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The power of SNP association studies to detect valid relationships with clinical phenotypes in schizophrenia is
largely limited by the number of SNPs selected and non-specificity of phenotypes. To address this, we first
assessed performance on two visual perceptual organization tasks designed to avoid many generalized deficit
confounds, Kanizsa shape perception and contour integration, in a schizophrenia patient sample. Then, to reduce
the total number of candidate SNPs analyzed in association with perceptual organization phenotypes, we
employed a two-stage strategy: first a priori SNPs from three candidate genes were selected (GAD1, NRG1 and
DTNBP1); then a Hierarchical Classes Analysis (HICLAS) was performed to reduce the total number of SNPs,
based on statistically related SNP clusters. HICLAS reduced the total number of candidate SNPs for subsequent
phenotype association analyses from 6 to 3. MANCOVAs indicated that rs10503929 and rs1978340 were
associated with the Kanizsa shape perception filling in metric but not the global shape detection metric.
rs10503929 was also associated with altered contour integration performance. SNPs not selected by the
HICLAS model were unrelated to perceptual phenotype indices. While the contribution of candidate SNPs to
perceptual impairments requires further clarification, this study reports the first application of HICLAS as a
hypothesis-independent mathematical method for SNP data reduction. HICLAS may be useful for future larger
scale genotype-phenotype association studies.
© 2015 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

A significant limitation of single nucleotide polymorphism (SNP)
association studies is that testing efficiency is affected by the number
of SNPs analyzed and sample size. SNP association is also influenced
by genotype and risk allele frequency (Bhangale et al., 2008; Zondervan
and Cardon, 2004). Selection of the most informative SNPs may help
maximize power of common variants in association with phenotypes
(Hinds et al., 2005). However, schizophrenia is characterized by signifi-
cant genetic heterogeneity (Hallmayer et al., 2005; Owen et al., 2005;
Sebat et al., 2009). Therefore, selection of individual SNPs based on
hypotheses alone may not capture considerable genotypic variation
associated with different study populations.

Hierarchical Classes Analysis (HICLAS) is a method for representing
set-theoretical patterns for two-way, two-mode binary matrices
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(De Boeck and Rosenberg, 1988). HICLAS was employed in this study
to represent SNP (allele) covariation patterns, and on the basis of
those patterns, reduced the number of SNPs analyzed in relation to
specific phenotypes. HICLAS assumes that SNP allelic distributions
are modeled in a binary array. That is, for any given biallelic SNP
(e.g. rs3924999), patient genotypes were represented as 00, 10 (01), or
11. 00 denotes an individual’s genotype is homozygous for the first allele
(e.g. TT), 10 (or 01) denotes the individual’s genotype is heterozygous
(e.g. TC), and 11 denotes the genotype is homozygous for the second
allele (e.g. CC). To model a patient with respect to 6 SNP genotypes
(12 alleles) there would be 12 binary entries, such as ‘001111001010’.
The representation of the genotype (allele) patterns in a sample of 90
patients is accomplished by concatenating the data from individual
patients row-wise, yielding a 90 × 12 binary matrix.

However, with rare exceptions, multiple algebraic decompositions
exist for a two-way binary matrix. Unlike Boolean factor analysis
(also compatible with two-way binary matrices), the HICLAS model has
compatible and incompatible decompositions. The devised algorithm
guarantees that the decomposition is compatible to the set-theoretical
formulation of the model (De Boeck and Rosenberg, 1988). The equiva-
lence and order relations (superset-subset) among object classes (here
der the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

http://crossmark.crossref.org/dialog/?doi=10.1016/j.scog.2015.03.003&domain=pdf
http://dx.doi.org/10.1016/j.scog.2015.03.003
mailto:silvers1@ubhc.rutgers.edu
Journal logo
http://dx.doi.org/10.1016/j.scog.2015.03.003
Imprint logo
http://www.sciencedirect.com/science/journal/22150013


Table 1
Demographic and clinical composition of the study sample.

