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Abstract: Air pollution caused by particulate matter and toxic gases is violating individual’s health
and safety. Nanofibrous membrane, being a reliable filter medium for particulate matter, has been
extensively studied and applied in the field of air purification. Among the different fabrication
approaches of nanofibrous membrane, electrospinning is considered as the most favorable and
effective due to its advantages of controllable process, high production efficiency, and low cost. The
electrospun membranes, made of different materials and unique structures, exhibit good PM2.5
filtration performance and multi-functions, and are used as masks and filters against PM2.5. This
review presents a brief overview of electrospinning techniques, different structures of electrospun
nanofibrous membranes, unique characteristics and functions of the fabricated membranes, and
summarization of the outdoor and indoor applications in PM filtration.

Keywords: electrospinning; nanofibrous membrane; air filtration; particulate matter

1. Introduction

Air pollution caused by ambient pollutants such as particulate matter (PM2.5, PM10,
and bacteria) and toxic gases has always been a shared problem faced by many countries
in the world. The PM2.5, being the most common air pollutant, is posing a tremendous
threat on the global public health and economy. The infamous PM2.5 is notorious for its
hazardous nature of penetrating into the respiratory system of human, and delivering
harmful chemical compositions through blood system, thus chronically damaging human
respiratory and cardiovascular systems [1,2]. An increasing amount of evidence has
indicated that both long-term and short-term exposure to ambient PM2.5 air pollution
is closely related to cardiovascular, respiratory, and cerebrovascular diseases, [3] even
cognitive impairment [4]. Besides, exposure to PM2.5 can result in an economic loss
in typical cities, with individuals suffering from financial damages of welfare loss [5].
Therefore, it is highly desirable to apply air purification technologies on the alleviation of
the harm caused by PM2.5 pollution for protection of individual health.

As challenging as it is, there are several effective methods to tackle air pollution
problem. Multiple air cleaning methods are basically categorized into ionizers, ozonizer,
electrostatic precipitator, photo-catalytic oxidation, adsorption, and solid media filtra-
tion [6]. Among these methods, solid media filtration or membrane filtration, using porous,
woven or non-woven membrane as filter medium, is highly capable of filtering PM2.5 off
the air. Porous air filter capturing PM particles is illustrated in Figure 1b. To evaluate the
filtration performance of membranes, the quality factor (QF) is introduced, which indicated
that a filtration membrane with a high QF should satisfy two qualifications: high filtration
efficiency and low pressure drop [7].
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For the material of air filtration membrane, nanofiber has gained increasing interest
from researchers due to its wide applications in various disciplines such as filter medium,
tissue engineering scaffolds, composite materials, artificial blood vessels, biochips, drug
delivery, nanosensors, optics, etc., [8–10]. Moreover, its unique advantages of large specific
surface area and ultra-fine porosity make it a promising candidate for air filtration mem-
brane material. Nanofiber’s major special feature is the large surface area, which leads to
the increase of surface energy and activity, resulting in the surface and interface effects,
the quantum tunneling effect, the small size effect, and the quantum size effect. Because
of these effects, the chemical and physical properties of nanofiber are changed. There are
many kinds of existing methods for preparing nanofibers, including electrospinning tech-
nology, stretching method, self-assembly, template synthesis, and microphase separation.
Among them, the electrospinning method utilizes high-voltage static electricity to form
a jet of polymer melt or solution. The jet travels straightly in the beginning and helically
with the gradual increase of the travel distance, and accompanied by the volatilization of
the solvent, the nanofiber filaments are finally deposited on the surface of the receiving
device to form a nanofiber filter membrane, and the nanofiber filter membrane has good air
permeability, warmth retention and barrier properties [10]. Characteristics of electrospun
nanofibrous membranes, such as low Knudsen number, [11] slip flow effect causing the
decrease of pressure drop, [12] and the formation of garland leading to better filtration
efficiency, [13] etc., make the nanofibrous membranes ideal filtration media. The electro-
spinning method has the advantages of simple manufacturing equipment, wide application
range, controllable process, high production efficiency, and low cost. It can spin fibers of
different shapes and orientations as required to meet various performance requirements,
and is considered as one of the most effective means for nanofiber preparation [14].
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Figure 1. (a) Schematic diagram of processing steps for the fabrication of nanofibers. Reprinted with
permission from ref. [15]. Copyright 2017 Taylor & Francis. (b) Main filtration mechanism of air
filter. Adapted with permission from ref. [6]. Copyright 2020 Elsevier B.V. (c) Schematics showing
the fabrication of transparent air filter by electrospinning. Adapted with permission from ref. [16].
Copyright 2015 Macmillan Publishers Limited.
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In recent years, the number of publications on the topic of electrospinning membranes
has increased; in 2020 publications on this topic even reached 1653 (Figure 2), and the
number of total patents reached over 120. As a well-explored research field of nanotech-
nology, there are already many reviews covering electrospinning techniques and various
applications of nanofibrous membranes, including reviews by Robert et al. [6], Li et al. [7],
Rasouli et al. [17], Barhoum et al. [18], and Zhu et al. [19]. Because of the swift development
of electrospinning techniques, the research topic of electrospun membranes as air filtration
medium is gaining focus. Despite these previous works, our review, covering mainly the
latest progress and contributions, servers as a renewal for this topic, provides summariza-
tion and comparison of novel electrospinning techniques, electrospinning products with
their new applications, and our views on future trends and perspectives. In this review,
we provide an overview of electrospinning techniques, along with structures of electro-
spun air filtration membranes, then, functions and characteristics of filtration membranes
are summarized, and finally, we focus on some applications of electrospun nanofiber air
filtration membranes.
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2. Electrospinning Techniques

