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Abstract

Literature-based Discovery (LBD) aims to discover new knowledge automatically from large

collections of literature. Scientific literature is growing at an exponential rate, making it diffi-

cult for researchers to stay current in their discipline and easy to miss knowledge necessary

to advance their research. LBD can facilitate hypothesis testing and generation and thus

accelerate scientific progress. Neural networks have demonstrated improved performance

on LBD-related tasks but are yet to be applied to it. We propose four graph-based, neural

network methods to perform open and closed LBD. We compared our methods with those

used by the state-of-the-art LION LBD system on the same evaluations to replicate recently

published findings in cancer biology. We also applied them to a time-sliced dataset of

human-curated peer-reviewed biological interactions. These evaluations and the metrics

they employ represent performance on real-world knowledge advances and are thus robust

indicators of approach efficacy. In the first experiments, our best methods performed 2-4

times better than the baselines in closed discovery and 2-3 times better in open discovery.

In the second, our best methods performed almost 2 times better than the baselines in open

discovery. These results are strong indications that neural LBD is potentially a very effective

approach for generating new scientific discoveries from existing literature. The code for our

models and other information can be found at: https://github.com/cambridgeltl/nn_for_LBD.

Introduction

Literature-based Discovery (LBD) aims to discover new knowledge by connecting information

which have been explicitly stated in literature to deduce connections which have not been

explicitly stated. Its pioneer is Don Swanson who hypothesised that the combination of two

separately published results indicating an A-B relationship and a B-C relationship are evidence

of an A-C relationship which is unknown or unexplored. He used this to propose fish oil as a

treatment for Raynaud syndrome due to their shared relationship with blood viscosity [1].

This hypothesis was later shown to have merit in a prospective study [2] and he continually

proposed other discoveries using similar methods [3–5]. LBD comes in two flavours: open and

closed discovery. In open discovery, only the A is given and Cs are deduced using the various

A-B-C relationships in existence while in closed discovery the A and C are given and the goal

is to quantify the existence of relevant Bs.
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LBD has evolved to involve using computers to discover many such connections automati-

cally from large collections of literature. Thus, it can facilitate both hypothesis testing and gen-

eration to give tangible support to scientific research [6, 7]. Scientific literature is growing at

an exponential rate [8], making it difficult for researchers to stay current in their discipline.

This, along with the increasing necessity of researchers to specialize has led to an environment

where discoveries in one area are not known outside of it [9] and valuable logical connections

between disparate bodies of knowledge remain unnoticed [10]. This means there is a very real

chance that knowledge which can be combined to form or crystallise breakthrough-inducing

hypotheses are dispersed throughout the literature. LBD can help researchers to quickly dis-

cover and explore hypotheses as well as gain information on relevant advances inside and out-

side of their niches and increase interdisciplinary information sharing. Thus as the scientific

literature grows, the necessity for LBD as a research tool increases.

LBD has already been used to identify new connections between biomedical entities and

new candidate genes and treatments for illnesses [6] and to propose treatments for Parkinson’s

Disease and Multiple Sclerosis [11, 12]. It has seen use in drug development and repurposing

[13, 14] as well as predicting adverse drug reactions [15, 16]. It has also been used to propose

new potential cancer treatments [17] and identify promising research collaborations [18].

The recently-released LION LBD system [19] reports state-of-the-art results in LBD. It uses

PubTator [20] for annotating PubMed scientific articles with concepts such as chemicals,

genes/proteins, mutations, diseases and species; as well as sentence-level annotation of cancer

hallmarks that describe fundamental cancer processes and behaviour [21]. It uses co-occur-

rence metrics to rank relations between concepts and performs both open and closed

discovery.

Neural networks have been successful in related tasks such as Knowledge Discovery and

Natural Language Process (NLP) in recent years. Whether they can be used to give improved

results in LBD is unexplored (except for recent exploratory work by [22]). In this paper we

make two main contributions: four graph-based neural approaches to LBD; and evaluations of

them on two real-world biomedical datasets using informative metrics. These datasets tested

their ability to rank future published biomedical discoveries: one is the Cancer Discovery data-

set used by [19] and the other consisting of human-verified, peer-reviewed biomedical

interactions.

