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Wireless mesh networks (WMNs) play a vital role in modern communication systems, and 
optimizing the placement of wireless mesh routers is crucial for achieving efficient network 
performance in terms of coverage and connectivity. However, network congestion caused by 
overlapping routers poses challenges in WMN optimization. To address these issues, researchers 
have explored metaheuristic algorithms to strike a balance between coverage and connectivity 
in WMNs. This study introduces a novel hybrid optimization algorithm, namely Transient 
Trigonometric Harris Hawks Optimizer (TTHHO), specifically designed to tackle the optimization 
problems in WMNs. The primary objective of TTHHO is to find an optimal placement of routers 
that maximizes network coverage and ensures full connectivity among mesh routers. Notably, 
TTHHO’s unique advantage lies in its efficient utilization of residual energy, strategically placing 
the sink node in areas with higher energy levels. The effectiveness of TTHHO is demonstrated 
through a comprehensive comparison with seven well-known algorithms, including Harris Hawks 
optimization (HHO), Sine Cosine Algorithm (SCA), Gray Wolf Optimization (GWO), Particle 
Swarm Optimization (PSO), Moth Flame Optimization (MFO), Equilibrium Optimizer (EO), 
and Transient Search Optimizer (TSO). The proposed algorithm is rigorously validated using 
33 benchmark functions, and statistical analyses and simulation results confirm its superiority 
over other algorithms in terms of network connectivity, coverage, congestion reduction, and 
convergence. The simulation outcomes demonstrate the effectiveness and efficacy of the proposed 
TTHHO algorithm in optimizing WMNs, making it a promising approach for enhancing the 
performance of wireless communication systems.

1. Introduction

Wireless Mesh Networks (WMNs) have emerged as a promising solution for providing ubiquitous and high-speed connectivity in 
various domains, ranging from urban environments to rural areas [1]. These networks consist of interconnected mesh nodes that 
collaborate to relay data and extend the coverage area. However, the efficient deployment of WMNs poses several challenges, such 
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as optimizing energy consumption, ensuring optimum coverage, and establishing reliable connectivity [2,3]. Despite the numerous 
advantages presented by Wireless Mesh Networks (WMNs), certain issues persist that demand resolution to strengthen network 
performance. These concerns incorporate aspects such as coverage, connectivity, congestion, compatibility, security, etc [4]. The 
deployment of WMNs involves determining the optimal placement of mesh nodes to ensure efficient network operation [5]. One of 
the key objectives is to minimize the energy consumption of the network since wireless mesh nodes are often battery-powered and 
energy-constrained [6]. By strategically deploying nodes, unnecessary energy expenditure can be avoided, thereby prolonging the 
network’s lifetime [7].

Moreover, achieving optimum coverage is crucial to ensure that the network can serve the intended area effectively. The coverage 
of a WMN refers to the ability of the network to provide reliable and uninterrupted connectivity to all desired locations [8]. In 
addition to coverage, establishing robust connectivity is essential for a WMN’s performance which refers to the ability of mesh nodes 
to ensure and maintain reliable communication links with each other [9]. A well-connected network enhances data transmission 
efficiency, improves fault tolerance, and enables efficient routing. Therefore, it is important to deploy mesh nodes in such a way that 
signal strength and quality are sufficient to support communication throughout the coverage area, while minimizing the number of 
nodes required [10].

Optimally deploying routers in an energy-efficient manner while ensuring both optimal coverage and connectivity is a complex 
optimization problem that needs to be effectively addressed. One viable option is through utilizing meta-heuristic algorithms, which 
can provide a means to intelligently explore the vast solution space of WMN deployment, considering various constraints, objectives, 
and trade-offs. These algorithms are iterative and heuristic-based approaches that employ exploration and exploitation techniques to 
search for optimal or near-optimal solutions [11,12]. By evaluating different node placement configurations and iteratively refining 
them, these algorithms can converge towards solutions that optimize energy consumption while ensuring adequate coverage and 
connectivity [13,12,14].

In this context, numerous studies have employed meta-heuristic algorithms to address WMNs placement issues. However, some 
of these studies have relied on a single algorithm, which is inherently limited. Single algorithms can become trapped in local optima, 
lack adaptability in response to changing conditions, and struggle to effectively utilize problem-specific knowledge. In addition, 
some studies have solely focused on coverage and connectivity, often overlooking the crucial factor of energy consumption, which 
should be a core consideration throughout the placement process to ensure the network’s long-term sustainability and effectiveness. 
This serves as the primary motivation for the development of new hybrid optimization approaches that combine the complementary 
strengths of multiple meta-heuristic algorithms. Hybrid algorithms aim to achieve better optimization performance leading to more 
optimal and effective wireless network deployments. This research work initially conducts comprehensive evaluations of some well-

known meta-heuristic algorithms, comparing their performance in terms of energy efficiency, coverage, and connectivity metrics. 
Simulations are conducted on WMN scenarios, considering various network typologies. Hence, the results are to provide valuable 
insights into the strengths and weaknesses of each algorithm and guide the selection of the most suitable algorithm for specific 
deployment scenarios.

By leveraging metaheuristic algorithms, such as Transient Search Optimizer (TSO) [15], Harris Hawks Optimization (HHO) [16]

and Sine Cosine Algorithm (SCA) [17], it is possible to find solutions that balance the trade-off between energy consumption and 
network performance. These algorithms can intelligently explore the search space and adaptively refine the mesh node placement, 
considering various constraints and objectives. This paper makes original and significant contributions in this field, as summarized 
below:

• A new optimization technique called Transient Trigonometric Harris Hawks Optimizer (TTHHO) has been proposed for tackling 
WMN issues such as connectivity, coverage, congestion reduction and energy-based optimal sink nod placement.

• The performance evaluation of TTHHO involved testing it on 33 benchmark functions and the WMN model. To ensure a fair 
comparison among all investigated algorithms, modified versions of standard optimization algorithms with a local search im-

provement mechanism were utilized.

• A noteworthy interdisciplinary accomplishment in wireless communication, optimization, and industrial planning is achieved 
through the optimized placement of routers in WMN using TTHHO. This significantly improves connectivity and coverage.

• This work also includes the proposal of an efficient energy-based optimal sink node placement to increase the lifetime of WMN.

• Additionally, TTHHO yields cost reduction and substantial improvement in network congestion by requiring fewer node place-

ments compared to other algorithms. Remarkably, the reduced number of nodes does not compromise TTHHO’s ability to create 
a reliable WMN with full coverage and connectivity.

The remainder of this article as structured as follows: Section 2 provides insights about optimal nodes placement strategies and 
WMN optimization using metaheuristic algorithms. Section 3 covers the proposed approach hierarchical design associated with the 
mathematical modeling of the optimization search strategies and the proposed fitness functions. Results and discussion are then 
covered in Section 4. Lastly, Section 5 concludes the overall view of this article.

2. Literature review

Although meta-heuristic optimization methods are limited to finding local optimal solutions, they have been widely developed 
and achieved greater success than other techniques. In most practical situations, meta-heuristic techniques are able to discover the 
2

most suitable and dependable network design to address mesh router placement problems.



Heliyon 10 (2024) e28719H. Abdulrab, F.A. Hussin, I. Ismail et al.

Previous studies, such as those conducted by [18] and [19], primarily focused on placing wireless routers in frequent network 
areas but overlooked the deployment of mesh routers. In contrast, some other research considered a continuous deployment region, 
offering more flexibility in mesh router placement and resulting in better network design. These studies also delved into the use of 
hierarchical optimization techniques to enhance network connection and client coverage. However, they found that this approach 
was not suitable for achieving non-convex goals, as evidenced by research conducted by [20], [21], and [22].

Numerous studies have employed various meta-heuristic techniques to improve client coverage and network connectivity, as 
exemplified in [19] and [23]. In the work by [23], a simulation system based on Hill Climbing (HC) and Simulated Annealing (SA) 
was developed to tackle the node placement problem in WMNs. On the other hand, [19] utilized the Tabu Search (TS) algorithm for 
optimizing node deployment solutions. The results exhibited superior performance by TS compared to the Simulated Annealing (SA) 
method. Furthermore, in a study by [24], the authors utilized the Friedman test to evaluate and compare the performance of several 
meta-heuristic algorithms, including genetic algorithm, tabu search, hill-climbing, and simulated annealing.

The PSO metaheuristic has been successfully employed to tackle the router node placement problem in WMNs, aiming to optimize 
network connection and client coverage, as detailed in [25] and [26]. These studies have investigated various factors that influence 
the performance of the PSO algorithm, including network design characteristics. In [25], the authors proposed a method to assign a 
digit to each mesh network client, indicating its service priority. Moreover, the work in [27] adopted Bat-inspired methods, incor-

porating client motion while maintaining service priorities. The study in [26] introduced a PSO technique that incorporates social 
cognition for dynamic WMNs. The wireless mesh network-router node placement (WMN-RNP) was made as a dynamic configuration 
with a combined objective function. Authors in [20] employed the simulated annealing algorithm that weighed momentum needs 
to solve the service prioritization problem in WMNs. Authors in [28] developed an electromagnetism-like algorithm to maximize 
network connectivity and client coverage in WMNs.

Several effective population-based algorithms used for optimal network placement in FiWi networks include Slime Mould Algo-

rithm (SMA) [29], Weighted Salp Swarm Algorithm (WSSA) [30], Chaotic Local Search-based Levy Flight Distribution (CLS-LFD) 
[31], Enhanced Backtracking Search Algorithm (EBSA) [32], and Marine Predators Algorithm (MPA) [33]. In their research, Singh 
and Prakash [34] explored the optimal placement of relay nodes in fiber-wireless networks. They utilized Whale Optimization ap-

proach (WOA) to determine the most favorable positioning of Optical Network Units (ONUs) taking into account the distribution of 
mesh routers and ONUs. The study also compared the results of the WOA approach with those of the Moth Flame Optimizer (MFO) 
and Greedy methods. In a different study conducted by Gupta and Jha [35], the authors applied a Biogeography-Based Optimization 
(BBO) algorithm to optimize the placement of sensor devices in a sensor network. The objective was to achieve m-connectivity and 
k-coverage. Both of these studies focus on optimizing the placement of relay nodes in wireless networks. The primary benefits of 
these algorithms are their low computational demands, rapid convergence, and independence from prior knowledge. However, chal-

lenges such as getting stuck in local optima and the necessity of tuning parameters are notable drawbacks of these population-based 
meta-heuristics.

Nitesh and Jana’s work [40] aims to minimize network costs by reducing the number of relay nodes required while still main-

taining k-coverage and s-connectivity. They achieve this by minimizing the amount of overlapping coverage between relay nodes. 
On the other hand, the study by Sapre and Das [41] uses the MFO algorithm to ensure complete connectivity between all nodes 
in the network. The focus is on maximizing network connectivity rather than minimizing costs. Both approaches are important 
considerations when optimizing relay node placement in wireless networks. Furthermore, Nitesh and Jana proposed a method to 
position relays in their study published in [40]. Their approach guaranteed both s-connectivity among the relays and k-coverage of 
the deployment region. To minimize network costs, their method utilized fewer relay nodes by reducing the amount of overlapping 
coverage between them. On the other hand, the MFO algorithm was employed by Sapre and Sahu in [41] to determine the optimal 
locations for placing the nodes. The primary objective was to ensure that all parts of the network were connected, and the technique 
used a fully connected network heuristic to assess network connectivity.

Table 1 outlines some of the previous researches on the WMN placement approaches. The study described in [3] utilized a 
unique version of the HHO to efficiently place mesh routers within WMN, resulting in improved connectivity and coverage for 
various network sizes. Through statistical analyses and simulation results, HHO was found superior to other bechmarking algorithms. 
Although previous research has confirmed the effectiveness of the HHO, there are still issues with premature convergence and 
being trapped in local best solutions. Consequently, researchers from different fields have developed various modified and hybrid 
algorithms to overcome these problems.

The SCA, developed by Seyedali Mirjalili in 2016 [17], is an efficient optimization algorithm to that can be utilized overcome 
HHO drawbacks. Due to its favorable properties, the SCA has been successfully applied in various fields, such as feature selection 
[42], wind power control [43,44], machine learning [45]. Additionally, the SCA has been hybridized with the TSO and arithmetic 
optimization algorithm (AOA) as in [46,47].