Electrospinning machines mainly consist of high-voltage DC power supplies, injection
pumps, spinning nozzles, and collecting devices. The process of fabricating nanofibers is: a
metal wire connects the needle to the positive electrode of the high-voltage generator. The
collecting device is a metal collecting plate disposed at the opposite end of the capillary.
It may also be a metal surface or other collecting device such as a rotary drum to meet
the conditions of different experiments. The collector plate is grounded with a wire as the
negative electrode is connected to the high voltage power supply. The high-voltage electro-
static field generates a potential difference instantaneously between the capillary spinneret
and the grounding electrode. Under a powerful electric field force, the polymer solution
or melt (generally non-Newtonian fluid) overcomes its surface tension and viscoelastic
force to generate charge, the mutual exclusion between charges, and the opposite charge
electrode’s compression to the surface charge, directly creating a force that is opposite to
the surface tension. When the electric field strength exceeds a certain critical value, the
polymer solution or melt will overcome the surface tension of the droplet and form a jet.
After being stretched into a straight line to a certain distance, it is sprayed along a spiral
path. A semi-spherical cone of droplets appears at the end of the spinneret, which is called
a Taylor cone, and as the solvent volatilizes, cools, and solidifies, it finally deposits on
the collection device to form fibers. The electrospinning process of air filter membranes is
shown in Figure 1a.

Divided by the state of the polymer used to fabricate nanofiber membranes, electro-
spinning can be categorized into solution electrospinning and melt electrospinning [20], the
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latter is also known as solvent-free electrospinning [21]. The most conventional and most
widely used solution electrospinning, or single nozzle electrospinning, is relatively simple
to set up and operate, but the low production rate and residue of organic/toxic solvent
in nanofibers remain as the major challenges. The leading research progress of needleless
electrospinning and multi-needle electrospinning shows a trend of fast and up-scaling pro-
duction of electrospinning membranes, which solidifies the foundation of their expanded
applications in air filtration. Melt electrospinning reduces the usage of toxic solvents, thus
it is considered as more environmentally friendly than solvent electrospinning.

2.1. Needleless Electrospinning

Due to the absence of needle-like spinnerets, needleless electrospinning is immune to
the common problem of clogging and low productivity faced by single needle electrospin-
ning. Unlike the needle and syringe used in single nozzle electrospinning, the needleless
electrospinning system often contains a large-surfaced, rotating or stationary spinneret
to guarantee that the electric field is strong enough to allow single or multiple polymeric
jets eject from the surface of the polymer solutions. For example, Ng et al. [22] developed
a rotating-disk electrospinning system (Figure 3a) to fabricate poly(caprolactone)(PCL),
poly(lactic acid)(PLA), and poly(vinyl alcohol)(PVA) nanofiber mats, and compared them
with the conventional single nozzle electrospinning. This needleless electrospinning
method exhibited a much higher productivity than the single nozzle electrospinning
and was proved to be more easily operated, with no clogging existing, and capable of
forming nanofiber mats at relatively low voltages. Besides, rotating-disk electrospinning
could be used with different polymers of different solvent systems. Like the rotating-disk
mentioned above, electrodes often came in different shapes, which had different effects
on the quality of the fabricated membranes. Yan et al. [23] reported the fabrication of
ultrafine polyamide 6 (PA-6) nanofiber membranes via needleless electrospinning process,
during which the relative humidity condition and electrode type were both controlled. The
cylindrical electrode and the spiral electrode were used separately to form PA-6 nanofiber
membranes (Figure 3b). The results showed that the membrane prepared by the spiral
electrode was finer than that by the cylindrical electrode, because of the tip effect and higher
electric field intensity of the spiral electrode (Figure 3c). The PA-6 membrane formed by
the spiral electrode exhibited high PM filtration efficiency of 99.42% and low pressure drop
of 85.5 Pa. Moon et al. [24] developed a helically probed rotating cylinder (HPRC) system
based on needleless electrospinning and chemical vapor deposition (CVD) to form the
polyacrylonitrile (PAN) nanofiber membrane. The HPRC system could fabricate a large
amount of PAN nanofiber in an hour with uniform morphology, profoundly raising the
production rate of electrospun nanofiber membranes. Jahan et al. [25] reported a novel
spinneret from a tube with a single wire loop embedded in its one end with a controlled
feeding of solution. Compared with needle electrospinning, this wire loop spinneret gen-
erates a stronger electric field, and the production rate of nanofiber membranes was 0.48
g·h−1. Zhou et al. [26] designed a stepped pyramid spinneret to fabricate three-dimensional
polyacrylonitrile/polyimide (PAN/PI) composite nanofiber membranes, and the yield
was 120 times that of single needle electrospinning. According to the advanced research
mentioned above, it is apparent that needleless electrospinning is a promising way to lift
the production rate of nanofiber membranes, compared with its needle electrospinning
rival. Different designs of needleless electrospinning spinneret are summarized in Table 1.
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Table 1. Summary of needleless electrospinning.