Factor (N = 90) M SD

Age (Years) 47.0 10.9
Age Psychosis Onset (Years) 22.4 7.6
Total Chlorpromazine Equivalent (mg) 542.1 474.9
Participant Education Level (Years) 12.5 2.5
Mother Education Level (Years) 12.4 2.7
Father Education Level (Years) 13.4 3.1
Shipley Vocabulary Subtest Score 90.2 13.4
PANSS Positive Factor Score 11.4 2.8
PANSS Negative Factor Score 16.3 4.3
PANSS Depression Factor Score 14.3 4.0
PANSS Cognitive Factor Score 13.9 3.4
PANSS Disorganized Factor Score 7.5 2.3
PANSS Excitement Factor Score 10.0 2.2
PAS Overall Score 2.7 .81
PAS Social Sexual Factor Score 4.9 3.7
Estimated Visual Acuity Both Eyes 20/32 –
Sex (% Female) 37.8 –
Race (% African American) 44.4 –
Handedness (% Left Handed) 14.4 –
Schizoaffective (%) 37.8 –
Smoking Status (% Current Smoker) 48.9 –
Visual Hallucinations (% Current) 14.1 –
Outpatient/Partial/Acute Program (%) 50.0/31.1/18.9 –

Note: PANSS = Positive and Negative Syndrome Scale, PAS = Premorbid Adjustment
Scale.
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patients) and attribute classes (here SNPs) are summarized, as well as
their association to each other. A HICLAS model of a two-way binary
array is compared to the actual data array using a Jaccardmeasure (good-
ness offit of themodel to the data), ranging from0 to 1,where 1 indicates
perfectfit. Previous simulations have shown thatHICLAS is able to recover
the a priori categorical structure of the data matrix when random error is
added (De Boeck and Rosenberg, 1988). Thus, HICLAS can identify
patterns among row (patients) and column (allele) bundles, making it
an optimal SNP/allele data reduction strategy for subsequent analyses in
relation to various phenotypes.

In addition to significant genetic heterogeneity (Hallmayer et al.,
2005; Sebat et al., 2009), schizophrenia has considerable phenotypic
heterogeneity as specific perceptual, cognitive and behavioral ab-
normalities are only observed in patient subpopulations (Carpenter
and Buchanan, 1994; Heinrichs, 2001; Raffard and Bayard, 2012).
While the assessment of many perceptual and cognitive domains in
schizophrenia is susceptible to generalized deficit confounds (Carter,
2005; Chapman and Chapman, 1978; Knight and Silverstein, 2001;
MacDonald and Carter, 2002; Silverstein, 2008), several specific visual
processes have been assessed in a manner that avoids many confounds
(Dakin et al., 2005; Dima et al., 2009; Keane et al., 2013a, 2013b). One
example is visual perceptual organization (Silverstein and Keane,
2011; Silverstein et al., 2013; Uhlhaas and Silverstein, 2005).

Perceptual organization refers to the binding of individual stimulus
features into lines, edges, surfaces, and object representations (Place
and Gilmore, 1980; Silverstein et al., 1996, 2000). Importantly, percep-
tual organization impairments are observed in schizophrenia indepen-
dent of medication effects (Silverstein and Keane, 2011), and can be
revealed as superior performance to control groups in specific psycho-
physical paradigmswhere prepotent grouping of targets and distractors
interferes with the performance of healthy subjects (Knight and
Silverstein, 2001; Place andGilmore, 1980). Perceptual organization im-
pairments in schizophrenia are consistently observed and associated
with poor premorbid functioning, treatment response, and functional
outcomes (Silverstein et al., 1998, 2000; Uhlhaas and Silverstein,
2005), suggesting that they may represent a severe illness subtype
biomarker for schizophrenia (Farmer et al., 1983; Sham et al., 1996;
Wickham et al., 2001).