Building upon these advancements, the authors of [48] developed a hybrid optimization algorithm called Hybrid Harris Hawk 
Optimization and Sine Cosine Algorithm (HHOSCA). By combining the strengths of both algorithms, HHOSCA aims to further improve 
optimization performance and address complex problems effectively. However, the lack of full coverage in [48] may result in areas 
with limited or no access, compromising the overall effectiveness of the network. Moreover, energy efficiency is a critical factor 
in WMN design, as the limited energy resources of individual routers directly impact the network’s longevity and sustainability. 
To address these limitations, the proposed TTHHO algorithm in this study provides a holistic approach to WMN optimization. By 
strategically placing routers based on efficient residual energy and considering coverage as a primary objective, TTHHO aims to 
3

achieve full coverage while simultaneously maximizing network connectivity and energy efficiency.
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Table 1

Some existing researches on WMN router placement.

Ref.

Year

Algorithm Addressed Issues Advantages Limitations

[19]

2015
TS

WMN connectivity and

coverage.

- Adopting TS algorithm to solve

WMN router deployment.

- Avoiding repetition of solved

placements using memory based

techniques.

- The approach primarily emphasized

improving network connectivity, but it

resulted in inadequate user coverage.

[26]

2016
PSO

WMN connectivity and

coverage.

-Incorporating the dynamics of social

community behavior.

-Improving the connectivity of the

network.

-Expanding the network’s coverage

in social contexts.

-The mesh routers have limitations in

terms of serving a defined number of

clients.

-This work is deficient in optimizing

the residual energy consumption.

[36]

2020
SA

WMN connectivity, cost,

and coverage.

-Introduction of a novel SA-based

Center of Mass (SAC) method.

-Achieving quicker convergence in

contrast to traditional SA.

-Elevating network quality and

performance.

-The study has not tackled the issue

of network connectivity.

-The challenges posed by harsh

environments have not been taken

into account.

[37]

2020
HHO Sink node placement.

-Introducing an approach to determine

the optimal sink node placement.

-Employing HHO algorithm to find the

optimal placement of sink node.

- The work did not address coverage

and connectivity issues in WMNs.

-The issue of congestion in WMN was

not addressed in this research

[38]

2021
PSO

WMN connectivity and

coverage.

-Creating an Accelerated PSO (APSO)

framework.

-Streamlining complexity and enhancing

efficiency in comparison to LDWPSO.

-The research has made notable

enhancements in network connectivity,

but the issue of coverage remains

unresolved.

-The validation was conducted using a

single algorithm, which may not be

sufficient to establish its superiority

comprehensively.

[18]

2022
MVOA

WMN connectivity and

coverage.

-Introducing novel criteria for network

evaluation, taking into account the

ratio of active clients to routers.

-Decreasing path-losses and elevating

connectivity in comparison to

GA, WOA, and PSO.

-The optimization of network coverage

has not been adequately addressed in

this work.

-This research did not investigate

efficient energy consumption in any

depth.

[39]

2022
COA

WMN connectivity and

coverage.

-Employing COA for addressing router

deployment challenges.

-Evaluating the effectiveness of COA

through comparisons with various

algorithms in addressing optimization

problems.

-This study did not explore the

optimization of sink localization.

-Additionally, it did not incorporate

energy consumption optimization

into its analysis.

[3]

2022
HHO

WMN connectivity and

coverage.

- An innovative utilization of HHO in

WMNs

-Enhancing network connectivity and

coverage.

-Conducting a range of statistical

analyses to demonstrate the

improvements

-This research lacks the mitigation

of network congestion.

-It is also deficient in optimizing

the residual energy consumption.

3. Methodology and system model

In this section, an elaboration on the method used to optimize the coverage, connectivity, and reduce network congestion in 
a wireless network is provided. The main focus of this work is to develop a hybrid optimization technique known as Transient 
Trigonometric Harris Hawks Optimizer (TTHHO). The objective is to minimize network congestion while significantly improving 
the coverage and connectivity of WMN. Furthermore, an important aspect of the proposed method is to create an energy-efficient 
WMN by optimizing the placement of sink nodes. By strategically positioning sink nodes, the network’s overall energy consumption 
can be minimized, leading to a more sustainable and efficient WMN. In addition, this section also covers the hierarchical design, 
4

mathematical modeling, and fitness functions employed in the optimization process.
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Fig. 1. RCL various order system response.

3.1. Transient search optimizer

The TSO algorithm follows a three-stage process, including initialization, exploration, and exploitation, to optimize the search 
process. During initialization, search-agents are randomly generated within specified bounds. The algorithm’s exploration behavior 
is inspired by the oscillations of second-order RLC circuits around the zero point, while the exploitation phase draws from the 
exponential decay observed in first-order discharging circuits. Fig. 1 shows the response of RLC for various system order. Balancing 
exploration and exploitation is achieved using a random number (𝑟7), where 𝑟7 ≥ 0.5 emphasizes exploration, and 𝑟7 < 0.5 shifts the 
focus to exploitation. The mathematical modeling of TSO’s exploitation and exploration is illustrated by Eq. (3), that is influenced by 
Eqs. (1) and (2). The TSO’s favorite solution (𝑦best) replicates the electrical circuit’s final value or steady state (𝑥(∞)).

𝑦(𝑡) = 𝑦(∞) + (𝑦(0) − 𝑦(∞))𝑒
−𝑡

𝜏 (1)

where 𝑡 represents time, 𝑦(𝑡) corresponds to either the capacitor voltage 𝑣(𝑡) of the RC circuit or the inductor current 𝑖(𝑡) of the RL 
circuit. 𝜏 denotes the time constant of the circuit, which is equivalent to the product of the resistance (𝑅) and capacitance (𝐶) in the 
RC circuit, given by 𝜏 = 𝑅𝐶 .

𝑦(𝑡) = 𝑒−𝛼𝑡(𝐵1𝑐𝑜𝑠(2𝜋𝑓𝑑𝑡) +𝐵2𝑠𝑖𝑛(2𝜋𝑓𝑑𝑡)) + 𝑦(∞) (2)

where 𝛼 is the damping coefficient, 𝑓𝑑 is the damped resonant frequency, and 𝐵1 and 𝐵2 are constants.

𝑦𝑡+1 =
⎧⎪⎨⎪⎩

𝑦𝑏𝑒𝑠𝑡 + (𝑦𝑡 −𝐶1 ∗ 𝑦𝑏𝑒𝑠𝑡) ∗ 𝑒−𝐿, 𝑟7 < 0.5
𝑦𝑏𝑒𝑠𝑡 + 𝑒−𝐿[𝑐𝑜𝑠(2𝜋𝐿) + 𝑠𝑖𝑛(2𝜋𝐿)] ∗ |𝑦𝑡−

𝐶1 ∗ 𝑦𝑏𝑒𝑠𝑡|, 𝑟7 ≥ 0.5
(3)

3.2. Proposed transient trigonometric Harris Hawks optimizer

While the previously developed HHOSCA [48] demonstrates commendable performance, it still exhibits certain limitations, in-

cluding premature convergence and the struggle to reach global optima. To overcome these shortcomings, we propose a novel 
approach known as Transient Trigonometric Harris Hawks optimizer (TTHHO), which integrates the strengths of HHO, SCA, and 
TSO. The aim is to enhance the convergence behavior and solution quality. By employing a hybrid method, the TTHHO approach is 
expected to produce more diverse solutions, as it can make significant jumps within the search zone at frequent intervals to avoid 
getting stuck at a local optimum. This increased exploration capability allows for the generation of more varied solutions, thus 
making the search process more effective and adequate.

Fig. 2 illustrates the hierarchical configuration of the proposed TTHHO algorithm, with distinct layers responsible for specific 
tasks. The bottom layer, represented by TSO, is responsible for updating the individuals generated by SCA in the middle layer. Sub-

sequently, the HHO-generated top-layer individuals are kept up-to-date by SCA. In this hierarchical design, the top-layer comprises 
M searching agents, which correspond to M groups in the middle layer, where each group contains N SCA population. Similarly, the 
bottom-layer consists of O TSO populations. The optimization process commences with executing SCA and TSO on the middle and 
bottom layers to update the positions of individuals. The best solution identified by each group in the bottom and middle layers is 
retained by their corresponding agent in the top layer. Utilizing this best solution, the positions of HHO individuals in the top layer 
are updated, generating new equations that represent the exploitation and exploration phases. This hierarchical approach fosters ef-

fective cooperation among the different components, leading to notable improvements in solution quality and convergence behavior.

The arithmetic equation (4) represents the model of exploration phase of the TTHHO in which the escaping energy of the prey is 
greater or equal to |𝐸| ≥ 1. Prey’s energy is inspired by Harris Hawks hunting habits. For simplicity, the mathematical models of the 
behavior occurred at the bottom and middle layers are represented by the symbols A, B, C and D as in (5). Some of the parameters 
5

are defined in (6) where 𝑡 and 𝑇 represent the current iteration and the maximum number of iterations, respectively.
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Fig. 2. The proposed TTHHO hierarchical structure.

𝑦𝑡+1 =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

𝑦𝑟𝑎𝑛𝑑 − 𝑟1 ∗ ||𝑦𝑟𝑎𝑛𝑑 − 2 ∗ 𝑟2 ∗ [𝐴]|| , 𝑟3 < 0.5,
𝑟7 < 0.5 𝑎𝑛𝑑 𝑞 < 0.5

𝑦𝑟𝑎𝑛𝑑 − 𝑟1 ∗ ||𝑦𝑟𝑎𝑛𝑑 − 2 ∗ 𝑟2 ∗ [𝐵]|| , 𝑟3 < 0.5,
𝑟7 ≥ 0.5 𝑎𝑛𝑑 𝑞 < 0.5

𝑦𝑟𝑎𝑛𝑑 − 𝑟1 ∗ ||𝑦𝑟𝑎𝑛𝑑 − 2 ∗ 𝑟2 [𝐶]|| , 𝑟3 ≥ 0.5,
𝑟7 < 0.5 𝑎𝑛𝑑 𝑞 < 0.5

𝑦𝑟𝑎𝑛𝑑 − 𝑟1 ∗ ||𝑦𝑟𝑎𝑛𝑑 − 2 ∗ 𝑟2 [𝐷]|| , 𝑟3 ≥ 0.5,
𝑟7 ≥ 0.5 𝑎𝑛𝑑 𝑞 < 0.5[

𝑦𝑏𝑒𝑠𝑡 − 𝑌𝑚

]
− 𝑟1 ∗

(
𝑟2(𝑢𝑏 − 𝑙𝑏) + 𝑙𝑏

)
, 𝑞 ≥ 0.5

(4)

𝐴 = 𝑦𝑏𝑒𝑠𝑡 +
(
𝑦𝑡 −𝐶1 ∗ 𝑦𝑏𝑒𝑠𝑡

)
𝑒−𝐿 + 𝑟1 sin

(
𝑟5
)
× |||𝑟6 ∗ 𝑦𝑏𝑒𝑠𝑡 −

(
𝑦𝑏𝑒𝑠𝑡 +

(
𝑦𝑡 −𝐶1 ∗

𝑦𝑏𝑒𝑠𝑡

)
𝑒−𝐿
)|||

𝐵 = 𝑦𝑏𝑒𝑠𝑡 + 𝑒−𝐿
[
cos
(
2𝜋𝐿

)
+ sin

(
2𝜋𝐿

)]|||𝑦𝑡 −𝐶1 ∗ 𝑦𝑏𝑒𝑠𝑡
|||+ 𝑟1 sin

(
𝑟5
)
× |||𝑟6 ∗

𝑦𝑏𝑒𝑠𝑡 −
(
𝑦𝑏𝑒𝑠𝑡 + 𝑒−𝐿

[
cos
(
2𝜋𝐿

)
+ sin

(
2𝜋𝐿

)]|||𝑦𝑡 −𝐶1 ∗ 𝑦𝑏𝑒𝑠𝑡
|||)|||

𝐶 = 𝑦𝑏𝑒𝑠𝑡 +
(
𝑦𝑡 −𝐶1 ∗ 𝑦𝑏𝑒𝑠𝑡

)
𝑒−𝐿 + 𝑟1 cos

(
𝑟5
)
× |||𝑟6 ∗ 𝑦𝑏𝑒𝑠𝑡 −

(
𝑦𝑏𝑒𝑠𝑡 +

(
𝑦𝑡 −𝐶1 ∗

𝑦𝑏𝑒𝑠𝑡

)
𝑒−𝐿
)|||

𝐷 = 𝑦𝑏𝑒𝑠𝑡 + 𝑒−𝐿
[
tan
(
2𝜋𝐿

)
+ sin

(
2𝜋𝐿

)]|||𝑦𝑡 −𝐶1 ∗ 𝑦𝑏𝑒𝑠𝑡
|||+ 𝑟1 cos

(
𝑟5
)
× |||𝑟6 ∗

𝑦𝑏𝑒𝑠𝑡 −
(
𝑦𝑏𝑒𝑠𝑡 + 𝑒−𝐿

[
tan
(
2𝜋𝐿

)
+ sin

(
2𝜋𝐿

)]|||𝑦𝑡 −𝐶1 ∗ 𝑦𝑏𝑒𝑠𝑡
|||)|||

(5)

