm.201910264
https://doi.org/10.15252/emmm.201910264
https://doi.org/10.3389/fmicb.2019.01446
https://mbio.asm.org


concentration in Escherichia coli with machine learning. bioRxiv https://
doi.org/10.1101/806760.

9. Wheeler NE. 2019. Tracing outbreaks with machine learning. Nat Rev
Microbiol 17:269. https://doi.org/10.1038/s41579-019-0153-1.

10. Hicks AL, Wheeler N, Sánchez-Busó L, Rakeman JL, Harris SR, Grad YH.
2019. Evaluation of parameters affecting performance and reliability of
machine learning-based antibiotic susceptibility testing from whole ge-
nome sequencing data. PLoS Comput Biol 15:e1007349. https://doi.org/
10.1371/journal.pcbi.1007349.

11. Earle SG, Wu C-H, Charlesworth J, Stoesser N, Gordon NC, Walker TM,
Spencer CCA, Iqbal Z, Clifton DA, Hopkins KL, Woodford N, Smith EG,
Ismail N, Llewelyn MJ, Peto TE, Crook DW, McVean G, Walker AS, Wilson
DJ. 2016. Identifying lineage effects when controlling for population
structure improves power in bacterial association studies. Nat Microbiol
1:16041. https://doi.org/10.1038/nmicrobiol.2016.41.

12. Lees JA, Vehkala M, Välimäki N, Harris SR, Chewapreecha C, Croucher NJ,
Marttinen P, Davies MR, Steer AC, Tong SYC, Honkela A, Parkhill J,
Bentley SD, Corander J. 2016. Sequence element enrichment analysis to
determine the genetic basis of bacterial phenotypes. Nat Commun
7:12797. https://doi.org/10.1038/ncomms12797.

13. Collins C, Didelot X. 2018. A phylogenetic method to perform genome-
wide association studies in microbes that accounts for population struc-
ture and recombination. PLoS Comput Biol 14:e1005958. https://doi.org/
10.1371/journal.pcbi.1005958.

14. Spain SL, Barrett JC. 2015. Strategies for fine-mapping complex traits.
Hum Mol Genet 24:R111–R119. https://doi.org/10.1093/hmg/ddv260.

15. Huang H, Fang M, Jostins L, Umićević Mirkov M, Boucher G, Anderson
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