Because perceptual organization deficits in schizophrenia are
associated with impairments in cognitive organization (i.e., thought
disorder, inappropriate affect, etc.), it is hypothesized that they reflect
an aspect of a widespread reduction in cognitive coordination – or the
ability to modulate signal processing based on current spatial and/or
temporal contexts – in schizophrenia (Phillips and Silverstein, 2003;
Phillips et al., 2015). Animal and healthy human studies of perceptual or-
ganization indicate that it is subserved by neural synchrony (Uhlhaas,
2013; Uhlhaas and Singer, 2006). Neural synchrony modulates spatial
and temporal integration in cognitive processing, (Uhlhaas and Singer,
2010) and relies on NMDA and GABAergic functioning (Bartos et al.,
2007; Phillips et al., 2015; Phillips and Silverstein, 2003, 2013; Uhlhaas
and Silverstein, 2005; Silverstein and Keane, 2011). Moreover, NMDA
and GABAergic circuits are dysregulated in schizophrenia (Lewis and
Moghaddam, 2006; Lisman et al., 2008; Moghaddam, 2003; Poels et al.,
2014). Specifically, loss of parvalbumin positive GABAergic interneurons
has been found to reduce neural oscillations (Lodge et al., 2009; Spencer,
2009;Woo et al., 2010) leading to cognitive symptoms, (Cho et al., 2006)
including perceptual deficits (Uhlhaas and Singer, 2010; Uhlhaas et al.,
2006a). Genetic variations in these pathways have been also observed
in schizophrenia association studies (Cherlyn et al., 2010; Petryshen
et al., 2005).

Therefore, three candidate genes were given precedence in relation
to the hypothesized perceptual organization neural circuitry. Glutamate
decarboxylase 1 (GAD1), a regulator of GAD67 (GABA synthesizing
enzyme), was selected. GAD67 protein expression has been shown to
be reduced in postmortem schizophrenia brains (Addington et al.,
2005; Guidotti et al., 2000) especially in cortical areas (Coyle, 2006;
Lewis et al., 1999). Lower GABA concentrations have also been observed
in the visual cortex in schizophrenia (Yoon et al., 2010). Neuregulin 1
(NRG1), was selected since it has been associated with schizophrenia
inmultiple studies (Stefansson et al., 2002, 2003). Nrg1/ErbB4 signaling
regulates GABAergic transmission in the adult cerebral cortex,
subsequently influencing inhibitory cortical function (Rico and Marín,
2011) and regulation of NMDA receptors in the prefrontal cortex
(Gu et al., 2005). Dystrobrevin binding protein 1 (DTNBP1), was
selected since dystrobrevin regulates expression of the NMDA NR2A
receptor subunit in hippocampal and cortical regions (Blake et al.,
1998; Tang et al., 2009).

The goal of this study was to establish if HICLAS could be employed
as a novel SNP data reduction application for determining the strength
of links between SNPs in glutamatergic and GABAergic pathway genes
and perceptual organization deficits in schizophrenia. A priori SNPs
from 3 candidate genes (NRG1, DTNBP1 and GAD1) were analyzed
using HICLAS to determine if HICLAS selected SNPs were associated
with incidence of perceptual impairments.
2. Materials and methods

2.1. Study participants

The study was approved by the Rutgers–Robert Wood Johnson
Medical School Institutional Review Board. All study participants
provided written informed consent. The recruitment, diagnostic
and inclusion/exclusion procedures were previously reported (Joseph
et al., 2013). Briefly, the Diagnostic Interview for Genetic Studies
(DIGS) (Nurnberger et al., 1994) was administered andmedical records
were reviewed to determine if participantsmet DSM IV-TR (APA, 2000)
criteria for schizophrenia or schizoaffective disorder. Participants with
current substance use, mental retardation, neurological disorders,
other primary psychiatric diagnoses or poor performance on
attentional-control stimuli (see Section 2.7 Perceptual task data analy-
ses) were excluded. The demographic and clinical composition of the
HICLAS selected sample (40 African American and 50 Caucasian
patients) is shown in Table 1.



Fig. 1. JOVI task stimuli. The top left panel of the figure is an example of a lower jitter de-
gree condition presented to participants (7–8°). The top right panel of thefigure shows the
highest jitter degree presented (15–16°). The bottom left and right panels represent the
catch trial stimuli included in each trial block to account formomentary attentional lapses.
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2.2. Clinical assessments

Symptoms occurring 2 weeks prior to study enrollment were
assessed with the Positive and Negative Syndrome Scale (PANSS)
(Kay et al., 1986). Psychosocial development was evaluated using the
Premorbid Adjustment Scale (PAS) (Cannon-Spoor et al., 1982).

Study participants had stable antipsychoticmedication dosageswhich
were converted to chlorpromazine equivalents based on published
standards (Andreasen et al., 2010). The Shipley Institute of Living Scale
vocabulary subtest (Zachary, 1991) was used to generate full-scale
premorbid IQ estimates. Current visual acuity was estimated with a
Snellen chart.