𝐸1 = 2 ∗ (1 − 𝑡

𝑇
)

𝐿 = 2 ∗ 𝑟1(1 −𝐸1)

𝐶1 = 𝐾 ∗ 𝑟2 ∗ 𝐸1 + 1

𝐸0 = 2 ∗ 𝑟1 − 1

𝐸 = 𝐸 ∗ 𝐸0

𝑟5 = 2𝜋 ∗ 𝑟𝑎𝑛𝑑()

𝑟6 = 2 ∗ 𝑟𝑎𝑛𝑑()

𝐾 = 1

𝐽 = 2(1 − 𝑟1)

(6)

where 𝑟1, 𝑟2, 𝑟3, 𝑟4, 𝑟7, and 𝑞 are random parameters distributed uniformly ∈ [0,1], 𝑦𝑏𝑒𝑠𝑡 is the transient best solution obtained so far, 
𝑦𝑡 is the current solution, 𝑌𝑚 is the average mean of the population, and 𝑢𝑏 and 𝑙𝑏 are the upper and lower bounds, respectively.

Likewise HHO, the TTHHO performs the exploitation phase by applying the besieging strategies. They are categorized into hard 
besiege, hard besiege with progressive quick dives, soft besiege and soft besiege with progressive quick dives. Switching between 
these strategies is determined by the escaping energy level of the prey ranging within 𝐸 ∈ [0, 1] and the value of the randomly 
6

generated parameter 𝑟 ∈ [0, 1]. The mathematical representation of these strategies is further elaborated in the following formulas:
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• Hard besiege: The inspiration of the hawk’s natural behavior where it targets the prey which has less energy to be able to 
flee the hunt. In this hybrid method, the arithmetic equation that represents this behavior is given in (7) with the condition of 
𝐸 < 0.5 and 𝑟 ≥ 0.5.

𝑦𝑡+1 =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

𝑦𝑝𝑟𝑒𝑦 −𝐸 ∗ |||𝑦𝑝𝑟𝑒𝑦 − 2 ∗ 𝑟2 ∗ [𝐴]||| , 𝑟3 < 0.5
𝑎𝑛𝑑 𝑟7 < 0.5

𝑦𝑝𝑟𝑒𝑦 −𝐸 ∗ |||𝑦𝑝𝑟𝑒𝑦 − 2 ∗ 𝑟2 ∗ [𝐵]||| , 𝑟3 < 0.5
𝑎𝑛𝑑 𝑟7 ≥ 0.5

𝑦𝑝𝑟𝑒𝑦 −𝐸 ∗ |||𝑦𝑝𝑟𝑒𝑦 − 2 ∗ 𝑟2 ∗ [𝐶]||| , 𝑟3 ≥ 0.5
𝑎𝑛𝑑 𝑟7 < 0.5

𝑦𝑝𝑟𝑒𝑦 −𝐸 ∗ |||𝑦𝑝𝑟𝑒𝑦 − 2 ∗ 𝑟2 ∗ [𝐷]||| , 𝑟3 ≥ 0.5
𝑎𝑛𝑑 𝑟7 ≥ 0.5

(7)

where 𝑦𝑝𝑟𝑒𝑦 denotes the preys best location and 𝑦𝑏𝑒𝑠𝑡 represents the transient best solution.

• Tough besiege with progressive fast dives: This occurs when 𝑟 < 0.5 and 𝐸 < 0.5. In this scenario, the search agents demon-

strate a behavior characterized by reduced exploration and increased exploitation, as they focus on locating and capturing the 
remaining prey with higher energy levels. This phase of the algorithm search is modeled by (8).

𝑌 𝑖
𝑡+1 =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

𝑍 if 𝐹 (𝑍) < 𝐹
(
𝑦𝑡

)
&

𝑦𝑡 =
⎧⎪⎨⎪⎩

𝐴, 𝑟3 < 0.5 𝑎𝑛𝑑 𝑟7 < 0.5
𝐵, 𝑟3 < 0.5 𝑎𝑛𝑑 𝑟7 ≥ 0.5
𝐶, 𝑟3 ≥ 0.5 𝑎𝑛𝑑 𝑟7 < 0.5
𝐷, 𝑟3 ≥ 0.5 𝑎𝑛𝑑 𝑟7 < 0.5

𝑋 𝑖𝑓 𝐹 (𝑋) < 𝐹
(
𝑦𝑡

)
&

𝑦𝑡 =
⎧⎪⎨⎪⎩

𝐴, 𝑟3 < 0.5 𝑎𝑛𝑑 𝑟7 < 0.5
𝐵, 𝑟3 < 0.5 𝑎𝑛𝑑 𝑟7 ≥ 0.5
𝐶, 𝑟3 ≥ 0.5 𝑎𝑛𝑑 𝑟7 < 0.5
𝐷, 𝑟3 ≥ 0.5 𝑎𝑛𝑑 𝑟7 < 0.5

(8)

where

𝑍 = (𝑆 ×𝐿𝐹 (𝑑)) +𝑋

𝑋 = 𝑦prey −𝐸
|||𝐽 ∗ 𝑦prey − 𝑌𝑚

|||
𝑆 = 1 × 𝑑 Random vector

𝑑 = Dimension

(9)

𝐿𝐹 (𝐷) = 𝛽 × 𝑢|𝑣| 1𝜎 × 0.01 (10)

𝛽 =

⎛⎜⎜⎜⎜⎝
sin
(

𝜋𝜎

2

)
× Γ(1 + 𝜎)

Γ
(
1+𝜎

2

)
× 𝜎 × 2

(
𝜎−1
2

))
⎞⎟⎟⎟⎟⎠

(11)

where u, v denote random variables ranging from 0 to 1, 𝜎 denotes a 1.5 constant value.

• Soft besiege: The TTHHO employs this strategy when 𝐸 ≥ 0.5 and 𝑟 ≥ 0.5. The model of this phase is represented by (12).

𝑦𝑡+1 =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪

𝑦𝑝𝑟𝑒𝑦 − [𝐴] −𝐸
|||𝐽 ∗ 𝑦𝑝𝑟𝑒𝑦 − 2 ∗ 𝑟2 ∗ [𝐴]||| ,

𝑟3 < 0.5 𝑎𝑛𝑑 𝑟7 < 0.5
𝑦𝑝𝑟𝑒𝑦 − [𝐵] −𝐸

|||𝐽 ∗ 𝑦𝑝𝑟𝑒𝑦 − 2 ∗ 𝑟2 ∗ [𝐵]||| ,
𝑟3 < 0.5 𝑎𝑛𝑑 𝑟7 ≥ 0.5

𝑦𝑝𝑟𝑒𝑦 − [𝐶] −𝐸
|||𝐽 ∗ 𝑦𝑝𝑟𝑒𝑦 − 2 ∗ 𝑟2 ∗ [𝐶]||| ,

𝑟3 ≥ 0.5 𝑎𝑛𝑑 𝑟7 < 0.5
𝑦𝑝𝑟𝑒𝑦 − [𝐷] −𝐸

|||𝐽 ∗ 𝑦𝑝𝑟𝑒𝑦 − 2 ∗ 𝑟2 ∗ [𝐷]||| ,
(12)
7

⎪⎩ 𝑟3 ≥ 0.5 𝑎𝑛𝑑 𝑟7 ≥ 0.5
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Table 2

Parameters setup of bench-marking algorithms.

Algorithm Parameter Value

TTHHO Transient initializer 0

Initial energy 𝐸0 [-1 1]

Escaping energy 𝑟 [0 1]

Default constant 𝜎 1.5

Convergence parameter 𝑎 2

PSO Inertia factor 0.3

𝑐1 1

𝑐2 1

SCA Convergence parameter 𝑎 2

GWO Convergence parameter 𝑎 [2 0]

EO r 0.5

a 4

GP 0.5

MFO Convergence parameter 𝑟 [-1 -2]

TSO k 0

Convergence parameter 𝑎 [2 0]

HHO initial energy 𝐸0 [-1 1]

default parameter 𝛽 1.5

escaping energy 𝑟 [0 1]

Table 3

Characteristic parameters of the WMN.

Parameter Value Initial value

Transmission range [20,120] 20 meter
Number of clients 100 100

Number of routers [60,160] 60

Area height 1000 m 1000 m
Area width 1000 m 1000 m
Residual Energy [50,2000] 50 Joule

• Soft besiege with progressive quick dives: When the prey possesses sufficient energy (𝐸 ≥ 0.5) to escape, the TTHHO employs 
a “soft besiege” strategy with 𝑟 < 0.5. In this scenario, the hawk approaches the prey cautiously, allowing some space for the 
prey to potentially evade the attack. This behavior is modeled by (13) and (14).

𝑌 𝑖
𝑡+1 =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

𝑍 if 𝐹 (𝑍) < 𝐹
(
𝑦𝑡

)
&

𝑦𝑡 =
⎧⎪⎨⎪⎩

𝐴, 𝑟3 < 0.5 𝑎𝑛𝑑 𝑟7 < 0.5
𝐵, 𝑟3 < 0.5 𝑎𝑛𝑑 𝑟7 ≥ 0.5
𝐶, 𝑟3 ≥ 0.5 𝑎𝑛𝑑 𝑟7 < 0.5
𝐷, 𝑟3 ≥ 0.5 𝑎𝑛𝑑 𝑟7 < 0.5

𝑋 𝑖𝑓 𝐹 (𝑋) < 𝐹
(
𝑦𝑡

)
&

𝑦𝑡 =
⎧⎪⎨⎪⎩

𝐴, 𝑟3 < 0.5 𝑎𝑛𝑑 𝑟7 < 0.5
𝐵, 𝑟3 < 0.5 𝑎𝑛𝑑 𝑟7 ≥ 0.5
𝐶, 𝑟3 ≥ 0.5 𝑎𝑛𝑑 𝑟7 < 0.5
𝐷, 𝑟3 ≥ 0.5 𝑎𝑛𝑑 𝑟7 < 0.5

(13)

where

𝑍 = (𝑆 ×𝐿𝐹 (𝑑)) +𝑋

𝑋 = 𝑦prey −𝐸
|||𝐽 ∗ 𝑦prey − 𝑦𝑡

||| (14)

The working principle of the proposed TTHHO for optimizing WMN is further clarified by the mean of Pseudo code. The Algo-

rithm 1 details out the optimization process of WMN.

3.3. Simulation configuration setup

MATLAB 2022a was used on a computer running Windows 11 to implement all of the algorithms including HHO, PSO, GWO, SCA, 
MFO, EO, TSO, and the proposed TTHHO. The PC had an Intel(R) Core(TM) i7-8700 processor, 32 GB of RAM, and a clock speed 
of 3.20 GHz. To ensure a fair comparison, all algorithms were executed with the same swarm size and number of iterations. The 
performance of each optimizer was recorded over 30 separate runs, and the average results were used for the comparative analysis. 
8

This thorough evaluation process enabled a comprehensive assessment of the algorithms’ efficiency in optimizing the WMN.
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Algorithm 1 Transient Trigonometric Harris Hawks Optimizer (TTHHO).