Spinneret Design Mechanisms Refs.

Bubble
Under the effect of applied electric force and air pressure, polymer
jets break the surface tension and are formed from bubbles on the

liquid surface, then drawn toward the grounded collector.
[27,28]

Wire/coil
There are two ways of solution delivery: jets emerge from droplets
formed on the wired spinneret through capillary effect, or splashed

out by the rotating spinneret in the solution tank.
[29,30]

Disk of plate
Strong electric field is generated on the sharp edges of plate, disk or

bowl, and therefore solution jets are formed there. Plates can be
stacked into a waterfall composition.

[31,32]

Cylindrical

The cylindrical spinneret is either rotating or stationary. The rotating
cylinder is first coated with solution, then generates jets under the
applied electric field. The stationary cylinder is a vertically set rod,

with solution provided by a syringe.

[33]

Tube with embedded wire loop The jets are generated from the wire loop fixed on one end of the
tube, with solution fed through the tube. [25]

Sprocket wheel
The pivoting sprocket wheel is half immersed in solution tank. All
the teeth dip in the solution and move to the top position, then the

solution jets are formed on the edges of the teeth.
[34]

2.2. Multi-Needle Electrospinning

Due to the use of low viscosity polymer solutions and evaporation during the needle-
less electrospinning process, the production rate is not high enough [27]. In the multi-
needle electrospinning, with the increase of the number of nozzles, the production rate is
greatly raised [15]. The mechanism of multi-needle electrospinning is similar to the con-
ventional single needle electrospinning, and like needleless electrospinning, multi-needle
electrospinning system usually includes a specially designed spinneret with a unique struc-
ture, which contains several nozzles working simultaneously. Researchers have designed
different-shaped spinnerets and successfully applied them in electrospinning process. Xu
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et al. [35] proposed a multi-needle electrospinning device for large-scale production of
thermoplastic polyurethane (TPU) nanofiber membranes. The spinneret was cylindrical,
with multi-needle linearly aligned on the surface, and was filled with polymer solution
(Figure 4a). The sliding table continuously moved left and right to draw the solution, and
under a high voltage, a plug fluid jet was formed and solidified into a collector deposited
on the fiber. The linear arrangement of needles was proved effective to improve the yield
because each needle surface could form multiple jets at the same time. Jiang et al. [36]
developed a one-step 12-needle electrospinning method with liquid bath circulating system
to form PA6/CS-NPs nanofiber membranes. Zhang et al. [37] developed a multi-needle
electrospinning equipment and successfully fabricated nanofiber filters with antibacterial
and deodorizing functions. The multi-needle electrospinning equipment consisted of a
syringe pump with an array of nozzles, and the fabricated membranes exhibited great
filtration performance of PM (Figure 4b). To tackle the problem of nonuniform electric field
of the needle tip caused by the overly intensive arrangement of needles, Zhu et al. [38]
studied the influence of the needle size and the dielectric material on the electric field of
the tip. The results showed that using dielectric material on the tip of the middle part of
the needle contributed to the electric field uniformity in case of high-density arrangement
of the needle, and the electric field intensity was increased by 1.21 times. To overcome
the problem of mutual interferences among the nozzles, Zheng et al. [39] designed a
multi-needle spinneret with sheath gas as an additional stretching force, and to boost the
simultaneous ejection of multiple jets (Figure 4c). With the introduction of sheath gas, the
resultant productivity reached 0.618–0.712 g·h−1, which was 30–50 times as that of the
conventional electrospinning. Multi-needle electrospinning exhibits even better production
rate than the needleless electrospinning, making the scale-up of nanofiber membranes
fabrication possible.
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2.3. Solvent-Free Electrospinning