2.3. DNA extraction and genotyping

Eight SNPs from 3 candidate genes (GAD1, NRG1 and DTNBP1)were
selected based on the following criteria: 1) SNPs had previously shown
biallelic variation; 2) SNPs were previously reported to have a Minor
Allele Frequency (MAF) of 5% or greater in Caucasians and were
targeted by theHapMapproject; 3) SNPs had previously shown positive
association to schizophrenia spectrum disorders; 4) SNPs were within
genes previously linked to NMDA or GABAergic neurotransmitter
systems; 5) SNPs were also considered based on the SZgene www.
szgene.org/ meta-analysis of genetic studies for schizophrenia (Allen
et al., 2008).

Candidate SNPs were then uploaded to Illumina's Assay Design Tool
(Illumina, San Diego, California, USA) http://www.illumina.com/ for
probe and panel design (GS0013878-OPA). SNP compatibility was
based on design score, design rank, MAF and validation status. SNPs
were verified using the dbSNP [Bethesda (MD): National Center for
Biotechnology Information, National Library of Medicine dbSNP data-
base (version 131, February 2010)] http://www.ncbi.nlm.nih.gov/SNP/.

Saliva sampleswere collected from study participants using Oragene
kits (DNA Genotek Inc., Ontario, Canada) and sent to the Toronto Center
for Applied Genomics (TCAG) for DNA extraction and genotyping. TCAG
was blind to participant diagnosis and all phenotypic data. An Autopure
LS Gentra/Qiagen DNA extractor running Puregene chemistry was used
to extract the DNA which was hydrated in 10 mM Tris-HCL pH 8.0,
1 mM EDTA. DNA concentration was quantified using a flurometer
and Hoescht dye.

The extracted DNA samples were processed in 96-well plates with 4
genotyping control samples per plate. 250 ng of genomic DNA
underwent allele specific oligonucleotide hybridization followed by ex-
tension and ligation. A universal PCR (primers labeled with Cy2 or Cy3)
step for the 8 loci followed. The amplified products were hybridized
onto a GoldenGate® Genotyping Universal BeadChip and scanned using
Illumina iScan according to themanufacturer’s protocol (Fan et al., 2006).

2.4. Perceptual tasks

The perceptual stimuli employed, and corresponding psychophysi-
cal derivation of performance metrics, have previously been described,
and are summarized below (Joseph et al., 2013; Keane et al., 2014).
Both tasks have demonstrated good internal consistency, test–retest re-
liability and minimal practice effects (Pennefather et al., 1999;
Silverstein et al., 2012; Strauss et al., 2013). Experimental stimuli were
presented on LED monitors (60 Hz) at three testing sites. The viewing
distance ranged from 620 to 650 mm at each site so that individual
pixels subtended .025° of visual angle square. Stimuli were displayed
at (achromatic) intensities of 59 cd/m2 (black) or 76 cd/m2 (white), as
verified with a Konica Minolta LS-100 luminance meter.

2.4.1. Contour integration
The JitteredOrientation Visual Integration (JOVI) task is a test of con-

tour integration that determines ability to integrate Gabor elements
into a perceptual whole (Silverstein et al., 2012). Participants were
shown static Gabor elements forming an oblong shaped contour em-
bedded in a display of randomly oriented Gabor elements. Perceptual
organization was manipulated by adding orientation jitter to the
Gabor elements forming the contours, across 6 levels: +/−0°, 7–8°,
9–10°, 11–12°, 13–14°, and 15–16°. For all stimuli, the ratio of the den-
sity of adjacent background elements to the density of adjacent contour
elements was 0.9. At this level, adjacent contour elements are farther
apart than adjacent background elements, and thus contour identifica-
tion cannot be accomplished via detection of density cues, and requires
perceptual organization.

The JOVI is a symmetric 1 alternative forced choice task in which
participants responded whether the narrow end of the oblong contour
was pointing left or right for each trial (Fig. 1). Each stimulus was
presented for 2 s followed by a 1 s inter stimulus interval during
which responses were no longer recorded. 48 stimulus trials per jitter
condition were presented in blocks of 12 trials. Two types of catch
stimuli (i.e., no errors expected) using 0° jitter were administered
during each block to assess momentary attention lapses. One had
curved lines drawn through the contours to highlight contour salience,
and the other contained contour elements without background
elements to eliminate distractor noise effects. The task stimuli were
created using E-prime (Psychology Software Tools, Pittsburgh, PA).