Related work

Literature-based Discovery (LBD)

LBD seeks to discover previously unknown associations or hidden links between pieces of

existing knowledge by analysing literature in an automated or semi-automated way using vari-

ous computational approaches and algorithms [23, 24]. It has mostly been deployed in the bio-

medical domain, but it has also been used outside of it as it has been applied to research into

developing water purification systems, accelerating development of developing countries and

identifying promising research collaborations [18, 25, 26].

[1] defined the most basic and widespread type of LBD, called the ABC paradigm because it

centres around three concepts called A, B and C (e.g. [27–29]). It states that if there is a con-

nection between A and B and one between B and C, then there is one between A and C which,

if not explicitly stated, is yet to be explored. The ABC paradigm has two types: open and closed
discovery.

In open discovery, only A is given. The approach finds Bs and uses them to return possibly

interesting Cs to the user, thus generating hypotheses from A. With closed discovery, the A and
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C are given to the approach which seeks to find the Bs which can link the two, thus testing a
hypothesis about A and C.

[30] distinguishes between traditional approaches and ‘emergent’ paradigms which will

define the field in the future (e.g. [31, 32]). One of the characteristics of these is their use of

techniques borrowed from other research fields including link prediction on graphs and

machine learning which offer different approaches to LBD and address its problems. This

work provides a blend by using the ABC paradigm but harnessing machine learning models

inspired by link prediction on graphs.

Evaluating LBD systems

Evaluation is difficult in LBD for several reasons: disagreement about the role of LBD systems

in research and thus what makes a successful one; difficulty in determining how useful, inter-

esting or actionable a discovery is; and difficulty in objectively defining a ‘discovery’, which

hinders the creation of a standard evaluation set which quantifies when a discovery has been

replicated or found. Nonetheless, several methods have been employed in previous work.

A popular methods used in LBD is to replicate previous discoveries [28, 33, 34]. These are

usually LBD-based discoveries as they are relatively easy to quantify compared to other discov-

eries. This means that there are only a handful of such discoveries and there is a danger of

designing approaches which are tuned to perform well on these discoveries but do not general-

ise. In this evaluation, the literature before the discovery to be replicated is used to generate a

ranked list of discovery candidates as target or linking terms. Success is measured by reporting

the rank of the term(s) of interest; the higher the rank, the better the approach.

Literature- or time-slicing involves splitting the existing literature at a point in time. The

approach is then exposed to the literature before the split and is evaluated by how many of the

discoveries in the later period it can discover. Unclear definition of a discovery and an inability

to determine if a discovery is wrong or simply new are critiques of this approach. In the

absence of a perfect gold standard, this approach estimates it by finding instances of the

defined relationships in the test set which are not in the training set and can be reasonably

inferred from it. This means that evaluation depends on what constitutes a relationship for the

given dataset. If a noisy relationship is used, the evaluation will be easy to perform well on. Pre-

vious systems have used term co-occurrences [35], relationships from external biomedical

resources (e.g SemMedDB) [32] and semantic relationships [36]. A high precision approach

would be to get expert opinion to generate the gold standard [37], but this is time-consuming,

expensive and tends to produce low recall rates.

The advantage of this evaluation is that it produces an indicator of an approach’s perfor-

mance on a large number of test instances. This raises the need for evaluation metrics which

can quantify performance on large, ranked lists. LBD works have used metrics popular in

Information Retrieval [38] which include Precision, Recall, Area Under the Curve (AUC), Pre-

cision at k, Mean Average Precision (MAP) etc.

Proposing new discoveries or treatments goes beyond replicating past discoveries or predict-

ing time-sliced instances of a particular relationship and shows that a system is capable of

being used in realistic situations [13, 33, 39, 40]. This is usually accompanied by peer-reviewed

publication in the domain or vetting by a domain expert.

Neural networks in the biomedical domain

While they are yet to be applied to LBD, the versatility of neural networks have been shown in

their application to a broad range of biomedical tasks. They have been used to predict mental

health conditions from tweets [41], recognise biomedical entities in text [42, 43], classify
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hallmarks of cancer in text [44] and predict links representing Drug-Target Interactions

(DTIs) and Protein-Protein Interactions (PPIs) in biomedical graphs [45]. On the biomedical

image front, they have been used for classifying biomedical images [46, 47], segmenting 3D

biomedical images [48] and segmenting and enhancing cardiac images [49].

An excellent recent overview of the use of neural networks in the biomedical domain is

[50]. They point out that beyond the well-known applications to diagnosis, neural networks

are increasingly being used to inform healthcare management decisions.