Other eye-catching electrospinning method is solvent-free electrospinning, or melt
electrospinning. Without toxic solvent, the solvent-free electrospinning can achieve
environment-friendly fabrication of nanofiber membranes. Polymer is directly heated
for the formation of fibers in melt electrospinning and the produced fibers have fewer
defects and better mechanical properties besides higher yield [41]. As for the research
progress of melt electrospinning, Qin et al. [42] successfully fabricated PLA nanofibers
with the diameter of 236 mm by melt differential electrospinning. A special designed
differential spinneret was used, and nontoxic acetyl tributyl citrate (ATBC) was added
by airflow (Figure 5a). The results indicated an accelerated falling speed of the jets of
347 times of that without airflow, and proved that the combination of ATBC and airflow
was a good strategy for mass production of nanofibers with excellent stability, being both
efficient and eco-friendly. Zakaria et al. [43] developed a melt electrospinning technique
using a CO2 laser melting device to fabricate delicate polypropylene (PP) nanofibers with
added polyvinyl butyral (PVB). The melt electrospinning system with a line-like laser
melting device formed many Taylor cones simultaneously, and every single Taylor cone
was an individual fiber production unit, therefore a high production rate was guaranteed
(Figure 5b). Buivydiene et al. [44] designed a novel fiber-printing apparatus following the
principles of additive printing and melt electrospinning to produce fiber mats. During
the electrospinning process, parameters such as tip-to-collector distance and temperature
could be controlled. Five polyamide and polyolefin-based polymers were tested, and a
wide range of fiber morphologies and high dispersion of fiber diameter were observed.
Sarwar et al. [45] produced poly(ether-block-amide)(PEBA) fibers by melt electrospinning,
and studied the effect of parameters on fiber diameter. The results showed that with the
increasing of voltage, distance, collector speed and melting temperature, the fiber diameter
decreased, and when these parameters went above a certain limit, the fiber diameter was
further increased. Sarwar et al. [46] also developed a new approach to produce nanocom-
posite PEBA filaments with average diameter of 1.6 mm with uniform nanofiller dispersion
which could be used in melt electrospinning. The designed melt electrospinning device
included a cylindrical rotating drum as the receiver (Figure 5c). At the highest and lowest
drum speed, align fiber and crosslinking fiber were formed respectively. Li et al. [47] con-
structed a nanofiber membrane with a hierarchical fibrous structure using a combination
of PP melt-blown and PVA/ZIF-8 electrospinning technique. The fabricated membrane
exhibited excellent filtration efficiency of 96.5% for PM2.5, tensile strength of 33.34 N, and
low pressure drop.

2.4. Discussion

Compared with the most common single needle electrospinning, other electrospinning
techniques mentioned in this chapter, including needleless, multi-needle, and solvent-free
electrospinning, have unique merits suitable for different fabrication demands, and draw-
backs that need to be considered. High production rate is the most basic requirement for the
large-scale production and wide-spread applications of nanofibrous membranes, needleless
and multi-needle electrospinning are promising techniques because the electrodes and spin-
nerets of novel structures, which are significant for the simultaneous formation of multiple
polymer jets, are applied in both needleless and multi-needle electrospinning. However,
clogging is still a disadvantage of multi-needle electrospinning. When the clogging of
specific nozzle happens, the electrospinning liquid is redirected to other working nozzles,
which deoptimizes the spinning of the specified nozzle. The needleless electrospinning
technique abandons needles and generates polymer jets with various spinneret design
such as wire/coil, disk, plate, and sprocket wheel. Compared with the multi-needle electro-
spinning, the common problem of clogging is terminated and a more stable production is
therefore guaranteed. The relatively easy maintenance of needleless electrospinning set-up
is another advantage, which can save the time and finance cost in the production process.
Multi-needle electrospinning, containing several nozzles, is capable of finer control of the
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fiber distribution. Unlike needleless electrospinning, there is less evaporation during the
multi-needle electrospinning process, which results in the higher production rate than
needleless electrospinning. Environment-friendless is another demand of the large-scale
production of nanofibers, and melt electrospinning is promising because of the lack of
toxic solution in the electrospinning process. Similar to the needleless electrospinning,
without the application of nozzles, the control difficulty still exists in melt electrospinning.
Brief summarization and comparison of different electrospinning techniques are listed in
Table 2.
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Table 2. Brief comparison of four electrospinning techniques.