2.4.2. Kanizsa shape perception
Stimuli consisted of four white sectored circles (diameter = 3.0°;

wedge = 45°) centered at the vertices of an invisible square (side =
9.0°), which itself was centered on the screen (Fig. 2). The unrotated
pac-men in the illusory condition formed a square, one third of which
was physically specified (support ratio = .33) (Kellman and Shipley,
1991). Certain trials contained distractor lines (dimensions = 4.0
× 0.1°), which were centered between the sectored circles and had a
length equal to 2/3 of the illusory edge. A fixation point appeared at
the screen center at the beginning of each trial.

One half of the task consisted of the illusory condition, and the other
half the fragmented condition (see Fig. 2A). The ordering of the conditions
was counterbalanced across participants. In the illusory condition, the
sectored circles were individually rotated clockwise or counter-
clockwise by the same magnitude to form fat or thin shapes (Kellman
and Shipley, 1991). For the fragmented trials, the elementswere oriented
downward (to prevent illusory contours) and were individually rotated
to the right or left all in the same direction. A left/right task was chosen
because it forced participants tomake judgments on the lateral properties
of the stimulus—similar to the illusory condition.

For each half of the task, there were 64 practice trials and 84 non-
practice trials, the latter half of which presented distractor lines. This
number of practice trials (Keane et al., 2012; Zhou et al., 2008) was
selected to acclimate participants to the presentation times and

http://www.szgene.org/
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Fig. 2.Kanizsa shape perception stimuli and trial sequence. (A) Participants discriminated illusory or fragmented squares, whichwere accompanied by distractor lines for some half of the
trials. (B) The task was to say left/right for the fragmented condition or fat/thin for the illusory condition.
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orientation differences. The first non-practice trial for each condition
was excluded for threshold estimation since these trials were often
missed by observers. Participants received a brief break between blocks
and preceding the distractor line trials.

The trial presentation sequence (Fig. 2B) was similar to earlier stud-
ies (Keane et al., 2012, 2014; Ringach and Shapley, 1996; Zhou et al.,
2008) and consisted of a 1000 ms black screen, a 200 ms target presen-
tation, a 50ms uniform black screen, and 300msmask (to cap stimulus
processing time). Another black screen would linger until a response,
after which an auditory beep sounded for a correct answer. To reduce
keyboard press errors, participants verbally responded “left”/“right” or
“fat”/“thin” after each trial, with the experimenter subsequently enter-
ing the participant’s response.

Task instructions were presented before and after the practice trials.
On one screen, luminance-defined lines were drawn on the borders of
the illusory shape, so that participants clearly understood “fat” vs.
“thin”. On subsequent screens, starkly different fat/thin shapes
(rotation=10°) were shown individually, side-by-side, and then in tem-
poral succession (period = 2 s). During practice trials, the target presen-
tation time and rotational magnitude decreased incrementally (3200ms,
1600 ms, 800 ms, 400 ms, and 200 ms; 10, 8, 6, and 4°) to acclimate par-
ticipants to subtle shape differences and brief stimulus presentation.
Table 2
Minor allele and genotype frequencies in study sample for HICLAS selected SNPs.

Chr Gene/SNP Functional Class MAF African
American

M
C

2q31 GAD1
rs1978340

5’ Flanking 0.125 0

8p12 NRG1
rs10503929

Missense Methionine (T) to Threonine
(C)

0.013 0

8p12 NRG1
rs3924999

Missense Arginine (C) to Glutamine (T) 0.138 0
Task difficulty depended on rotational magnitude, with larger rota-
tions making the alternatives easier to distinguish. A Bayesian adaptive
“Psi” method (Kontsevich and Tyler, 1999) recommended a rotational
magnitude for each trial, based on performance on previous trials, to
minimize uncertainty of the slope and threshold estimates of the
psychometric function. Rotational magnitude was expressed in log
units given the decelerating function relating this quantity to propor-
tion correct (Zhou et al., 2008). The algorithm assumed a log-Weibull
(Gumbel) function (Prins and Kingdom, 2009).