Node representations as embeddings

Graphs encode knowledge and can be processed to extract information which may not be eas-

ily seen. For machines to process them, graphs must be represented in a useable format, usually

representing nodes as vectors of real numbers. Research on node representation devises meth-

ods which can create representations which preserve the original information in the graph.

This information relates to the nature of the links and are classified as first or second (or

higher) order proximity [51, 52]. Given two nodes, first order proximity is concerned with the

strength of the direct link between them. Second order proximity compares their neighbour-

hoods and classes them as similar if their neighbourhoods are similar.

The quality of a method depends on its ability to preserve the proximities of a graph when

creating representations. The node representations created by recent research represents each

node as a vector in a space where similar nodes are located close to each other (node embed-
dings). There has been a proliferation of methods to create these node embeddings from

graphs and it would be unwieldy to include all of them in this work. Comparisons between

some of these can be found in [52]. We utilised a popular method whose implementation is

freely available online, supported weighted edges and scaled to our large graphs: Large-scale

Information Network Embedding (LINE) [51].

LINE explicitly defines two optimization functions to capture the structure of the graph.

One captures first order proximity and the other captures second order proximity. [51] report

that training their model with each setting then concatenating the outputs gives the best

performance.

Materials and methods

Evaluation

Here we discuss the method of preparation of the datasets used for LBD and the metrics used

for evaluation. The datasets contain information on the year that each link in the graphs was

formed and the graphs were split by year of link formation for training and evaluation. The

methods were given the earlier links and asked to predict later links.

Cancer case discoveries. To facilitate direct comparison, we evaluate on the cases used in

[19], which describes them at length. For completeness, we provide a summary. They are a set

of five triples that represent specific recently-published discoveries (2011-2016) on the molecu-

lar biology of cancer that could have potentially been suggested by an LBD system in the past.

They were selected and curated by cancer biologists. There are an additional five pairs of dis-

coveries proposed by Swanson. The B connection was not simple in the Swanson cases so it

was not possible to create triples to facilitate performing closed discovery on those cases. The

details of these can be found in the Supplementary Document (S1 File) which accompanies

this paper.

Each LBD approach is given a graph constructed only from literature up to five years before

the publication date of the discovery and the model is then given the A and C nodes (in closed

discovery) and asked to rank the B nodes. In open discovery it is given only the A node and
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asked to rank all nodes within two hops (the C nodes). The approach’s performance is quanti-

fied using the rank of the gold response in the returned list.

Time-slicing. The Cancer Discovery cases described above are strong evaluations for bio-

medical LBD systems because showing how a system would have ranked a discovery later pub-

lished in a top-tier, peer-reviewed journal is a potent argument for its usefulness for LBD.

However, the dataset is unsuitable for machine learning because it does not provide a develop-

ment set to tune hyperparameters on; neither is it obvious how to create one. This, in addition

to its limited size prompt the need for additional evaluation methods to gain a more general-

ised picture of performance of our approaches and models.

For this we choose a dataset which contained human-curated biomedical interactions

which were published in peer-reviewed journals (details in “Datasets” Section). A graph cre-

ated from the interactions in this dataset is time-sliced. From the post cut-off publication year,

development and test sets are constructed. In some senses, this is not as stringent an evaluation

and it is not possible to do closed discovery with it, but this provides robust additional evalua-

tion of our open discovery approaches on a larger test set which is more indicative of approach

generalizability.

Metrics. The evaluation metrics are important when analysing the performance of rank-

ing systems. [19] reported median ranks over the groups of cases for the case discoveries. For

comparability, we also report this along with the mean over the cancer and Swanson cases sep-

arately and combined.

For the time-sliced experiments, we additionally report MAP, Mean Reciprocal Rank

(MRR) and Mean R-precision. There are 2 reasons for this: there is great variance between the

amount of Cs which are ranked for each A so the mean rank can vary widely, distorting the

results; and these metrics, especially the latter 2, give higher priority to correct scores ranked

highly in the list, which is of importance in any ranking problem but especially so for LBD

where investigating each proposal is a costly endeavour. Formal definitions of these evalua-

tions are in Section 2 of the Supplementary Document (S1 File) which accompanies this paper.

Baselines

The baseline approaches are those used by [19]. They are 8 co-occurrence metrics accompa-

nied by three aggregator functions and two accumulator functions (explained later in this sec-

tion). We present a condensed version here for completeness (names in brackets are the

shorthand they will be referred to going forward). More details can be found in the referred

paper: Section 3.3 and full details in its Supplementary Information document.