Single Needle Needleless Multi-Needle Solvent-Free

Pros

• Easy to set up and
operate

• Easy maintenance
• Low cost

• No clogging of
spinneret

• Easy maintenance
• High production rate

• Better controllability of
the fiber distribution

• Easy to set up
• High production rate

• No toxic solvents
• Low cost
• Direct writing of

arranged nanofibers

Cons
• Low production rate
• Clogging

• Inconsistent solution
concentration

• High voltage

• Clogging
• Interaction of the jets

• Thermal degradation
of polymer

• Difficult to control
pore size or fiber
diameter
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3. Structures of Membranes

Structures of electrospun membranes is an important factor that greatly influences
the filtration performance and functions of the air filter. With electrospinning techniques,
different, versatile and unique structures are possible to be designed and fabricated, leaving
great room for improvement in the quality factor of the nanofiber membrane. Classical
structures such as bead-on-string and multilayer have been widely and deeply studied
to optimize the air filtration performance and to endow multiple functions to nanofiber
membranes.

3.1. Bead-on-String Structure

The nanofibrous membrane with bead-on-string structure usually exhibits a relatively
high filtration efficiency and a low pressure drop. The bead-on-ring structure increases the
distance between nanofibers and reduces the volume fraction of the membrane, allowing
air flow through the filter [48]. This structure is shaped by a few parameters of the
electrospinning process. Korycka et al. [49] carried out a series of experiments to study
the influence of several factors such as the flow rate, viscosity of polymer solution, and
applied electrical voltage, etc., on the average diameter of fibers and beads produced by
electrospinning process. The greatest influence on the diameter of beaded fibers and beads
was observed for the dynamic viscosity of the feed solution, and the electrical voltage was
the second major factor contributing to the size of the fiber and bead. Rasouli et al. [50]
studied the evolution of the bead-on-string morphology of electrospun polysolfone (PSU)
mats and correlated it with solution concentration, voltage, and feed rate. The results
revealed that the bead on string structure was formed at concentrations between 7 and
18 wt% PSU, and the number of beads decreased as either the feed rate or the voltage
increased. Besides, influenced by the increasement of voltage, which raised the aspect ratio
of the beads, the morphology of the beads transformed from spherical to spindle-like.

The bead-on-string structure significantly improves the air filtration performance.
Cao et al. [51] studied the optimum conditions for the bead on string fibrous membrane
based on polysilsesquioxane (PSQ)-immobilizing poly (lactic acid) (PLA-PSQ). The PLA-
PSQ membrane exhibited higher air filtration efficiency and lower pressure drop, because
the results showed that the fiber formed evenly distributed beads and larger pore sizes
more easily and the beads increased the distances between fibers, which lowered the
pressure drop (Figure 6a). Besides, the immobilization of PSQ to PLA decreased the loss
of PSQ, causing better hydrolytic resistance. Huang et al. [52] fabricated bead on string
filters with nanobeads along the nanofiber axis by optimizing the PAN concentration and
ambient humidity condition during the electrospinning process. The two parameters of
polymer concentration and humidity condition together shaped the desirable bead on
string morphology (Figure 6b). The PAN filter reached the filtration efficiency of above
99%, which was achieved by the ultrafine nanofibers, and the pressure drop was 27 Pa,
as the result of nanobeads reducing the packing density. Li et al. [53] fabricated GOPAN
composite nanofibrous membranes with an olive-like bead-on-string structure, which
exhibited filtration efficiency of 99.97% with pressure drop of 8 Pa (Figure 6c). Their
research showed that the unique olive-like bead structure contributed greatly to the air
filtration performance by increasing the interfiber distance and specific surface area and
surface functional groups. The above research progress proves that the bead-on-string
electrospun membranes are capable of filtering PM2.5 off the air with a relatively high
filtration efficiency and low pressure drop, which meets the basic need of the air filters.
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3.2. Multilayer Structure