ψ x;α;β;γ;λð Þ ¼ γ þ 1−γ−λð Þ 1−exp 10β
x−αð Þ� ��

where ψ is the proportion correct, x is the rotational magnitude, α is
threshold, β is slope, γ is the guess rate (.5), and λ corresponds to the
proportion of accidental responses (assumed to be .03) (Wichmann
and Hill, 2001). Threshold establishes the position of the sigmoidal
curve along the abscissa and corresponds to the rotational magnitude
(in log degrees) needed for 79.7% accuracy. The Psimethodwas selected
because it makes no assumption about slope – which can vary by
condition – and because it provides an efficient means for estimating
AF
aucasian

Genotype Frequency African
American

Genotype Frequency
Caucasian

.266 CC 0.750
CT 0.200
TT 0.050

CC 0.510
CT 0.449
TT 0.041

.132 TT 0.975
TC 0.025

TT 0.766
TC 0.224
CC 0.020

.357 CC 0.750
TC 0.225
TT 0.025

CC 0.470
TC 0.346
TT 0.184

Image of Fig. 2


Table 3
Bundle patterns for HICLAS selected SNPs.

HICLAS Cluster #Patients in Cluster rs1978340 rs10503929 rs3924999

001 3 allele #1
010 2 allele #1
011 3 allele #1 allele #1
100 36 allele #2
101 14 allele #2 allele #1
110 11 allele #1 allele #2
111 16 allele #1 allele #2 allele #1
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two parameter psychometric functions, (Klein, 2001) yielding a reliable
threshold estimate (±2 dB) with as few as 30 trials. Task stimuli were
created in MATLAB with the Psychophysics Toolbox (Brainard, 1997).

2.5. Clinical data analyses

Spearman correlations were calculated to examine associations
among premorbid functioning, symptoms, antipsychotic dosage, visual
acuity and perceptual scores, and these relationships have previously
been reported (Joseph et al., 2013; Keane et al., 2014). PANSS syndromes
were analyzed based on a medication stable five factor model,
(Lindenmayer et al., 1994) including positive, negative, cognitive, excite-
ment, and depression factors. A separate disorganization factor (Cuesta
and Peralta, 1995) was derived and included: poor attention, conceptual
disorganization and inappropriate affect (the latter not being an original
PANSS item). For the PAS, the social–sexual functioning factor and an
overall mean score (Cannon-Spoor et al., 1982) were calculated.

2.6. SNP genotyping and HICLAS analysis

SNP cluster plots were manually inspected with GenomeStudio
v.2011 to determine genotypes using default parameters. SNPs were
called for GenCall scores N 0.25. rs11542313 had a poor call rate and
rs16876589 lacked allelic variation in our study sample, reducing our
total number of candidate SNPs from 8 to 6 (rs10503929, rs3924999,
rs1978340, rs3213207, rs1047631 and rs1747054) for subsequent
HICLAS. The sample included for HICLAS had a genotype rate of 98.7%.
The subject by SNP data were then arranged in a 90 × 12 data array and
were analyzed using the HICLAS algorithm separately for ranks 1 through
12 (rank refers to the Schein rank of any givenHICLASmodel of the binary
array; a solution in rank 3 is roughly analogous to a 3 factor solution).

2.7. Perceptual task data analyses

For the contour integration task, the total score across all jitter con-
ditions (excluding catch trials) was the performance index as this score
has a higher test–retest reliability compared to psychometric function
threshold values (Silverstein et al., 2012). Eleven participants were un-
able to identify the catch trials at a rate of at least 83.3% – a rate signifi-
cantly better than chance based on total catch trial number – and were
excluded prior to HICLAS.
Table 4
ANCOVAs of HICLAS selected SNP and perceptual task indices.