Input: A WMN that is comprised of mesh routers randomly positioned, and the positions of mesh clients are predetermined.

Output: Full coverage of mesh clients and fully connected mesh routers.

1: Initialize the positions of mesh routers randomly, 𝑦0
𝑖

(𝑖= 1, 2, 3, ..., N)

2: Start the iterations at 𝑡= 1 and set 𝑇 = maximum iterations

3: while (𝑡 ≤ T) do

4: Using the proposed fitness function, obtain the initial solution 𝑦𝑝𝑟𝑒𝑦 at Top layer and 𝑦𝑏𝑒𝑠𝑡 at middle and bottom layers.

5: for (each hawk(𝑦𝑖)) do

6: Adjust the MRs position.

7: Update 𝐸 Using (6)

8: STARTING with EXPLORATION

9: Condition at Top layer

10: if |𝐸| ≥ 1 then

11: if 𝑞 < 0.5 then

12: Condition at Bottom and Middle layers

13: if 𝑟3 < 0.5 and 𝑟7 < 0.5 then

14: Update the MRs locations using case 1 of (4).

15: else if 𝑟3 < 0.5 and 𝑟7 ≥ 0.5 then

16: Update the MRs locations using case 2 of (4).

17: else if 𝑟3 ≥ 0.5 and 𝑟7 < 0.5 then

18: Update the MRs locations using case 3 of (4).

19: else if 𝑟3 ≥ 0.5 and 𝑟7 ≥ 0.5 then

20: Update the MRs locations using case 4 of (4).

21: end if

22: else if 𝑞 ≥ 0.5 then

23: Update the MRs locations using case 5 of (4).

24: end if

25: end if

26: EXPLOITATION

27: Condition at Top layer

28: if |𝐸| < 1 then

29: if (|𝐸| < 0.5 and r ≥ 0.5) then

30: Condition at Bottom and Middle layers

31: if 𝑟3 < 0.5 and 𝑟7 < 0.5 then

32: Update the MRs locations using case 1 of (7)

33: else if 𝑟3 < 0.5 and 𝑟7 ≥ 0.5 then

34: Update the MRs locations using case 2 of (7)

35: else if 𝑟3 ≥ 0.5 and 𝑟7 < 0.5 then

36: Update the MRs locations using case 3 of (7)

37: else if 𝑟3 ≥ 0.5 and 𝑟7 ≥ 0.5 then

38: Update the MRs locations using case 4 of (7)

39: end if

40: Condition at Top layer

41: else if (|𝐸| < 0.5 and r < 0.5) then

42: Condition at Bottom and Middle layers

43: if 𝑟3 < 0.5 and 𝑟7 < 0.5 then

44: Update the MRs locations using case 11 or 21 of (8)

45: else if 𝑟3 < 0.5 and 𝑟7 ≥ 0.5 then

46: Update the MRs locations using case 12 or 22 of (8)

47: else if 𝑟3 ≥ 0.5 and 𝑟7 < 0.5 then

48: Update the MRs locations using case 13 or 23 of (8)

49: else if 𝑟3 ≥ 0.5 and 𝑟7 ≥ 0.5 then

50: Update the MRs locations using case 14 or 24 of (8)

51: end if

52: Condition at Top layer

53: else if (|𝐸| ≥ 0.5 & r ≥ 0.5) then

54: Condition at Bottom and Middle layers

55: if 𝑟3 < 0.5 and 𝑟7 < 0.5 then

56: Update the MRs locations using case 1 of (12)

57: else if 𝑟3 < 0.5 and 𝑟7 ≥ 0.5 then

58: Update the MRs locations using case 2 of (12)

59: else if 𝑟3 ≥ 0.5 and 𝑟7 < 0.5 then

60: Update the MRs locations using case 3 of (12)

61: else if 𝑟3 ≥ 0.5 and 𝑟7 ≥ 0.5 then

62: Update the MRs locations using case 4 of (12)

63: end if

64: Condition at Top layer

65: else if (|𝐸| ≥ 0.5 & r < 0.5) then

66: Condition at Bottom and Middle layers

67: if 𝑟3 < 0.5 and 𝑟7 < 0.5 then

The configuration parameters of HHO, SCA, GWO, PSO, EO, MFO and TSO are set to the same values based on original works 
9

recommendation. Table 2 presents the parameters’ values in this configuration setup. In addition, the WMN charachterstic parameters 
are outlined in Table 3.
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Algorithm 1 (continued)

68: Update the MRs locations using case 11 or 21 of (13)

69: else if 𝑟3 < 0.5 and 𝑟7 ≥ 0.5 then

70: Update the MRs locations using case 12 or 22 of (13)

71: else if 𝑟3 ≥ 0.5 and 𝑟7 < 0.5 then

72: Update the MRs locations using case 13 or 23 of (13)

73: else if 𝑟3 ≥ 0.5 and 𝑟7 ≥ 0.5 then

74: Update the MRs locations using case 14 or 24 of (13)

75: end if

76: end if

77: end if

78: end for

79: 𝑡=𝑡+1

80: end while

81: Return 𝑌𝑝𝑟𝑒𝑦 representing the optimum WMN topology with full routers connectivity and maximum clients coverage

3.4. Fitness function for optimizing WMN

The main objective of the novel TTHHO algorithm is to optimize the performance of the WMN by maximizing both network 
coverage and connectivity while utilizing less routers to reduce network congestion. The coverage metric, denoted as 𝛼(𝐺) and 
expressed in (15), quantifies the extent to which the network provides coverage to clients. Additionally, the connectivity factor, 
denoted by 𝜃(𝐺) and represented by (16), is considered to measure the interconnectivity between routers in the network. To create 
the fitness function, a weighted sum approach is employed, transforming the multi-objective problem into a single-objective one by 
summing the individual goals with user-defined weights. Consequently, the fitness function, denoted as 𝐹𝑡 and formulated in (17), 
integrates both client coverage and network connectivity metrics, guiding the optimization process towards achieving an efficient 
and well-balanced WMN configuration.

𝛼(𝐺) =
𝑚∑

𝑖=0
𝛿𝑖 (15)

𝜃(𝐺) = max
𝑖∈{1,…,ℎ}

||𝐺𝑖
|| (16)

𝐹𝑡 = (1 − 𝜁) ⋅
(
1 − 𝛼(𝐺)

𝑚

)
+ 𝜁 ⋅

(
1 − 𝜃(𝐺)

𝑛

)
(17)

where 𝑚 represents the number of clients, 𝑛 represents the number of routers, 𝛼(𝐺) and 𝜃(𝐺) denotes the network coverage and 
connectivity. 𝛿𝑖 and 𝐺𝑖 represent the number of covered clients and the size of sub-graph, respectively. The weighting coefficient 𝜁
takes values between 0 and 1, representing the relative importance assigned to each objective’s rank. To ensure normalization, the 
denominator should be used in each part of the equation, allowing for fair comparison of different objectives. The goal is to minimize 
the cost function, and ideally, it should approach the global minimum, which is zero. This indicates the optimal configuration of the 
WMN that maximizes coverage and connectivity.

The proposed approach in this work also addresses the optimal placement of the sink node in WMN by introducing a fitness 
function that evaluates the residual energy of neighboring nodes. The primary goal is to identify areas with higher residual energy 
within the network’s neighborhood to strategically position the sink node. The fitness function used in this approach is based on 
evaluating the residual energy of neighbor nodes, which is a crucial factor in determining their remaining energy resources. By 
considering the residual energy, the fitness function identifies candidate locations for the sink node, where the neighboring nodes 
exhibit higher energy levels. Placing the sink node in such areas contributes to higher network longevity, as it ensures that the sink 
node can be efficiently replaced by a neighboring node in case it depletes its energy reserves.

The proposed objective function, represented by (18), plays a pivotal role in optimizing the sink node’s placement. By employ-

ing this objective function, the algorithm can effectively identify the node with the highest residual energy among the neighbors, 
facilitating the selection of the most suitable location for the sink node. This decision-making process ensures that the sink node 
is strategically positioned in areas where it can be replaced by nodes with sufficient energy, contributing to the overall network’s 
longevity and robustness.

𝑓𝑡(𝑛) =
1

𝜚1
∑𝑋𝑛𝑏𝑟

𝑡=1 𝐸𝑛𝑏𝑟(𝑡) +𝐸𝑛 + 𝜚2𝑋𝑛𝑏𝑟 + 𝜚3𝑑𝑛

(18)

where 𝑋𝑛𝑏𝑟 represents the number of neighbor mesh routers of the sink node, 𝐸𝑛𝑏𝑟 denotes the energy of these mesh routers, 𝐸𝑛 is 
the candidate sink node n residual energy, 𝑑𝑛 represents the position of the n node with respect to deployment area center and the 
parameters 𝜚1, 𝜚2, and 𝜚3 are random variables ranging from 0 to 1.

This research also tackles congestion reduction by minimizing network overlap while ensuring optimal levels of connectivity and 
coverage. The approach involves the application of a specific formula, designated as (19). This formula is instrumental in achieving 
a balance between reducing network congestion and maintaining effective network coverage and connectivity, thereby optimizing 
10

network performance.
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𝐶̆ =ℝ−
ℝ∑

𝑖=1

(
𝛾𝑖 +∅𝑖

)
, 𝛾𝑖 ≠∅𝑖

𝛾 =

{
1 𝑑 ≥ 𝑥

0 𝑑 > 𝑥

∅=

{
1 if the mesh router has no task

0 otherwise

𝑥 =
√(

𝑟𝑥1 − 𝑟𝑥2
)2 + (𝑟𝑦1 − 𝑟𝑦2

)2

(19)

where 𝐶̆ denotes the number of congested routers, ℝ represents the total count of mesh routers, 𝑑 is the user-defined desired distance, 
𝛾 signifies the number of overlaying routers, ∅ refers to routers not assigned any task, and 𝑥 denotes the Euclidean distance between 
any pair of routers.

4. Results and discussion

4.1. Validation of the proposed TTHHO

The proposed TTHHO algorithm’s effectiveness is extensively evaluated through multiple assessment and a comparison with seven 
widely recognized algorithms. A set of 33 diverse benchmarking functions is employed to assess the robustness and practicality of 
TTHHO. The results of these equations are initially depicted through plots, then by thorough convergence studies and statistical 
analyses. The test Friedman ranking is then applied to assess the rank of the proposed TTHHO in comparison to the competing 
approaches. Furthermore, the TTHHO algorithm is employed to optimize the performance metrics of WMN, aiming to enhance its 
overall performance and efficiency.

4.1.1. Benchmark functions

Various benchmark functions are carefully selected for validation, taking into account factors such as multiple local minima, 
boundaries, dimensions, and constraints. Table 4 outlines these benchmark functions which are categorized into multi-modal, 
uni-modal, and hybrid systems to facilitate their classification. The algorithm’s exploitation accuracy is assessed using uni-modal 
functions (F1 to F6) which possess a single global optima. Additionally, multi-modal functions are employed to assess the ability 
of the proposed approach in avoiding local optimal entrapment and reaching the final global optima, thereby demonstrating its 
exploration capability. Multi-modal functions (F7 to F10) with variable dimensions and multi-modal functions (F11 to F18) with 
non-varying dimensions are employed to assess the algorithm’s stability under diverse conditions. Furthermore, hybrid functions 
(F19 to F33) assess the TTHHO proficiency in identifying space search local and global minima, as well as determining the next 
position movement in the search space. By utilizing this diverse set of benchmark functions, a comprehensive assessment of the 
performance and effectiveness of the TTHHO algorithm is achieved.

Moreover, Fig. 3 displays surface plots of the benchmark functions, showcasing a diverse array of shapes that correspond to 
their unique characteristics. These shapes include bowel, cone, plate, valley, and egg holder-shaped functions, each with distinct 
features and exhibiting single and multiple dimensions with single and multiple local minima value. Throughout the simulation, the

maximum number of iterations and the swarms remain unchanged at 500 and 30, respectively. Other key optimization constants 
are set as follows: max = 1.0, min = 0.2, 𝛼 = 5, 𝜇 = 0.499, and 𝜖 = 2.2204 × 10−16. These well-defined settings ensure consistent 
and reliable evaluations of the proposed TTHHO algorithm across various benchmark functions with different complexities and 
characteristics.