As its name suggests, multilayer structured membranes are usually made up of two,
three, or more layers of nanofibers. The structure and material of each single layer often
vary, and layers of different structures are stacked in a specific order. Kadam et al. [54]
studied an advanced combination of bead and bead-free bilayer electrospun nanofiber
membranes to capture PMs. Two different bilayer PAN membranes were prepared, one
with the bead layer on top of the bead-free layer and the other in reverse (Figure 7a). The
results indicated that the stacking order of two layers had a nonnegligible impact on air
filtration performance. The membrane with bead-free layer being on top and bead layer at
bottom reached the filtration efficiency of 95.7% and reduced the pressure drop to 137 Pa,
superior to the membrane in the reversed stacking order with filtration efficiency of only
95% and pressure drop of 202 Pa. Besides, the fabricated bilayer-beaded membrane was
capable of effectively filtering PM particles at a relatively small basis weight, making it
an ideal choice for respirator mask and protective clothing. Other special features can
be achieved with the combination of layers made of different materials. Zhang et al. [55]
fabricated multilayer membranes with antibacterial ability via sequential electrospinning.
The three-layer electrospun membrane was constructed with PVA/P(ADMH-NVF) as
the middle layer, and PVA/CS on both sides. This multilayer membrane had relatively
smooth fiber surface, excellent mechanical properties, and a small basis weight. Yang
et al. [56] designed and fabricated a multilayer air filtration mask with a highly breathable
and thermal comfort membrane combined with asymmetrically superwettable skin layer
via electrospinning (Figure 7b). The membrane displayed a low basis weight of 3.0 g·m−2,
a good air permeability of 278 mm·s−1, a high filtration efficiency of 99.3%, and a low
pressure drop of 64 Pa. Roche et al. [57] fabricated novel polyvinylidence fluoride (PVDF)
nanofibrous multilayer membranes by wire-based industrial electrospinning equipment,
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and the results showed that the filtration efficiency of the membrane reached 99.00%
for PM2.5. Wang et al. [58] developed a new multilayer membrane by incorporating
ZIF-8 into polyacrylonitrile (PAN) to achieve high surface roughness, and the multilayer
structure was formed by stacking of layers of rough microfibers with PAN layers via
electrospinning. Due to its large specific surface area, rough fiber surface, and hierarchical
pore structure, the fabricated membrane exhibited high filtration efficiency of 99.973% and
pressure drop of 80.1 Pa. Xiong et al. [59] fabricated a low filtration resistance sandwich-
structured PAN filters through a controlled accumulation of bimodal sized fibers (Figure 7c).
The sandwich multilayer structure reduced the filtration resistance, and demonstrated a
filtration efficiency of 99.89%.
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3.3. Discussion

The bead-on-string and multilayer are two promising structures of electrospun nanofi-
brous filtration membranes because of their excellent filtration performance and antibacte-
rial function, which are highly related to the fabrication process of these two structures.
During the fabrication of the bead-on-string membranes, the structure is shaped by opti-
mum control of parameters such as solvent concentration, ambient humidity, fiber distribu-
tion, etc., therefore the distance between nanofibers is increased and the volume fraction is
reduced, finally leading to boosting filtration efficiency and decreasing pressure drop. The
bead-on-string membranes are perfect for the application of air filters.

Compared with bead-on-string, multilayer structure is more complicated to fabricate.
The multilayer membranes can tolerate multiple materials, different structures, and dif-
ferent stacking orders of each layer, which brings many combinations of materials and
structures to the membrane, resulting in variation of filtration performance and realization
of unique features. The specific stacking orders can be achieved by sequential electrospin-
ning, and with the addition of other materials, unique characteristics such as antibacterial
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activity, good mechanical properties, small basis weight, high breathability, and good
thermal comfort are made possible. Because of these characteristics, multilayer membranes
outperform the bead-on-string ones in the application of wearable protections.

4. Characteristics of Membranes

Various functions and characteristics of electrospun membranes depend not only on
structures, but also on the application of materials. In general, electrospinning materials
should have a linear molecular structure. To form the membrane, the electrospinning
material must be soluble, and its molecular weight must reach a certain amount.

Various polymers, including synthetic polymers and biopolymers, have been suc-
cessfully applied to the electrospinning process, forming different nanofiber membranes.
The most widely used synthetic polymers in electrospinning membranes are polyamide
(PA) and polyacrylonitrile (PAN), and typical biopolymers include wool keratin, chitosan,
polylactic acid (PLA), and bio-based PA-56 polymers [48].

Researchers have already developed high quality air filtration electrospun membranes,
which possess high air filtration efficiency and low pressure drop. Instead of single material,
these advanced air filtration membranes can be made of multiple kinds of polymers. The
combinations of different polymers often result in the improvement of basic filtration
performance measured by QF, and new features such as high thermal stability, antibacterial
function are introduced. Following the concept of green electrospinning, which means
using green materials, green solution, and green electrospinning method, [60] environment-
friendly and biodegradable materials are gaining unprecedented popularity.