Independent Variables Dependent Variables Cov

rs1978340 JOVI Task Total Score Age
Contour Interpolation Global Shape Sex
Contour Interpolation Filling In

rs1053929 JOVI Task Total Score Age
Contour Interpolation Global Shape Sex
Contour Interpolation Filling In

rs3924999 JOVI Task Total Score Age
Contour Interpolation Global Shape Sex
Contour Interpolation Filling In

a Due to the exploratory nature of this study, all p levels reported are uncorrected.
For Kanizsa shape perception, twometrics were of interest. Onewas
global shape integration, corresponding to how well participants distin-
guished Kanizsa shapes relative to featurally similar fragmented shapes
(without distractor lines). A lower relative threshold in the illusory
condition demonstrates an enhanced capacity to take advantage of the
Gestalt layout of the stimulus. The second was how well participants
fill-in illusory contours. Filling-in measured how much participants
responded to seemingly irrelevant information (distractor lines) placed
near the filled-in paths. Filling-in was operationalized on the basis of
distractor effects: themore that distractor lines impaired discrimination
in the illusory relative to the fragmented condition, themore that filling
in was assumed to occur. This metric was chosen because others have
shown that distractor lines near the edges of Kanizsa shapes worsen
illusory shape perception, but have little effect when illusory contours
are not perceived (Keane et al., 2012, 2014; Ringach and Shapley,
1996; Zhou et al., 2008). Therefore, based on prior studies from our
lab and others, we propose that the Kanizsa shape perception task
employed for this study is assessing two primary perceptual processes.

3. Results

3.1. Clinical and perceptual task correlations

Total JOVI scores were significantly correlated with increased con-
ceptual disorganization and poor premorbid social sexual functioning,
replicating previous findings (Joseph et al., 2013; Schenkel et al., 2005;
Uhlhaas et al., 2006b). Age and sex were included as covariates for all
ANCOVA/MANCOVA analyses since the contour interpolation global
shape metric suggested a trend level correlation with participant age,
and also because novel sex differences were observed in this sample
(Joseph et al., 2013). No significant correlations between estimated
visual acuity and perceptual indices were observed in this study.

3.2. HICLAS selected SNPs

The SNP functional classes, minor allele and genotype frequencies
for Caucasian and African American participants are shown in Table 2.
HICLAS selected SNPs were in Hardy Weinberg Equilibrium (p N .05)
for both Caucasian and African American participant groups. SNP geno-
type frequencies varied based on race: rs10503929 (χ2 (2, N = 86) =
7.3, p = .026), rs3924999 (χ2 (2, N = 86) = 8.5, p = .014),
rs1978340 (χ2 (2, N = 86) = 7.2, p = .028).

3.3. HICLAS SNP data reduction

The HICLAS solution in rank 3 yielded a Jaccard Index (goodness of
fit) of .866. This solution was chosen over rank 2 (Jaccard Index =
.793) because fewer SNPs were discarded. Rank 3 was chosen over
rank 4 (Jaccard Index = .915) because the participant clusters and fit
in the rank 4 did not change appreciably from how they clustered in
rank 3. In addition, increasing the rank leads to a monotonic increase
in fit.
ariates F(2,83) pa ηp2 Power

2.0 .140 .047 .405
.635 .533 .016 .153

4.3 .017 .098 .733
4.7 .012 .103 .771
.537 .586 .013 .136

3.7 .028 .086 .668
.579 .563 .014 .143

1.6 .219 .038 .319
3.1 .052 .072 .577



Table 5
MANCOVAs for HICLAS selected SNPs and perceptual task indices.

Independent Variables Dependent Variables Covariates Wilks’ λ F(4,156) pa ηp2 power

rs1978340 Total JOVI Task Score Age .848 3.4 .011 .079 .838
rs3924999 Contour Interpolation Filling In Sex .920 1.7 .163 .041 .500
rs1053929 .837 3.6 .007 .085 .869

a Due to the exploratory nature of this study, all p levels reported are uncorrected.

61J. Joseph et al. / Schizophrenia Research: Cognition 2 (2015) 56–63
The rank 3 solution generated 7 clusters of participants based on
the presence/absence of 3 alleles from SNPs rs3924999 (NRG1),
rs10503929 (NRG1) and rs1978340 (GAD1), as shown in Table 3.
The other SNPs, rs3213207 (DTNBP1), rs1047631 (DTNBP1) and
rs1747054 (DTNBP1), were eliminated. Hence, HICLAS reduced the
total number SNPs to be analyzed in relation to perceptual indices
from 6 to 3.