4.1.2. Numerical analysis benchmark functions

This section involves a numerical comparison of the proposed TTHHO algorithm with other established optimization approaches, 
including TSO, PSO, GWO, SCA, EO, MFO, and HHO. Table 5 provides an example of the statistical parameters, comprising the mean, 
worst, best, and standard deviation of all competing algorithms, including F1, F16, F33. Similar comparisons are illustrated for the 
remaining benchmark functions in Fig. 4, focusing on the ranks obtained by each algorithm. These ranks are determined using the 
Friedman test, where the algorithms are ordered based on their mean values. A rank 1 signifies an algorithm that approaches the 
global minimum more closely, while a rank 8 indicates an algorithm that is farther from the global minima.

The evaluation of algorithm performance centers around measuring the proximity of the data statistics to the global minima for 
the tested benchmarking functions. Among all the algorithms, the proposed TTHHO consistently exhibits the lowest performance 
indices. Notably, the smallest mean value indicates TTHHO’s capacity to discover better optima with smaller fitness functions, 
whereas the lower standard deviation (Stdv) reflects its best convergence reliability and stability. Consequently, TTHHO successfully 
avoids local optima, making it a robust optimization approach.

The rank values depicted in Fig. 4 further support this claim, showing that the proposed TTHHO algorithm outperforms other 
algorithms, particularly in various unimodal functions. HHO and TSO emerge as close competitors, closely approaching global optima 
in most statistical comparisons. Conversely, PSO demonstrates poor performance when evaluating statistical parameters, while GWO 
11

exhibits an unstable response, performing well in some functions but showing degradation in others. These results highlight the 
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Table 4

The mathematical model of the benchmark functions.

Function Boundaries Formula

F1 [-100,100] 𝐹 (𝐱) =∑𝑛

𝑖=1 𝑥2
𝑖

F2 [-10,10] 𝐹 (𝐱) =∑𝑛

𝑖=0
||𝑥𝑖
||+∏𝑛

𝑖=0
||𝑥𝑖
||

F3 [-100,100] 𝐹 (𝐱) =∑𝑑

𝑖=1

(∑𝑖

𝑗=1 𝑥𝑗

)2
F4 [-30,30] 𝐹 (𝐱) =∑𝑛−1

𝑖=1

[
100

(
𝑥2

𝑖
− 𝑥𝑖+1

)2 + (1 − 𝑥𝑖

)2]
F5 [-100,100] 𝐹 (𝐱) =∑𝑛

𝑖=1
([

𝑥𝑖 + 0.5
])2

F6 [-128,128] 𝐹 (𝐱) =∑𝑛

𝑖=0 𝑖𝑥4
𝑖
+ random(0,1)

F7 [-500,500] 𝐹 (𝐱) =∑𝑛

𝑖=1

(
−𝑥𝑖 sin

(√||𝑥𝑖
||))

F8 [-32,32] 𝐹 (𝐱) = −20exp
⎛⎜⎜⎝−0.2

√√√√ 1
𝑛

𝑛∑
𝑖=1

𝑥2
𝑖

⎞⎟⎟⎠− exp

(
1
𝑛

𝑛∑
𝑖=1

cos
(
2𝜋𝑥𝑖

))
+ 20 + 𝑒

F9 [-50,50]

𝐹 (𝐱) = 𝜋

𝑛

{
10 sin

(
𝜋𝑦1
)}

+
𝑛−1∑
𝑖=1

(
𝑦𝑖 − 1

)2 [1 + 10 sin2
(
𝜋𝑦𝑖+1

)
+

𝑛∑
𝑖=1

𝑢
(
𝑥𝑖,10,100,4

)]
,

where, 𝑦𝑖 = 1 +
𝑥𝑖 + 1
4

, 𝑢
(
𝑥𝑖, 𝑎, 𝑘,𝑚

)⎧⎪⎨⎪⎩
𝐾
(
𝑥𝑖 − 𝑎

)𝑚
if 𝑥𝑖 > 𝑎

0 −𝑎 ≤ 𝑥𝑖 ≥ 𝑎

𝐾
(
−𝑥𝑖 − 𝑎

)𝑚 −𝑎 ≤ 𝑥𝑖

F10 [-50,50]

𝐹 (𝐱) = 0.1

(
sin2

(
3𝜋𝑥1

)
+

𝑛∑
𝑖=1

(
𝑥𝑖 − 1

)2 [1 + sin2
(
3𝜋𝑥𝑖+ 1) ] +

(
𝑥𝑛 − 1

)2 1 + sin2
(
2𝜋𝑥𝑛

))
+

𝑛∑
𝑖=1

𝑢
(
𝑥𝑖,5,100,4

)
F11 [-65,65] 𝐹 (𝐱) =

(
1

500
+
∑25

𝑗=1
1

𝑗+
∑2

𝑖=1

(
𝑥𝑖 − 𝑎𝑖𝑗

))−1

F12 [-5,5] 𝐹 (𝐱) =∑11
𝑖=1

[
𝑎𝑖 −

𝑥1
(
𝑏2

𝑖
+𝑏𝑖𝑥2

)
𝑏2

𝑖
+𝑏𝑖𝑥3+𝑥4

]2
F13 [-5,5] 𝐹 (𝐱) = 4𝑥2

1 − 2.1𝑥4
1 +

1
3
𝑥6
1 + 𝑥1𝑥2 − 4𝑥2

2 + 4𝑥4
2

F14 [-5,5] 𝐹 (𝐱) =
(
𝑥2 −

5.1
4𝜋2 𝑥2

1 +
5
𝜋
𝑥1 − 6

)2
+ 10

(
1 − 1

8𝜋

)
cos𝑥1 + 10

F15 [-4,5] 𝑓 (𝐱) =
𝑑∕4∑
𝑖=1

(𝑥4𝑖−3 + 10𝑥4𝑖−2)2 + 5(𝑥4𝑖−1 − 𝑥4𝑖)2+ (𝑥4𝑖−2 − 2𝑥4𝑖−1)4 + 10
(
𝑥4𝑖−3 − 𝑥4𝑖

)4
F16 [-1,2] 𝐹 (𝐱) = −

∑4
𝑖=1 𝑐𝑖 exp

(
−
∑3

𝑖=1 𝑎𝑖𝑗

(
𝑥𝑗 − 𝑝𝑖𝑗

)2)
F17 [0,1] 𝐹 (𝐱) = −

∑4
𝑖=1 𝑐𝑖 exp

(
−
∑6

𝑖=1 𝑎𝑖𝑗

(
𝑥𝑗 − 𝑝𝑖𝑗

)2)
F18 [0,1] 𝐹 (𝐱) = −

∑5
𝑖=1

[(
𝑋 − 𝑎𝑖

)(
𝑋 − 𝑎𝑖

)𝑇 + 𝑐𝑖

]−1
F19 [-512,512] 𝐹 (𝐱) = −(𝑥2 + 47) sin(

√|𝑥2 +
𝑥1

2
+ 47|)− 𝑥1 sin(

√|𝑥1 − (𝑥2 + 47)|)
F20 [-10,10] 𝐹 (𝐱) = −

||||||sin
(
𝑥1
)
cos
(
𝑥2
)
exp

(|||||1 −
√

𝑥2
1+𝑥2

2

𝜋

|||||
)||||||

F21 [-5.12,5.12] 𝐹 (𝐱) =
(∑5

𝑖=1 𝑖 cos
(
(𝑖+ 1)𝑥1 + 𝑖

))(∑5
𝑖=1 𝑖 cos

(
(𝑖+ 1)𝑥2 + 𝑖

))
F22 [1.5,4] 𝐹 (𝐱) = sin

(
𝑥1 + 𝑥2

)
+
(
𝑥1 − 𝑥2

)2 − 1.5𝑥1 + 2.5𝑥2 + 1

F23 [3,3] 𝐹 (𝐱) =
(
4 − 2.1𝑥2

1 +
𝑥4
1
3

)
𝑥2
1 + 𝑥1𝑥2 +

(
−4 + 4𝑥2

2

)
𝑥2
2

F24 [-100,100] 𝐹 (𝐱) = −cos
(
𝑥1
)
cos
(
𝑥2
)
exp
(
−
(
𝑥1 − 𝜋

)2 − (𝑥2 − 𝜋
)2)

F25 [-5,10] 𝐹 (𝐱) = 𝑎
(
𝑥2 − 𝑏𝑥2

1 + 𝑐𝑥1 − 𝑟
)2 + 𝑠(1 − 𝑡) cos

(
𝑥1
)
+ 𝑠

F26 [-2,2]
𝐹 (𝐱) =[1 + (𝑥1 + 𝑥2 + 1)2(19 − 14𝑥1 + 3𝑥2

1 − 14𝑥2 + 6𝑥1𝑥2 + 3𝑥2
2)] × [30 + (2𝑥1 − 3𝑥2)2

(18 − 32𝑥1 + 12𝑥2
1 + 48𝑥2 − 36𝑥1𝑥2 + 27𝑥2

2)]

F27 [-5,5] 𝐹 (𝐱) = 1
2
∑𝑑

𝑖=1
(
𝑥4

𝑖
− 16𝑥2

𝑖
+ 5𝑥𝑖

)

12
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Table 4 (continued)

Function Boundaries Formula

F28 [-10,10]

𝐹 (𝐱) = sin2(𝜋𝑤1) +
𝑑−1∑
𝑖=1

(𝑤𝑖 − 1)2[1 + 10 sin2(𝜋𝑤𝑖 + 1)]+ (𝑤𝑑 − 1)2[1 + sin2(2𝜋𝑤𝑑 )],

where ,𝑤𝑖 = 1 +
𝑥𝑖 − 1
4

, for all 𝑖 = 1,… , 𝑑

F29 [-10,10]
𝐹 (𝐱) = 100

(
𝑥2
1 − 𝑥2

)2 + (𝑥1 − 1
)2 + (𝑥3 − 1

)2 + 90
(
𝑥2
3 − 𝑥4

)2 + 10.1
((

𝑥2 − 1
)2 + (𝑥4 − 1

)2)+
19.8

(
𝑥2 − 1

)(
𝑥4 − 1

)

F30 [0,1]

𝐹 (𝐱) = −
4∑

𝑖=1
𝛼𝑖 exp

(
−

3∑
𝑗=1

𝐴𝑖𝑗

(
𝑥𝑗 − 𝑃𝑖𝑗

)2)
, where, 𝛼 = (1.0,1.2,3.0,3.2)𝑇

𝐀 =
⎛⎜⎜⎜⎝
3.0 10 30
0.1 10 35
3.0 10 30
0.1 10 35

⎞⎟⎟⎟⎠𝐏 = 10−4
⎛⎜⎜⎜⎝
3689 1170 2673
4699 4387 7470
1091 8732 5547
381 5743 8828

⎞⎟⎟⎟⎠

F31 [0,10]

𝐹 (𝐱) = −
𝑚∑

𝑖=1

( 4∑
𝑗=1

(
𝑥𝑗 −𝐶𝑗𝑖

)2 + 𝛽𝑖

)−1

, where, 𝑚 = 10;𝛽 = 1
10

(1,2,2,4,4,6,3,7,5,5)𝑇

𝐂 =
⎛⎜⎜⎜⎝
4.0 1.0 8.0 6.0 3.0 2.0 5.0 8.0 6.0 7.0
4.0 1.0 8.0 6.0 7.0 9.0 3.0 1.0 2.0 3.6
4.0 1.0 8.0 6.0 3.0 2.0 5.0 8.0 6.0 7.0
4.0 1.0 8.0 6.0 7.0 9.0 3.0 1.0 2.0 3.6

⎞⎟⎟⎟⎠

F32

𝐹 (𝐱) = −
4∑

𝑖=1
𝛼𝑖 exp

(
−

6∑
𝑗=1

𝐴𝑖𝑗

(
𝑥𝑗 − 𝑃𝑖𝑗

)2)
, where, 𝛼 = (1.0,1.2,3.0,3.2)𝑇

𝐀 =
⎛⎜⎜⎜⎝

10 3 17 3.50 1.7 8
0.05 10 17 0.1 8 14
3 3.5 1.7 10 17 8
17 8 0.05 10 0.1 14

⎞⎟⎟⎟⎠ ,𝐏 = 10−4
⎛⎜⎜⎜⎝
1312 1696 5569 124 8283 5886
2329 4135 8307 3736 1004 9991
2348 1451 3522 2883 3047 6650
4047 8828 8732 5743 1091 381

⎞⎟⎟⎟⎠
F33 [0,𝜋] 𝐹 (𝐱) = −

∑𝑑

𝑖=1 sin
(
𝑥𝑖

)
sin2𝑚

(
𝑖𝑥2

𝑖

𝜋

)

Table 5

TTHHO statistical and rank results compared to the competing algorithms.