4.1. Enhanced Filtration Performance

Since high filtration efficiency of PM and low pressure drop are the two most fun-
damental qualities of electrospun air filtration membranes, how to increase filtration
performance is of top concern to researchers. Compared with commercial fibrous filters,
electrospun membranes made of different nanofibers already possess a relatively high
PM filtration efficiency. Conventional electrospun materials, including polyurethane (PU),
polyacrylonitrile (PAN), polyvinyl chloride/PU, polyamide-56, poly(lactic acid), and nylon-
66 have gained improved filtration performance [61]. Electrospun membranes made of
single conventional polymer can display excellent filtration performance. For example, Liu
et al. [16] studied different nanofibers and compared the effect of filtration, light transmit-
tance, air flow with the capture rate, and lifetime through comparing five raw materials
such as polyacrylonitrile (PAN), polyvinyl pyrrolidone (PVP), polystyrene (PS), polyvinyl
alcohol (PVA), and polypropylene (PP), and found that nanofibers prepared by electrospin-
ning could effectively improve the filtration efficiency of the filter membrane. The results
showed that the PAN filter membrane with an average diameter of 200 nm works best.
When the light transmittance is 77%, the filtration efficiency reaches 98.69%. Yun et al. [62]
spun a polyacrylonitrile (PAN) nanofiber filter membrane with an average diameter of 270
to 400 nm. Compared with commercial filters, the pressure drop is greatly reduced and the
filtration efficiency is improved. Zuo et al. [63] fabricated free-standing PU nanofiber/nets
air filters, which could achieve filtration efficiency of >99.00% for PM1-0.5 and >99.73%
for PM2.5-1, while maintaining high light transmittance of about 70% and low pressure
drop of 28 Pa (Figure 8d). Zhang et al. [64] demonstrated a facile strategy to fabricate the
ripple-like polyamide-6 nanofiber/nets (PA-6 NF/N) air filter via electrospinning process,
and this PA-6 NF/N membrane reached a high filtration efficiency of 99.996% and robust
QF of >0.11 Pa−1.
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capture process of airborne particles by combing, sieving and adsorption capacity of PU nanofiber/nets filters. Reprinted
with permission from ref. [63]. Copyright 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

Although the above mentioned electrospun membranes made of single polymer show
high filtration efficiency and low pressure drop, by adding other different agents into
polymer, the filtration performance of electrospun membranes could be further improved.
Zhong et al. [65] fabricated PMIA/ SiO2-NF fibrous membrane, including scaffold poly
(m-phenylene isophthalamide) (PMIA) nanofibers, and intertwine ultra-fine SiO2 nanofil-
aments on its surface (Figure 8b). This membrane made of hybrid materials reaches the
PM2.5 filtration efficiency of 97.33% and PM10 of 98.48%, far better than the bare PMIA
membrane. Moreover, by introducing SiO2 into PET material, Guo et al. [66] found that
SiO2 reduced the fiber diameter. The PET membrane was compounded into sandwich-
structured composite needle felt (PET/ SiO2 NNF) by heat treatment, and the filtration
results showed that PET/ SiO2 NNF had a lower rate of increase of pressure drop and
a higher filtration rate. This research showed that SiO2 greatly improves the resistance
growth and ash cleaning performance, and compared to commercially available PPS NF
and PTFE CNF, this composite needle felt PET/ SiO2 NNF has longer service life by slowly
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increasing the resistance and stable ash cleaning performance for dust removal. Ruan
et al. [67] designed electrospun synthesized polyacrylonitrile: TiO2 and polyacrylonitrile-
co-polyacrylate: TiO2 composite nanofiber membranes by controlling the nanofiber diam-
eter and membrane thickness and enable strong particulate matter adhesion to increase
the absorptive performance. The filtration efficiency was close to 100% for all the tested
particles for both PAN: TiO2 and PAN-co-PMA: TiO2, and they displayed excellent air per-
meability (284–339 mm/s). Yang et al. [56] fabricated a composite membrane of PAN/PEI,
which exhibits a good air permeability of 278 mm s−1, a high filtration efficiency of 99.3%,
a low pressure drop of 64 Pa, and a quality factor of 0.1089 Pa−1. Li et al. [53] fabricated
graphene oxide/polyacrylonitrile (GOPAN) composite nanofibrous membranes with an
olive-like beads-on-a-string structure and with high porosity. The PM2.5 removal efficiency
of GOPAN membrane exhibited the highest efficiency (99.97%) with a low pressure drop
(8 Pa). The significant enhancement of the air filter properties is attributed to the GO
and the designed olive-like bead macrostructures. Lee et al. [68] fabricated electrospun
magnetic-luminescent Cu//Tb dual metal organic frameworks (MOFs)-incorporated side-
by-side nanofibrous (SBS-NFs) membrane. The SBS-NFs membrane was composed of
Cu-MOF/PAN at one side, improving the filtration efficiency and reducing the pressure
drop, and Tb-MOF/PAN at another side, investigating the PM adsorption process through
the changes in luminescence intensity. The Cu//Tb dual MOF-incorporated SBS-NFs mem-
brane exhibited a high filtration efficiency (90.2%) and a reduced pressure drop (60.7 Pa).
Zhou et al. [26] fabricated three-dimensional polyacrylonitrile/polyimide (PAN/PI) com-
posite sub-micro fibrous membranes via free surface electrospinning, where the waste PI
short fibers were utilized as raw materials (Figure 8c). The membrane showed superior
filtration efficiency of 99.4% and low pressure drop of 124.6 Pa at normal face velocity of
5.3 cm s−1. It is obvious that with the introduction of different agents into the polymers,
the filtration performance of electrospun membranes is successfully boosted.