• Co-occurrence count (Count): the number of sentences in which mentions of the entities

connected by the edge co-occur.

• Document count (Doc-count): the number of documents in which mentions of the entities

connected by the edge co-occur.

• Jaccard Index (Jaccard): the ratio of the size of the intersection over the size of the union of

the sets of sentences in which the entities occur.

• Symmetric conditional probability (SCP): the product of the conditional probabilities of one

entity being mentioned in a sentence where another occurs.

• Normalized pointwise mutual information (NPMI): a measure of the independence of the

mention occurrence distributions,
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• Chi-squared (χ2), Student’s t-test (t-test) and log-likelihood ratio (LLR) are statistical tests

measuring whether the mention distributions are independent of each other.

A number of alternatives for the scoring functions operating over the edge weights have

also been implemented. For the aggregation function f(g), the alternatives min, avg, and max
are used. These functions assign the score for a path the minimum, mean, and maximum

respectively of the edge weights on the path. For the accumulation function f(c), the choices

sum and max are supported. When multiple paths lead to the same node, the former sums the

path score to obtain the node score while the latter simply uses the maximum score.

We focus on only the best performing methods for the mean and median metrics and

report the relevant accumulator and aggregator functions in each experiment.

Neural approaches

Two neural link prediction methods are used for closed discovery and another two for open

discovery. All approaches use node embeddings created with LINE with weighted edges,

where weights are calculated using Jaccard Index. The embeddings were induced with the por-

tion of the graph used for training, the pre-cutoff year period. The settings used are in Section

3 of the Supplementary Document (S1 File).

For each of the approaches described here, five node combination methods are used to

determine how the nodes which constitute the link path are combined for input into the

model, so models ending in ‘-A’ refer to approaches which use Average to do this, ‘-C’—Con-

catenation, ‘-H’—Hadamard, ‘-W1’- Weighted-L1 and ‘-W2’- Weighted-L2.

Closed discovery neural model and approaches. In both of these approaches the model

is a Multi-Layer Perceptron (MLP) which was effective in the similar task of neural link predic-

tion on biomedical graphs [45]. The model contains a single hidden layer with ReLU [53] acti-

vation which led to a final layer with Softplus activation to allow for unrestricted positive

scores. The model is trained as a classifier with the Cross Entropy loss.

As we use the model from [45], it is necessary to distinguish that work from this one. That

paper presents a neural architecture for classifying whether a link exists between 2 nodes using

their node embeddings; such an approach is not ABC LBD as is the focus of this paper. To per-

form ABC LBD the path(s) between A and C must be taken into account, which link predic-

tion as proposed in [45] is unconcerned with. In this paper, the paths are taken into account in

2 different ways as reflected in the 2 approaches to Closed Discovery whose descriptions

follow.

CD-1: The neural model is used to provide a score for each A-B or B-C link in the path.

The scores are then used in aggregator functions as the baseline methods, so the difference

here is that a neural network produces a score for the link instead of using one of the metric

calculations described in ‘Baselines’.

CD-2: In this approach, A-B-C embeddings are combined to create a single input to the

model which then predicts a score for the entire A-B-C link. This negates the need for an

aggregator function as in the baselines and CD-1 approach. This has the additional benefit of

making it trivially easy to calculate a score regardless of the length of the path between A and

C, by simply combining any additional node embeddings as the initial 3 and passing it to the

neural network.

Open discovery neural models and approaches. The approaches used for open discovery

are presented and explained here.

OD-1: The same model and a similar approach to CD-1 is used here: the neural model is

used to provide a score for each A-B or B-C link in the path from A to each possible C. The

scores are then used in aggregator functions. The difference in open discovery is that here the
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scores are then also used in the accumulator functions to rank different paths which lead to the

same C.

OD-2: A Convolutional Neural Network (CNN) model is used to implement an approach

to open discovery which removes the need for aggregator and accumulator functions. As in

CD-2, all the node embeddings of a path are combined into a single vector, however as this is

open discovery, there will be many paths that lead to the same C. To obtain a score which uses

information from all these paths, the combined vectors are stacked to create a window which

we pass into a CNN which outputs a score indicative of the strength of the A-C links. This is

analogous to passing an image to a CNN, but here the ‘image’ is produced by stacking vector

representations of ABC links. The convolutional filter always slides down the stack of links,

never across so that it always covers the entire link. The ABC links to be stacked are combined

using the same 5 link combination methods as mentioned above.