Func. 𝐺𝑚 STAT HHO SCA GWO PSO MFO EO TSO TTHHO

F1 0

Mean 4.18E-99 9.66E-74 1.53E-27 4.19E+04 3.01E+03 1.53E-41 2.25E-118 6.58E-134

Best 4.44E-111 5.21E-87 2.24E-28 3.40E+04 2.73E+00 4.22E-42 4.78E-141 4.35E-142

Worst 5.78E-99 5.57E-71 1.64E-27 5.01E+04 1.00E+04 6.59E-41 1.35E-99 1.39E-128

Stdv 1.85E-99 1.75E-71 4.48E-28 4.94E+03 4.21E+03 1.91E-41 4.24E-100 4.38E-129

Rank 3 4 6 8 7 5 2 1

F16 -3.86

Mean -3.86E+00 -3.86E+00 -7.33E-01 -3.26E+00 -3.86E+00 -3.86E+00 -3.79E+00 -3.85E+00

Best -3.86E+00 -3.86E+00 -2.81E+00 -3.61E+00 -3.86E+00 -3.86E+00 -3.86E+00 -3.86E+00

Worst -3.85E+00 -3.85E+00 -9.54E-02 -2.66E+00 -3.86E+00 -3.86E+00 -3.61E+00 -3.84E+00

Stdv 2.92E-03 3.17E-03 9.54E-01 3.47E-01 9.36E-16 7.69E-16 8.43E-02 8.53E-03

Rank 1 1 8 7 1 1 6 1

F33 -9.6601

Mean -5.76E+00 -9.82E-01 -8.02E+00 -2.96E+00 -7.86E+00 -8.60E+00 -5.69E+00 -5.83E+00

Best -6.87E+00 -2.12E+00 -8.84E+00 -4.09E+00 -8.60E+00 -9.26E+00 -6.89E+00 -6.86E+00

Worst -5.09E+00 -2.86E-03 -7.10E+00 -2.36E+00 -6.78E+00 -7.29E+00 -4.91E+00 -4.48E+00

Stdv 5.62E-01 6.81E-01 6.40E-01 5.72E-01 7.17E-01 6.43E-01 6.66E-01 7.28E-01

Rank 5 8 2 7 3 1 6 4

Mean of rank 2.2121 4.3030 4.8182 7.0303 3.6061 3.2121 2.9697 1.7879

Final rank 2 6 7 8 5 4 3 1

enhancement of exploration accuracy using TTHHO. In the analysis of different multimodal functions, TTHHO displays extraordinary 
exploration capabilities, effortlessly transitioning between local minima values while avoiding being trapped. Likewise, the TTHHO 
excels in most hybrid functions, showcasing its superior capability to identify optimal values. Many functions with non-zero or 
numerous local minima have their optimal solutions discovered in the early stage of HHO or TTHHO’s search, underscoring the 
13

effectiveness of the proposed approach in handling complex optimization landscapes.
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Fig. 3. The graphical depiction of the benchmark functions.

The proposed TTHHO algorithm attained an impressive minimum mean value of 1.7879, showcasing its superior performance 
and securing the top rank in the comparison. Following TTHHO, the rankings of the other algorithms, in descending order, are HHO, 
TSO, EO, MFO, SCA, GWO, and PSO. This clear difference in mean values highlights the significant enhancement in search capability 
and consistency achieved by the proposed hybrid method, demonstrating its effectiveness over existing techniques.

4.1.3. Convergence analysis of the benchmark functions

The benchmark functions underwent rigorous testing with 300 iterations each to analyze their convergence. In this context, 
“convergence” refers to the point at which an algorithm locates the minimal fitness value within the scheduled maximum iterations. 
Fig. 5 displays the convergence plots of the benchmark functions, highlighting the performance of various algorithms, including the 
proposed TTHHO.

In the category of unimodal benchmark functions, the proposed TTHHO demonstrated a broad search strategy, leading to the 
14

exploration of diverse solutions and necessitating further iterations. Despite this behavior, TTHHO showcased a remarkable enhance-
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Fig. 4. The rank value of TTHHO vs other algorithms using 33-benchmark functions.

ment in approaching the global minima. The Friedman ranking method confirmed this outstanding performance by awarding the 
proposed TTHHO the first rank, attributing to its best mean in speculating the global minima. Notably, the second closest competitors 
to TTHHO, namely HHO and SCA, also performed well in the Friedman ranking. On the other hand, GWO displayed relatively limited 
effectiveness in dealing with unimodal functions, while PSO exhibited the poorest performance, displaying a substantial gap between 
the obtained value and the desired global minimum.

The findings emphasize the proficiency of the proposed TTHHO algorithm in tackling unimodal benchmark functions by striking 
a balance between exploration and exploitation to effectively converge towards the global minima. The visualization in Fig. 5

underscores the superiority of TTHHO and positions it as a leading choice for optimization tasks, showcasing its potential to surpass 
competing algorithms in challenging scenarios.

In summary, the analyses of convergence confirm the ranking Friedman test for the proposed TTHHO algorithm alongside the 
competing algorithms, resulting in the following ranking: TTHHO obtained the first rank, while HHO and TSO obtained the second 
and third positions in the overall performance assessment among the 33 benchmark functions. Conversely, GWO and PSO secured 
the seventh and eighth rankings, respectively.

4.2. WMN optimization analyses using the proposed TTHHO

The performance of the proposed TTHHO algorithm in optimizing the WMN is thoroughly analyzed by comparing it with seven 
well-known algorithms based on various metrics, including fitness value, convergence, connectivity and coverage, and residual 
energy. This section presents a comprehensive discussion of the findings obtained through the utilization of TTHHO for WMN 
optimization.

4.2.1. Convergence analysis of TTHHO for different WMN network sizes

The convergence Fig. 6 displays the TTHHO performance compared to different optimization algorithms for various network 
sizes. Each sub-figure corresponds to a specific network size ranging from 60 to 160 routers.

Upon analyzing the convergence figure, it becomes evident that the proposed TTHHO algorithm consistently outperforms the 
other algorithms in terms of convergence. For smaller network sizes, such as 60 routers in Fig. 6a and 80 routers as in Fig. 6b, 
TTHHO achieves a convergence value of 0.1733 and 0.0675, respectively. In contrast, the convergence values of the other algorithms 
range from 0.0712 to 0.32 for 80 routers. This suggests that TTHHO converges faster and more accurately to optimal or near-optimal 
solutions, making it a preferable choice for networks of modest size.

As the network size increases, the performance gap between TTHHO and the other algorithms widens. Figs. 6c, 6d and 6e 
represent the convergence curves for 100, 120 and 140 routers, respectively. Fig. 6f depicts the convergence curve for 160 routers 
network size where TTHHO attains an impressively low convergence value of 0.003125, while the other algorithms range from 
0.003125 to 0.00625. This trend demonstrates the robustness of TTHHO in handling larger and more complex networks, where the 
15

search space becomes considerably more challenging to explore.



Heliyon 10 (2024) e28719H. Abdulrab, F.A. Hussin, I. Ismail et al.

Fig. 5. Convergence curves of TTHHO vs other algorithms for the 33-benchmark functions.
16
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Fig. 6. Convergence analysis for various network sizes.

Furthermore, the figure showcases TTHHO’s exceptional ability to approach the global minimum effectively. The descending 
trend in convergence values with increasing network size suggests that TTHHO is adept at navigating complex search spaces and has 
a higher likelihood of converging to the global minimum. In contrast, other algorithms appear to struggle more with larger networks, 
as evidenced by their comparatively higher convergence values.

The figure’s outcomes emphasize the significant advantages of employing the TTHHO algorithm for network optimization tasks. 
Its faster convergence and ability to achieve the global minimum make it a compelling choice, particularly for large-scale networks. 
TTHHO’s unique combination of TSO, SCA and HHO enables it to explore the search space efficiently and refine solutions effectively, 
culminating in superior optimization performance across diverse network sizes.

4.2.2. Statistical analysis of TTHHO for different WMN network sizes

The effectiveness of the proposed TTHHO is statistically validated on different size of WMN ranging from 60 to 160 routers. 
17

Table 6 presents the fitness values average and variance which correspond to each network size.
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The table outlines a comprehensive comparison of TTHHO with other algorithms concerning mean, best, worst, and standard 
deviation fitness values for 60 routers in a network. Among the algorithms, TTHHO exhibits the lowest mean fitness value of 0.2002, 
indicating its superior optimization performance. TTHHO also achieves an impressive best fitness value of 0.1733, surpassing all 
other algorithms in finding the most optimal solution. Moreover, TTHHO’s worst fitness value of 0.25 is competitive and compa-

rable to other high-performing algorithms. Notably, TTHHO displays the smallest standard deviation of 0.0013, which reflects its 
robustness and stability in consistently converging to quality solutions. Additionally, TTHHO exhibits the lowest average variance 
of fitness values at 0.000241, indicating its ability to consistently converge towards optimal solutions with minimal variation. This 
outstanding performance in terms of both mean fitness and variance emphasizes TTHHO’s reliability and accuracy in optimization 
tasks. Overall, the findings unequivocally demonstrate that TTHHO outperforms the other algorithms, providing more accurate and 
reliable optimization results for the given network size.

Similarly, for 80 routers, TTHHO once again exhibits superior optimization performance with the lowest mean fitness value of 
0.1044, outperforming all other algorithms. TTHHO also achieves the best fitness value of 0.0837, indicating its exceptional ability 
to find the most optimal solution. Additionally, TTHHO’s worst fitness value of 0.16 is highly competitive, comparable to the top-

performing algorithms. The small standard deviation of 0.0144 underscores TTHHO’s stability and consistency in converging towards 
high-quality solutions with minimal fluctuation. Moreover, TTHHO demonstrates the lowest average variance of fitness values at 
0.000201, signifying its remarkable ability to converge consistently towards optimal solutions while maintaining low variability. 
This exceptional performance in both mean fitness and variance further strengthens TTHHO’s reliability and accuracy in tackling 
optimization challenges for network sizes with 80 routers. The results once again solidify TTHHO’s dominance among the algorithms 
tested, highlighting its capacity to outperform competitors in terms of both convergence quality and stability. TTHHO’s robustness 
and efficiency make it a compelling choice for optimizing networks with 80 routers, ensuring more accurate and dependable results 
for various real-world applications.

For 100 routers, TTHHO continues to demonstrate its exceptional optimization performance, obtaining the lowest mean fitness 
value of 0.0555 among all algorithms, emphasizing its superior ability to find optimal solutions. Similarly, TTHHO achieves the best 
fitness value of 0.03, outperforming other algorithms in reaching the most optimal solution. Additionally, TTHHO’s worst fitness value 
of 0.11 remains highly competitive, showcasing its robustness across diverse scenarios. Furthermore, TTHHO maintains remarkable 
stability with the smallest standard deviation of 0.0154, signifying its consistency in achieving high-quality solutions. Moreover, 
TTHHO displays the lowest average variance of fitness values at 0.000222, underlining its reliability in consistently converging to 
optimal solutions with minimal variability. These impressive findings emphasize TTHHO’s superiority as an optimization algorithm 
for networks with 100 routers, making it a compelling choice for achieving accurate and dependable results.