Genotypes for these three SNPswere then analyzed in relation to the
perceptual task indices in 3 sets of ANCOVAs,with each SNP genotype as
the 3-level independent variable (see Table 2 for SNP genotypes). The
covariates included age and sex, and the dependent (perceptual organi-
zation) variables were total JOVI score, and the Kanizsa shape percep-
tion filling in and global shape metrics as shown in Table 4. The
rs10503929 CC genotype was associated with poorer contour integra-
tion performance and reduced Kanizsa shape perception filling in abili-
ties (higher Kanizsa shape perception filling in and more negative
difference score of threshold scores) compared to TC and TT genotypes.
The rs19783420 TT genotype was also associated with poorer filling in
abilities for Kanizsa shape perception, as compared to CT and CC
genotypes.

The results of the MANCOVA combining the 3 HICLAS selected SNPs
are shown in Table 5.

In addition, a MANCOVA combining the 3 HICLAS eliminated SNPs is
shown in Table 6. Only HICLAS selected SNPs had a significant associa-
tion to perceptual organization phenotypes.

4. Discussion

HICLAS was employed as a novel application of a structural binary
array model to reduce the number of candidate SNPs analyzed in rela-
tion to perceptual organization phenotypes in a schizophrenia sample.
HICLAS reduced the total SNPs analyzed in relation to phenotypes
from 6 to 3. Although the sample was restricted to Caucasian and
African American participants, a significant study limitation is the
small sample size that minimized power and did not allow for separate
analyses by race. Future studies examining HICLAS selected SNPs in
larger samples are needed to validate genotype-perceptual phenotype
relationships.

The perceptual tasks evaluated in our study were selected based on
the assumption that they represent a stable patient phenotype and a re-
cent paper supports this for contour integration task performance
(Feigenson et al., 2014). This suggests that the study tasks may be suit-
able for SNP-phenotype association analyses. HICLAS selected
rs10503929 and rs1978340 genotypes were associated with Kanizsa
shape perception filling in but not with global shape performance.
Keane et al. (2014) suggest that filling in is an earlier perceptual stage
compared with global shape discrimination, linked to the higher-level
impairment of conceptual disorganization, indicating a more severe
Table 6
MANCOVAs for HICLAS eliminated SNPs and perceptual task indices.

Independent Variables Dependent Variables Covariates

rs3213207 JOVI Task Total Score Age
rs1047631 Contour Interpolation Filling In Sex
rs17470454

a Due to the exploratory nature of this study, all p levels reported are uncorrected.
illness course. rs10503929 genotypeswere also associatedwith contour
integration performance. Contour integration impairments in schizo-
phrenia involve hypo- and hyper-activation in different frontal regions
(Silverstein et al., 2009), suggesting that template matching and deci-
sion making process abnormalities also contribute to task performance,
and this may explain the relationships between both tasks and
rs10503929.

Since contour integration and Kanizsa shape perception have distinct
developmental trajectories, (Csibra et al., 2000; Káldy and Kovács, 2003;
Kovacs et al., 1999) future studiesmay consider inclusion of genes related
to neurodevelopment such as Fragile X Mental Retardation Protein
(FMRP). FMRP has a key role in neuroplasticity (Fernández et al., 2013)
and is transcriptionally repressed in schizophrenia, neurodevelopmental
and mood disorders (Abel and Zukin, 2008). Kelemen et al. (2013)
reported that FMRP protein levels are associatedwith contrast sensitivity,
perceptual integration, and motion perception. FMRP is also thought
to interact with glutamatergic and GABAergic pathways (D’Hulst
and Kooy, 2007). Inclusion of SNPs from these genes may enable
comprehensive modeling of epistatic contributions to perceptual organi-
zation phenotypes.

Although HICLAS has not been applied previously to genetic data, it
offers some advantages over other genotype–phenotype association
methods. First, it is a mathematical model unlike most set based SNP
association analyses, which are thought to primarily consider linkage
disequilibrium between SNPs (Liu et al., 2010). In addition, gene path-
way based associations are usually not amenable to the inclusion of co-
variates and are subject to permutation biases (Wang et al., 2010).
Other binary array models such as Boolean factor analyses are limited
in that they do not consider the set-theoretical structure of the data
array (De Boeck and Rosenberg, 1988). Therefore, HICLAS may be a
valuable variable reduction method for future large scale SNP pheno-
type association studies.
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