The reader will perhaps note that the CNN expects a fixed size input and the amount of

paths leading to a C will inevitably vary from case to case, creating varying input sizes which

could exceed a fixed window size. To deal with this, we combine multiple windows into a sin-

gle window using elementwise summation. As the total number of links will not always be a

multiple of the window size, zero padding is used to fill any remaining gaps. For example: if a

particular case has 175 paths and an input size of 50 is used, we will be able to sum 3 windows

of 50 and as there will be only 25 paths in the final input 25 more paths will be zero padded to

the input to make it 50.

In this model, the input layer leads to a batchnormed convolutional layer with ReLU activa-

tion units, then a max pooling layer then a fully connected layer before the final layer with Soft-

plus activation. Unlike the other models which are trained as classifiers, this model uses a

pointwise approach, employing Mean Squared Error (MSE) loss, to learning the ranking func-

tion by using the Jaccard Index score of the AC link as the multi-level ratings (see [54] for a

more detailed description of this). The model is depicted in Fig 1.

Datasets

The graphs we use were created from the following datasets. The graph details can be found in

Table 1.

PubTator. Biomedical entities recognised by PubTator mentioned in the titles and

abstracts of PubMed publications from 1873 to 2017 were used to create this dataset. A link

exists between two biomedical entities if they co-occur in a single sentence. The annotations

were downloaded on June 20th, 2017. Instances of ‘hallmarks of cancer’ which identify funda-

mental cancer processes, identified in text using [44] were also added to the graph as entities.

Biological general repository for interaction datasets (BioGRID). This is an open data-

base created from manually curating experimentally-validated genetic and protein interactions

that are reported in peer-reviewed publications [55]. The latest release [56] includes over 1 mil-

lion Genetic and Protein interactions across all major organism species and humans. Links in

this graph represent biomedical interactions from published, experimentally-validated genetic

and protein interactions. We use version 3.4.167 of this dataset.

Experiments

As all approaches create ranked lists, the possibility of tied ranks exists. We use the median of

the tied range to determine the rank of a gold item with ties, for example a gold ranked 10th

with 10 ties is ranked the median of 10-20 range: 15th.
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Details of neural approaches

Unlike the baseline models, the neural approaches need negative examples for training. We

create these by selecting either A-B or B-C links which did not form for a given A-C or A-C

connections which do not exist for models which operate on the entire link path (i.e. CD-2

and OD-2).

All models are trained with batch size 100, training set size 200,000 for 150 epochs with the

Adam optimiser [57], but the model is evaluated on the case after every 5 epochs and the best

performance reported. For the BioGRID experiments, because evaluation is a lot more time-

consuming, the models are evaluated every 25 epochs on the development set and the best per-

forming model on MRR is evaluated on the held out test at the end. The CNN uses a learning

rate of 10−5 while the MLPs use 10−4. For CD-1, CD-2 and OD-1, there is a single hidden layer

with 100 units. For OD-2, the input height is 50 and the width is the size of the combined vec-

tor dimensions. The convolution window height is 7 and the convolutional output size is 128.

Case discoveries

We use the data from [19] directly, so that our results will be directly comparable. The graphs

are cut off at the relevant years before the publication date of the discovery.

Closed discovery on cancer discoveries. For CD-1, the model is given the A-B and B-C

links and the scores it produces are used in the aggregator functions to rank the Bs. For CD-2

the model is fed all the A-B-C links for the given A and C in each triplet and the score it pro-

duces is used to rank the Bs.

Open discovery for cancer and Swanson discoveries. For OD-1, the model is given the

A-B and B-C links and the scores it produces for each link were used in the aggregator func-

tions to produce a score for each path. The different paths which lead to the same C are used

in the accumulator functions to produce a score which is used to rank the Cs. For OD-2, the

Fig 1. The open discovery 2 model.

https://doi.org/10.1371/journal.pone.0232891.g001

Table 1. Graph details (undirected link count).

Dataset Node Count Link Count Link Type

BioGRID 68,734 1,209,578 Published Interactions

PubTator *194,691 *12,797,468 Literature Co-occurrences

https://doi.org/10.1371/journal.pone.0232891.t001
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model is given all the A-B-C links for the given A and C in each pair and the score it output is

used to rank the Cs.