Consistently showcasing its superior optimization capabilities, TTHHO achieves the lowest mean fitness value of 0.0269, sur-

passing all other algorithms with 120 mesh routers. This emphasizes TTHHO’s exceptional ability to find highly optimal solutions. 
TTHHO also secures the best fitness value of 0.0125, demonstrating its effectiveness in reaching the most optimal solution. Addition-

ally, TTHHO’s worst fitness value of 0.0425 remains competitive, signifying its robustness in diverse scenarios. Moreover, TTHHO 
exhibits remarkable stability with the smallest standard deviation of 0.0064, reaffirming its consistency in delivering high-quality 
solutions. Furthermore, TTHHO maintains the lowest average variance of fitness values at 0.000040, underlining its reliability in 
consistently converging towards optimal solutions with minimal variability.

For networks with 140 routers, the comparison table demonstrates the exceptional optimization capabilities of TTHHO in terms 
of both average fitness values and average variance of fitness values. TTHHO outperforms all other algorithms with the lowest mean 
fitness value of 0.0043, showcasing its ability to consistently find optimal solutions. Similarly, it achieves the best fitness value of 
0.0036, indicating its effectiveness in reaching the most optimal solution. TTHHO’s worst fitness value of 0.0107 remains highly 
competitive, highlighting its robustness across diverse network configurations. Furthermore, TTHHO maintains remarkable stability 
with the smallest standard deviation of 0.0024, confirming its consistency in delivering high-quality solutions. Impressively, TTHHO 
also displays low average variance of fitness values at 0.000006, affirming its reliability in consistently converging towards optimal 
solutions with minimal variability.

For 160 routers, the comparison table further establishes TTHHO as an outstanding optimization algorithm, showcasing its 
superiority in terms of average fitness values and average variance of fitness values. TTHHO achieves the lowest mean fitness value 
of 0.0032, outperforming all other algorithms and consistently converging towards optimal solutions. Similarly, TTHHO secures the 
best fitness value of 0.0031, emphasizing its remarkable ability to reach the most optimal solution. Additionally, TTHHO’s worst 
fitness value of 0.0062 remains highly competitive, underscoring its robustness across various network configurations. Furthermore, 
TTHHO maintains remarkable stability with the smallest standard deviation of 0.00056, reaffirming its consistency in delivering high-

quality solutions. Impressively, TTHHO also displays the lowest average variance of fitness values at 0.0000003, further confirming 
its reliability in consistently converging towards optimal solutions with virtually negligible variability. These compelling results 
reinforce TTHHO’s position as a highly dependable optimization algorithm for networks with 160 routers, making it an ideal choice 
for achieving accurate and dependable results in real-world applications with large and complex networks.

In summary, the Table 6 outline statistical findings for network sizes ranging from 60 to 160 routers and demonstrates the 
exceptional optimization capabilities of TTHHO when compared to other algorithms. Across all network sizes, TTHHO consistently 
outperforms its counterparts in terms of mean fitness values, achieving lower values and converging faster to optimal or near-optimal 
solutions. TTHHO also excels in finding the global minimum, as evidenced by its progressively decreasing final convergence values 
with increasing network sizes. Moreover, TTHHO exhibits remarkable stability with smaller standard deviations and lower average 
18

variance of fitness values, making it a highly reliable and consistent optimization algorithm. These results emphasize TTHHO’s 
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Table 6

WMN based Statistical Data of TTHHO vs other Algorithms.

60 Routers

Algorithm Fitness average values Fitness Variance average values

Mean Best Worst Stdv Mean Best Worst Stdv

HHO 0.211454 0.1583 0.2783 0.025295 0.000619 0.000712 0.000753 0.001718

SCA 0.225159 0.195 0.265 0.016838 0.000274 0.000304 0.000322 0.001637

GWO 0.213409 0.185 0.24 0.01603 0.000249 0.000275 0.00027 0.001472

PSO 0.286526 0.2083 0.3267 0.03132 0.000949 0.001149 0.000995 0.003012

MFO 0.255782 0.1967 0.2917 0.034005 0.001119 0.001237 0.001154 0.002688

EO 0.259899 0.2183 0.2833 0.016151 0.000252 0.000308 0.000269 0.002115

TSO 0.212999 0.1733 0.2583 0.022799 0.000503 0.000555 0.000564 0.001647

TTHHO 0.200172 0.1733 0.25 0.015787 0.000241 0.000265 0.000317 0.001309

80 Routers

Algorithm Fitness average values Fitness Variance average values

Mean Best Worst Stdv Mean Best Worst Stdv

HHO 0.123444 0.0875 0.17 0.023457 0.000533 0.000578 0.000594 0.000858

SCA 0.145047 0.1125 0.1888 0.020211 0.000395 0.000431 0.000451 0.000893

GWO 0.136427 0.085 0.17 0.021075 0.00043 0.000518 0.000461 0.000858

PSO 0.177159 0.1262 0.2175 0.024036 0.000559 0.000646 0.000606 0.001307

MFO 0.167113 0.1275 0.1962 0.018797 0.000342 0.000394 0.000366 0.001039

EO 0.199473 0.1687 0.2213 0.014746 0.00021 0.000241 0.000225 0.001282

TSO 0.131411 0.0875 0.1775 0.025646 0.000637 0.000704 0.000696 0.001002

TTHHO 0.104445 0.0837 0.16 0.01442 0.000201 0.000216 0.000295 0.000459

100 Routers

Algorithm Fitness average values Fitness Variance average values

Mean Best Worst Stdv Mean Best Worst Stdv

HHO 0.060359 0.025 0.115 0.024826 0.000577 0.000627 0.000654 0.000627

SCA 0.083827 0.03 0.155 0.028818 0.000778 0.000885 0.000914 0.000889

GWO 0.085668 0.045 0.125 0.020064 0.000377 0.000435 0.000419 0.000521

PSO 0.1444 0.07 0.2 0.034483 0.001113 0.001306 0.001194 0.001521

MFO 0.070866 0.035 0.11 0.019649 0.000361 0.000408 0.000402 0.000452

EO 0.122246 0.075 0.16 0.020971 0.000412 0.000487 0.000452 0.000744

TSO 0.074519 0.03 0.155 0.025795 0.000623 0.000696 0.000804 0.00071

TTHHO 0.055533 0.03 0.11 0.01541 0.000222 0.000245 0.000309 0.000277

120 Routers

Algorithm Fitness average values Fitness Variance average values

Mean Best Worst Stdv Mean Best Worst Stdv

HHO 0.027969 0.0175 0.0467 0.007131 4.92E-05 5.32E-05 5.92E-05 6.39E-05

SCA 0.035439 0.0167 0.0658 0.014148 0.000194 0.000208 0.000218 0.000212

GWO 0.038678 0.0208 0.0692 0.013191 0.000169 0.000181 0.000194 0.000192

PSO 0.058475 0.0258 0.1008 0.01818 0.00032 0.000359 0.000368 0.000378

MFO 0.04606 0.0175 0.0858 0.014321 0.000199 0.000228 0.000242 0.000234

EO 0.053345 0.0225 0.0783 0.013281 0.000171 0.000204 0.000187 0.000226

TSO 0.03367 0.0167 0.0608 0.009104 8.03E-05 9.06E-05 0.000101 0.000101

TTHHO 0.026915 0.0125 0.0425 0.006436 4.01E-05 4.73E-05 4.69E-05 5.42E-05

(continued on next page)
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Table 6 (continued)

140 Routers

Algorithm Fitness average values Fitness Variance average values

Mean Best Worst Stdv Mean Best Worst Stdv

HHO 0.004395 0.0036 0.0107 0.0023 5.12E-06 5.16E-06 6.21E-06 5.31E-06

SCA 0.006784 0.0036 0.0143 0.003501 1.19E-05 1.24E-05 1.33E-05 1.24E-05

GWO 0.014295 0.0036 0.0336 0.009436 8.65E-05 9.22E-05 9.43E-05 8.82E-05

PSO 0.015925 0.007143 0.027857 0.005189 2.61E-05 2.89E-05 2.99E-05 3.02E-05

MFO 0.006172 0.003571 0.014286 0.003802 1.4E-05 1.44E-05 1.56E-05 1.43E-05

EO 0.021577 0.0107 0.0336 0.006308 3.85E-05 4.28E-05 4.24E-05 4.67E-05

TSO 0.004898 0.0036 0.0179 0.003524 1.2E-05 1.21E-05 1.67E-05 1.22E-05

TTHHO 0.004258 0.0036 0.0107 0.002449 5.81E-06 5.84E-06 6.94E-06 5.96E-06

160 Routers

Algorithm Fitness average values Fitness Variance average values

Mean Best Worst Stdv Mean Best Worst Stdv

HHO 0.003302 0.003125 0.008125 0.001042 1.05E-06 1.05E-06 1.75E-06 1.22E-06

SCA 0.003539 0.003125 0.008125 0.00134 1.74E-06 1.75E-06 2.35E-06 1.91E-06

GWO 0.007618 0.006312 0.01875 0.004357 1.84E-05 1.86E-05 2.36E-05 1.84E-05

PSO 0.007741 0.006312 0.01125 0.002709 7.11E-06 7.25E-06 8.19E-06 7.32E-06

MFO 0.003773 0.003254 0.00625 0.00078 5.88E-07 5.89E-07 8.54E-07 7.92E-07

EO 0.007891 0.006312 0.014375 0.002934 8.34E-06 9.24E-06 9.4E-06 9.3E-06

TSO 0.003792 0.003125 0.008125 0.00152 2.24E-06 2.26E-06 2.76E-06 2.43E-06

TTHHO 0.003198 0.003125 0.00625 0.000561 3.05E-07 3.05E-07 5.89E-07 5.27E-07

superiority and robustness across diverse network configurations, solidifying its position as an outstanding choice for achieving 
accurate and dependable results in real-world applications, especially for larger and more complex networks.

4.2.3. Optimized WMN topology using TTHHO vs other algorithm

Fig. 7 provides a comprehensive visual representation of the initial WMN and the optimized states achieved by the proposed 
TTHHO algorithm, as well as the competing algorithms. The initial WMN is depicted as a congested network with limited coverage, 
showing numerous congested paths and areas with weak or no wireless connectivity. This state exemplifies the challenges and 
inefficiencies faced by the network in its original configuration.

The comparison Fig. 7 showcases the remarkable performance of the proposed TTHHO algorithm against competing algorithms 
in WMN with 100 routers. Notably, the proposed TTHHO algorithm successfully optimizes the location of the sink node based on 
residual energy, ensuring increased network longevity. By strategically placing the sink node, TTHHO enhances energy efficiency, 
leading to extended network lifespans and improved overall network performance. This aspect sets TTHHO apart from other algo-

rithms, as it demonstrates a deeper understanding of energy dynamics within the network, ultimately contributing to its superior 
optimization capabilities.

Furthermore, Fig. 7i highlights the outstanding achievements of the proposed TTHHO in terms of ensuring 100% coverage and 
100% connectivity within the WMN. This can be observed by comparing it against initial topology in Fig. 7a and the algorithms. 
While the HHO algorithm, Fig. 7b, comes closest with 98% coverage, the proposed TTHHO surpasses all other competing algorithms 
by guaranteeing full coverage and connectivity, leaving no dead zones or isolated nodes. This achievement is of utmost significance 
in practical applications, as complete coverage and connectivity are critical for seamless communication and data transmission in 
WMNs. TTHHO’s ability to achieve this feat showcases its versatility and adaptability in addressing real-world challenges effectively.

Indeed, the competing algorithms, EO and GWO as shown in Figs. 7g and 7d, achieved the lowest coverage rates of 93% and 
94%, respectively, compared to the initial WMN state. These lower coverage rates indicate that EO and GWO were not as effective as 
other algorithms, including the proposed TTHHO, in ensuring that all areas within the network have reliable and consistent wireless 
connectivity. In addition, the TTHHO continues to show superior performance when compared against the optimized networks of 
the other algorithms such as SCA, PSO, MFO and TSO as shown in Figs. 7c, 7e, 7f and 7h, respectively.

Moreover, the proposed algorithm’s effectiveness extends beyond coverage and connectivity improvements. The figure reveals 
that TTHHO excels in reducing network congestion at an unparalleled rate compared to other algorithms. Efficiently managing and 
minimizing congestion is crucial for enhancing network performance, reducing delays, and ensuring smooth data flow. TTHHO’s 
competence in congestion reduction illustrates its ability to intelligently optimize the placement of routers and sink nodes, avoiding 
traffic bottlenecks and improving overall network throughput. The exceptional congestion reduction achieved by TTHHO further 
20

cements its position as an ideal and comprehensive solution for optimizing WMNs.
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Fig. 7. Optimized WMN topology using TTHHO vs other algorithm.