BioGRID

The graph is split at the year 2016. We randomly split the post-2016 links into development

and test sections. The development set is used to determine which epoch has the best trained

model for evaluation. Due to computational constraints, we have to restrict the amount of

nodes we could evaluate on. We randomly select 1,000 entities from the test set to be A nodes

and have the model score each node within two hops as the Cs. The scores are then used to

rank the Cs. Like the Swanson cases, it is not possible to perform closed discovery on this

dataset.

Results

The results of the neural approaches are the median ranks and mean ranks averaged over five

runs. The standard deviations reported are of the mean ranks. The results of the baselines are

simply the means of the method across all relevant cases (they were not run multiple times as

the neural approaches were as they are not subject to per-run variances as the neural network

methods are) and the standard deviations are over those ranks.

The best score for a metric is in bold and the best for an approach is underlined. We sought

to determine what methods gave the lowest mean ranks and lowest variance, measured by

standard deviation. ‘Metric’ refers to mean and median ranks. ‘Approach’ refers to the three

approaches: Baselines (Jaccard, t-test etc.), neural discovery approach 1 (CD-1, OD-1) and

neural discovery approach 2 (CD-2, OD-2). Thus each ‘metric’ column should have a bolded

term and each approach category (delineated by horizontal lines in the tables) should have an

underlined term.

To increase clarity in the tables, we selected only the best results for each approach to show

here. Full experimental results can be found in Section 4 of the Supplementary Document (S1

File). Where applicable, the accumulator and aggregator functions (explained in the “Base-

lines” section) are listed in the “Details” column as ‘Acc’ and ‘Agg’ respectively.

Closed discovery on cancer discovery cases

The results for closed discovery performed on the five Cancer Discovery cases used to evaluate

LION are in Table 2.

Open discovery on cancer discovery and Swanson cases

Open discovery on cancer discovery cases. The results for open discovery performed on

the five Cancer Discovery cases used to evaluate LION are in Table 3.

Table 2. Closed discovery: Mean and median ranks on the cancer discovery cases.

Approach Mean Rank Std. Dev. Median Details

Jaccard 214.8 256.9 81.0 Agg: min

t -test 262.0 341.8 56.0 Agg: min

CD-1-A 86.3 52.0 93.8 Agg: min

CD-1-C 94.5 80.0 36.4 Agg: min

CD-2-C 48.7 19.5 42.0 -

https://doi.org/10.1371/journal.pone.0232891.t002
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Open discovery on Swanson cases. The results for open discovery performed on the five

Swanson cases used to evaluate LION are in Table 4.

Open discovery on cancer discovery and Swanson cases. The results for open discovery

performed across the five Cancer Discoveries and five Swanson cases combined are in Table 5.

Open discovery on BioGRID published interactions

Results for open discovery performed on the BioGRID dataset. Performance across the 4 met-

rics explained in the “Metrics” Section are in Table 6.

Discussion

Closed discovery on cancer discovery cases

The results of this experiment can be found in Table 2. The neural approaches performed

much better than the existing methods in these experiments. Rows 3 and 4 show that the per-

formance doubled, by halving the mean ranks, simply by replacing the baseline scoring metrics

with a small neural classifier to provide the scores instead. It almost doubled again by replacing

the aggregation of individual path scores with combining the vectors of the nodes involved in

the path (row 5). Performance on the median also increased though not as drastically.

Of note here is that the neural approach which dispelled with the aggregator functions,

instead opting to combine the inputs and obtaining a score for the entire path, was the best

performer on mean ranks and the second best performer on median (row 5). This indicates

Table 3. Open discovery: Mean and median ranks on the cancer discovery cases.

Approach Mean Rank Std. Dev. Median Details

NPMI 60.2 54.4 36.0 Acc: sum, Agg: max

Count 367.4 553.3 15.0 Acc: sum, Agg: min

OD-1-C 93.4 145.8 31.4 Acc: sum, Agg: min

OD-1-A 218.3 368.7 26.8 Acc: sum, Agg: min

OD-2-H 31.1 11.9 12.2 -

https://doi.org/10.1371/journal.pone.0232891.t003

Table 4. Open discovery: Mean and median ranks on the Swanson cases.

Approach Mean Rank Std. Dev. Median Details

Doc-Count 2,199.8 4,216.7 31.0 Acc: max, Agg: avg

t -test 3,956.4 7,899.3 5.0 Acc: max, Agg: avg

OD-1-H 3,558.3 7,930.7 19.2 Acc: sum, Agg: min

OD-1-C 3,721.4 8,306.7 4.0 Acc: sum, Agg: min

OD-2-H 1,013.4 167.9 17.6 -

https://doi.org/10.1371/journal.pone.0232891.t004

Table 5. Open discovery: Mean and median ranks on all open discovery Cases.

Approach Mean Rank Std. Dev. Median Details

Jaccard 1,634.4 4,733.9 21.0 Acc: sum, Agg: min

Count 1,925.8 5,171.3 11.5 Acc: sum, Agg: min

OD-1-C 1,907.4 5,859.4 18.2 Acc: sum, Agg: min

OD-2-H 522.2 89.9 14.9 -

https://doi.org/10.1371/journal.pone.0232891.t005
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that the information which the aggregator functions seek to provide to an approach is better

provided by combining the vector representations of the nodes in the path.

Open discovery on cancer discovery and Swanson cases

Open discovery on cancer discovery cases. The results of this experiment can be found

in Table 3. Despite the strong improvements seen in closed discovery by simply replacing the

baseline scoring metrics with a neural classifier, that was not the case here for either mean or

median rank (rows 3-4). However, the more complex CNN approach was able to produce

results which approximately doubled performance on mean rank from a strong baseline (row

5). It also performed the best on median rank.

Analogous to the closed discovery experiments, the approach which dispelled with aggrega-

tors and accumulators outperformed on mean ranks (row 5). Additionally, it was the best

median performer here, further validating it.

Open discovery on Swanson cases. The results of this experiment can be found in

Table 4. A similar trend to the cancer cases was shown here: simply replacing the baseline scor-

ing metrics with a neural classifier decreased performance on mean rank, although one such

approach did perform the best on median rank (rows 3-4). The strong performance of the

CNN continued as it again doubled performance on mean rank although it was only the third

best on median rank (row 5). The trend of the approach which dispelled with aggregators and

accumulators outperforming on mean ranks also continued.

Open discovery on both cancer discovery and Swanson cases. The results of this experi-

ment can be found in Table 5. Given the results of the subset experiments, it is not surprising

that the CNN was the best performer across all open discovery cases (row 4). Its performance

on mean rank was approximately three times better than that of the best baseline and it was

the second best on median, although the simple count baseline approach was the best.

General open discovery. In addition to its strong performance across the cases (Tables 3,

4 and 5), the OD-2-H approach is also the most stable as it showed the lowest variation in per-

formance over multiple runs of the best performing methods as measured by the standard

deviation shown in those tables.

A point in favour of the neural approaches over the baselines is their apparent consistency

in performance over the subsets of the cancer and Swanson cases. The baseline methods which

performed the best, shown in Tables 3, 4 and 5, varied while the best neural approaches

recurred, demonstrating their invariability to the vagaries of the case subsets.

General case discoveries

Whether to use mean or median as average for these experiments is a valid question. [19]

reported median and we do the same to allow for comparison, but also report the mean

Table 6. Open discovery on time-sliced BioGRID.

Approach MR MRR R- Prec. MAP Details

Jaccard 1,197.3 2.19 2.47 2.86 Acc: sum, Agg: min

LLR 1,132.9 1.34 1.38 1.9 Acc: sum, Agg: max

OD-1-H 1,907.5 0.92 0.96 1.25 Acc: sum, Agg: max

OD-1-C 1,913.4 0.94 1.01 1.23 Acc: sum, Agg: max

OD-1-W2 1,908.3 0.92 0.98 1.26 Acc: sum, Agg: max

OD-2-C 1,113.1 3.42 4.73 5.46 -

https://doi.org/10.1371/journal.pone.0232891.t006
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because we believe that it is better suited to this situation. The median is robust to outliers and

can give a more accurate picture of a system’s performance when an outlier can radically affect

the mean, as is the case with the Swanson cases used. However, the aim of this research is to

find an approach which will aid researchers on totally novel data, so the worst-case perfor-

mance of the system (even if it is rare) is of importance and the aim should be to use methods

which give the best results across all cases. Thus, evaluating accurately should involve looking

at performance in all available cases. Median ignores not only outliers, but effectively all per-

formances beyond the median (approximately half the use cases). The argument can thus be

made that the median does not give an accurate reflection of an approach’s performance.