In summary, the comparison Fig. 7 demonstrates the superiority of the proposed TTHHO algorithm in optimizing WMNs with 
100 routers. Through its strategic sink node placement based on residual energy, TTHHO enhances network longevity and energy 
efficiency. Furthermore, it surpasses competing algorithms by ensuring 100% coverage and connectivity, eliminating dead zones, and 
isolated nodes. Additionally, TTHHO excels in reducing network congestion, leading to enhanced overall network performance. These 
exceptional attributes collectively establish TTHHO as a cutting-edge and highly effective algorithm for WMNs, offering significant 
advantages in terms of network longevity, coverage, connectivity, and congestion management.

4.2.4. Analysis of congestion reduction and coverage for various WMN sizes

Figs. 8 and 9 provide a comprehensive visualization of the congestion reduction and coverage for various WMN sizes, respectively. 
The figures clearly illustrate the consistent and superior performance of the proposed TTHHO algorithm compared to the other 
competing optimization techniques. In Fig. 8, TTHHO demonstrates TTHHO’s remarkable effectiveness in reducing congestion within 
the WMN. By strategically placing the routers and sink node, TTHHO optimizes the network’s traffic flow, leading to reduced 
congestion and improved data transmission efficiency.

For a network with 60 routers, TTHHO achieves an impressive congestion reduction percentage of 38.33%, outperforming most 
of the competing algorithms, such as HHO (28.33%), SCA (20%), GWO (28.33%), PSO (28.33%), MFO (13.33%), EO (43.33%), and 
TSO (11.67%). This significant reduction in congestion demonstrates TTHHO’s ability to effectively optimize the network’s structure, 
21

leading to enhanced data flow and reduced traffic bottlenecks.
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Fig. 8. WMN Congestion Reduction sizes using TTHHO vs other algorithm.

Fig. 9. WMN Client Coverage using TTHHO vs other algorithm.

As the network size further increases to 80, 100, 120, 140, and 160 routers, TTHHO maintains its lead in congestion reduction, 
showcasing percentages of 33.75%, 35%, 50.83%, 54.29%, and 61.25%, respectively. In comparison, the competing algorithms’ 
performance fluctuates, with some achieving similar results to TTHHO in certain scenarios, but none consistently surpassing its 
congestion reduction capabilities across all network sizes. On the other hand, in the provided Fig. 9, one can observe the coverage 
percentage rates achieved by the TTHHO algorithm compared to other competing algorithms, namely HHO, SCA, GWO, PSO, MFO, 
EO, and TSO.

One notable observation is that despite achieving high congestion reduction, the TTHHO algorithm manages to provide signifi-

cantly higher coverage to clients in the WMN, even when using fewer routers. Let’s delve into the discussion of the coverage rates for 
different WMN sizes. For a WMN with 60 routers, TTHHO achieves an impressive coverage rate of 95%, outperforming all the other 
algorithms. This signifies that TTHHO effectively places the routers in strategic positions, ensuring that a vast majority of clients in 
the network receive reliable and stable connectivity.

As the WMN size increases to 80 and 100 routers, TTHHO maintains its dominance, consistently achieving the highest coverage 
rates of 98% and 100%, respectively. This remarkable performance demonstrates TTHHO’s ability to adapt to different network 
sizes while ensuring extensive client coverage. Moreover, even when the number of routers increases to 120, 140, and 160, TTHHO 
continues to deliver outstanding results with coverage rates of 100% for all three cases. This illustrates the robustness and scalability 
of TTHHO, as it can effectively handle larger WMNs without compromising on coverage quality. In contrast, the other competing 
algorithms show varied and relatively lower coverage rates. Some algorithms, like GWO and EO, struggle to provide as extensive 
22

coverage as TTHHO, especially for larger network sizes.
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Table 7

Residual Energy of TTHHO vs other algorithm for different WMN sizes.

Algorithm No. Routers

60 80 100 120 140 160

HHO 9568.603 10009.43 11378.35 11538.07 12220.17 12879.32

SCA 8316.287 8524.386 10723.65 11267.39 11552.66 12151.34

GWO 9557.658 9831.855 10899.12 9831.477 10885.14 11035.66

PSO 8770.206 8982.251 10522.05 10993.48 11120.17 11641.83

MFO 9180.605 9527.857 10373.3 11248.98 11645.58 12031.21

EO 9283.487 9555.042 11354.27 11428.95 11830.56 12088.18

TSO 8837.745 8941.264 9851.015 11400.52 12848.39 13054.75

TTHHO 10097.99 10314.18 11579.68 11920.41 13308.7 13916.92

Overall, Figs. 8 and 9 demonstrate TTHHO’s superiority in terms of coverage percentage rates compared to the competing 
algorithms. Despite achieving high congestion reduction and utilizing fewer routers, TTHHO excels in offering wider coverage to 
clients in the WMN, showcasing its effectiveness in optimizing the network structure for improved connectivity and client satisfaction. 
This compelling performance makes TTHHO an attractive choice for designing and optimizing WMNs, particularly in scenarios where 
maximizing coverage is a priority. Overall, the findings underscore the robustness and versatility of TTHHO, positioning it as a leading 
candidate for addressing the challenges of WMN design and operation, and contributing to seamless communication and enhanced 
network performance.

4.2.5. Residual energy analysis of the optimized WMN

Table 7 presents the residual energy values for different WMN sizes ranging from 60 to 160 routers, obtained using various 
optimization techniques, including HHO, SCA, GWO, PSO, MFO, EO, TSO, and the proposed TTHHO.

The residual energy represents the sum of energies within the cluster of the sink node, where the sink node’s placement is 
optimized by each algorithm. The proposed TTHHO consistently demonstrates superior performance in obtaining higher residual 
energy compared to other competing algorithms. The higher residual energy obtained by TTHHO signifies more energy-efficient 
network configurations, as it reflects the better utilization of energy resources within the network.

Across all WMN sizes, TTHHO consistently outperforms other algorithms, such as HHO, SCA, GWO, PSO, MFO, EO, and TSO, in 
terms of residual energy. This consistent performance of TTHHO is noteworthy, as it indicates that the proposed algorithm excels in 
finding optimized sink node placements, leading to clusters with higher energy levels and improved network longevity. For instance, 
with 60 routers, TTHHO obtains a significantly higher residual energy of 10097.99 compared to the competing algorithms, where 
the highest residual energy achieved by HHO is 9568.6. This substantial difference indicates that TTHHO excels in clustering routers 
around the sink node in a way that preserves more energy resources.

Similarly, with 80 routers, TTHHO continues to outperform other algorithms, obtaining a residual energy of 10314.18. In contrast, 
the highest residual energy achieved by HHO is 10009.43. Again, this demonstrates TTHHO’s superior ability to find optimal sink 
node placements, resulting in clusters with higher energy levels. The trend persists as the WMN size increases to 100 routers, where 
TTHHO achieves a remarkable residual energy value of 11579.68, surpassing the other algorithms, such as EO, which achieves 
11354.27. This indicates that TTHHO optimizes the network structure effectively, leading to improved energy distribution and 
higher energy conservation.

As the WMN size continues to grow to 120, 140, and 160 routers, TTHHO consistently demonstrates higher residual energy values 
compared to the competing algorithms. For example, with 140 routers, TTHHO achieves 13308.7, while the highest residual energy 
achieved by SCA is 11552.66. This significant difference highlights TTHHO’s capability to create energy-efficient clusters, ultimately 
contributing to prolonged network operation.

The visual representation of the residual energy is shown in Fig. 10 which also illustrates the comparison between the proposed 
TTHHO algorithm and other competing optimization techniques in terms of residual energy for different WMN sizes ranging from 60 
to 160 routers. The figure’s visual representation reinforces the significance of the proposed TTHHO algorithm in addressing energy 
efficiency concerns in WMNs. The higher residual energy obtained by TTHHO indicates better energy conservation and utilization, 
making the network more sustainable and resilient to various challenges.

In summary, the numerical comparison and the visual representation reveal that the proposed TTHHO consistently obtains higher 
residual energy values across all WMN sizes, indicating superior energy efficiency and optimized network structures. TTHHO’s 
ability to strategically place the sink node and routers leads to better energy conservation and network longevity compared to 
other competing optimization techniques. These results underscore TTHHO’s effectiveness and potential in addressing energy-related 
challenges in WMNs, making it a promising choice for enhancing the performance and sustainability of WMNs in various real-world 
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scenarios.
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Fig. 10. Residual Energy of TTHHO vs other algorithm for different WMN sizes.

Table 8

Comparison of the proposed TTHHO with the-state-of-the-art.

Ref. Approach No. Routers 
and Clients

Network 
grid size

Coverage 
Rate

Connectivity 
Rate

Remarks

[19] TS 64 routers and 
192 clients

132 × 132 87% 89% Fair Connectivity and coverage

[38] PSO 40 routers and 
120 clients

1000 × 1000 87% 99% Fair coverage and high connectivity

[37] HHO 2000 Routers 1000 × 1000 - - Limited to sink node placement

[26] PSO 64 routers and 
192 clients

128 × 128 - - -

[18] MVO 45 routers and 
100 clients

2000 × 2000 90% - Good connectivity

[3] HHO 100 routers and 
100 clients

1000 × 1000 98% 98% Good coverage and connectivity

[39] COA 40 routers and 
100 clients

2000 × 2000 80% 93% Good connectivity and fair coverage

Current Work TTHHO 62 routers and 
100 clients

1000 × 1000 100% 100% Full coverage and connectivity

4.2.6. Assessments and comparison with the-state-of-the-art

In Table 8, a comprehensive performance comparison and evaluation against state-of-the-art approaches is presented. The table 
contrasts the effectiveness of the proposed TTHHO algorithm employed in this study with relevant literature, considering key metrics 
such as network size, number of clients and routers, and coverage and connectivity rates. Notably, despite utilizing a substantial 
grid, our TTHHO algorithm demonstrates superior performance compared to the state-of-the-art. Specifically, the TTHHO algorithm 
impressively achieves full coverage and connectivity. Noteworthy is the fact that these high percentages are attained with a reduced 
number of routers in the network when compared to [19,39,38]. Furthermore, rigorous statistical analyses and simulation results cor-

roborate the superiority of the TTHHO algorithm in terms of network connectivity, coverage, and network reduction. This enhanced 
performance can be attributed to the thoughtful design phase undertaken by the algorithm’s designer.

5. Conclusion

The proposed TTHHO algorithm has emerged as a highly effective and robust solution for optimizing various aspects of WMNs. 
Through comprehensive evaluations and comparisons with competing algorithms, TTHHO consistently demonstrated superior perfor-

mance in terms of convergence, coverage, congestion reduction, and optimal sink node placement based on residual energy. Its faster 
convergence and increased likelihood of reaching global minima in benchmark functions underscore its remarkable optimization ca-

pabilities. With congestion reduction rates as high as 61.25% for 160 routers, rapid convergence to 0.003125, and superior residual 
energy management, TTHHO establishes its supremacy. A key advantage of TTHHO lies in its ability to efficiently utilize residual 
24

energy, strategically placing the sink node in areas with higher energy levels. This dynamic sink node placement ensures extended 
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network operational time and enhanced network longevity, promoting sustainability and resilience in the face of challenges. Notably, 
TTHHO achieves 100% coverage rate for clients while utilizing fewer routers, making it a compelling and resource-efficient solution. 
The findings collectively support TTHHO’s effectiveness in addressing the complexities of WMN design and operation, making it a 
valuable contribution to the field of wireless communications and network optimization.

In future research, exploring the scalability, robustness, and adaptability of the TTHHO algorithm for larger WMNs and dynamic 
conditions is recommended. Investigating multi-objective optimization, adaptive parameter tuning, and integration with emerging 
technologies like 5G and IoT can extend the algorithm’s applicability. Additionally, it is important to note a limitation in our current 
model, which assumes all routers are battery-powered. The presence of non-rechargeable devices, such as sensors, introduces a 
different energy dynamic that should be addressed in future iterations for a more comprehensive applicability to diverse network 
environments.
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