Taking mean as a preferable metric to median, the case of the neural methods is strength-

ened as they were the best performers across all the case experiments. Additionally, there was

low variance among the best neural approaches. It was also pleasing to find that approaches

which dispelled with the cumbersome aggregator and accumulator functions were the best.

This indicates that when given the full path information, the neural models are able to discern

how best to use it to improve performance.

It is also noteworthy that although methods which concatenated the node representations

performed well, there were other approaches whose performance were comparable or better

than it across these experiments. This is significant because unlike the concatenate combina-

tion method, which increases the input size linearly with the path length, the other node com-

bination methods keep a fixed input size which makes them indifferent to the amount of hops

between A and C. This feature makes them amenable to approaches to LBD beyond the simple

two-hop ABC paradigm to the n-hop AB1 B2. . .Bn C paradigm which it is generally agreed

must be overcome for LBD to reach its true potential.

Time-sliced BioGRID

The reasons for undertaking these experiments were explained in the “Time Slicing” Section

and the reasons for the multi-faceted evaluation in the “Metrics” Section. We will make use of

and expand on these here.

The data used in this experiment represent experimentally-validated, human-curated inter-

actions which were published in peer-reviewed publications. Thus the knowledge proposed by

using it is of high quality. Additionally, the evaluation is time-sliced which is reflective of how

knowledge discovery progresses in the real world and involves far more evaluation instances

than a handful of cases, notwithstanding the very high quality of the cases.

LBD across a large amount of possible positives is a ranking problem because its proposals

are usually costly to investigate. Thus priority should be given to approaches which can rank

correct new associations at the very top of the list even if they rank more of them lower; the

classic precision-recall trade-off. Performance too far down the list can effectively be ignored:

when experimentally validating new knowledge proposals, whether it is ranked 200th or 900th

is likely of little concern to a user; it is too far down the list.

Metrics like MAP, MRR and R-precision place value on higher ranked true positives but

they do not do so equally. MAP and MRR are concerned with the entire list but MRR punishes

lower-ranked correct items more when the retrieval space is large as it tends to be in LBD,

especially open discovery. R-precision literally discards most of the returned results and

reports results only on the best. Thus performance on metrics like R-precision and MRR give a

better idea of the practical worth of an LBD system, especially on open discovery.

The results of this experiment can be found in Table 6. The OD-2-C method we introduce

here performs approximately 1.5-1.9 times as good the baseline approaches on these metrics,

in addition to strong performance on MAP and mean rank (row 6). It is a variant of the OD-
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2-H method which showed vastly better performance on the cases experiments. The results

here thus validates the OD-2 (CNN) approach to open discovery we presented in the Section

“Open Discovery neural models and approaches”.

The role of the node embeddings in the superior performance of the neural network meth-

ods may be difficult to isolate but we can surmise how they can contribute. The node embed-

dings utilise both first order and higher order proximities which incorporate information

from a node’s wider neighbourhood than the baseline scoring methods would. This additional

information can aid in ranking a node and lead to improved performance.

While there is still lots of room for improvement, these results are dependable and demon-

strate the potential for using neural networks to perform even traditional open and closed dis-

covery within the ABC paradigm.

Conclusion

LBD aims to discover new knowledge automatically from large collections of literature. Scien-

tific literature is growing exponentially, making it difficult for researchers to stay current in

their discipline. LBD can solve this problem by facilitating hypothesis testing and generation

to give tangible support to scientific research.

We proposed four neural network-based approaches to open and closed LBD. We com-

pared our methods with those used by a state-of-the-art LBD system to replicate recently pub-

lished findings in cancer biology and also applied them to a time-sliced dataset of human-

curated, peer-reviewed biological interactions. In both cases, our methods showed a notable

and significant improvement over the existing methods on metrics adapted to the situation.

Although there is scope for much improvement, these results strongly demonstrate the

potential of using neural networks to perform open and closed LBD well within the ABC para-

digm and in some cases using only sentence-level co-occurrence relationships. Combined with

previous work on the viability of using neural link prediction for LBD, they indicate that neu-

ral networks can significantly improve performance on the increasingly important task of

LBD. Immediate future work includes using the pairwise approach to learning the ranking

function for the CNN approach, using more advanced graph embedding techniques to better

capture the information present in graphs and applying attention to the neural approaches to

determine which paths are contributing the most to its performance.

Supporting information

S1 File. Supplementary document. Contains additional results and formal definition of evalu-

ation metrics which were left out of the paper in pursuit of conciseness.

(PDF)
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