4.2. Thermal Stability

It is found that some agents, when composited with electrospinning polymers, could
lead to special functions of membranes, thermal stability being one of them. This unique
function increases the durability of the membrane at a relatively high temperature, mak-
ing the electrospun air filtration membrane a promising choice of individual protection
under extreme conditions. Tian et al. [69] proved that the filtration efficiency for PM2.5 of
composite PMIA/PSA (7/3)(5/5) still remains as high as 99.9% even after being treated
at 200 ◦C for 120 h, with PSA offering the strong thermal stability and thermal shrinkage
performance and PMIA maintaining the high strength by providing good mechanical prop-
erties (Figure 9a). Similarly, Yang et al. [70] fabricated composite nanofibrous membrane
through the blending spinning of PU and PSA and the introduction of BaTiO3, achieving
high capture efficiency of 99.99%, low pressure drop of 39.4 Pa, good mechanical property
of 13.27 MPa, high thermal stability up to 300 ◦C, favorable flame-retardancy and superior
chemical resistance against acid and alkali (Figure 9b). Hao et al. [71] developed ZIF-8 mod-
ified soluble polyimide (PI) nanofibrous membranes via the electrospinning process. The
prepared PI-ZIF membrane shows high PM 2.5 filtration efficiency of up to 96.6%, superior
thermal stability of up to 300 ◦C, good mechanical properties, and low pressure drop.
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Figure 9. (a) Effect of heat treatment on PMIA, PSA and PMIA/PSA composite nanofibrous membranes, (i) before and
(ii) after thermal exposure at 250 ◦C for 200 h. PMIA/PSA. Reprinted with permission from ref. [69]. Copyright 2019 IOP
Publishing Ltd. (b) Combustion test of PU (i–iv) and Ba@PU/PSA (v–viii) membrane. Reprinted with permission from
ref. [70]. Copyright 2020 Elsevier B.V.

4.3. Antibacterial Function

The polluted air often contains bacteria, and like PM2.5, these bacteria pose a threat
to human health. The introduction of antibacterial agents into electrospinning materials
gives the antibacterial function to the membranes, which protects individual’s health and
safety. Researchers have developed electrospun membranes with antibacterial activity.
Wu et al. [72] prepared polyacrylonitrile/polyurethane (PAN/PU) composite nanofibrous
membranes with an antibacterial agent AgTiO2 via electrospinning method (Figure 10c).
The filtration efficiency is 99.88% for particles of 0.3 mm, and >99.99% for airborne microor-
ganisms with a 220.3 Pa pressure differential. This PAN/PU membrane with AgTiO2 was
proved effective against both Escherichia coli and Staphylococcus aureus. Bortolassi et al. [73]
fabricated and characterized Ag/PAN electrospun nanofibers, the Ag/PAN membranes
exhibited excellent antibacterial activity against E.coli bacteria. Zhang et al. [55] synthe-
sized a novel N-halamine biopolymer, P(ADMH-NVF) via free-radical copolymerization
of N-Vinylformamide(NVF) and 3-allyl-5,5-dimethylhydantoin (ADMH), and combined
with polyvinyl alcohol (PVA) as a middle layer (PVA/P(ADMH-NVF)). Polyvinyl alco-
hol/chitosan electrospun membranes (PVA/CS) were then orderly assembled onto both
sides of the (PVA/P(ADMH-NVF)) membranes to form multilayer membranes. With the N-
halamine structure, antibacterial activity was introduced, and the morphological changes
of bacteria were observed (Figure 10a). Bortolassi et al. [74] developed a PAN nanofiber air
filtration membrane with antibacterial function. They added three different particles of
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titanium dioxide (TiO2), zinc oxide (ZnO), and silver (Ag) into PAN nanofibers, and the
results showed that the TiO2 _F filter displayed the smallest fiber diameter and the highest
filtration efficiency, and Ag_F filter showed a low pressure drop. Ag_F filter also showed
good antibacterial function against Escherichia coli. These hybrid membranes proved that
their quality factors were higher than commercially available nanofiber membrane for air
filtration. Wu et al. [75] prepared an electrospun polyacrylonitrile/polyurethane (PAN/PU)
composite nanofibrous membranes with an added antibacterial agent AgTiO2, and the
filtration efficiency is 99.88% for 0.3 mm particles and >99.99% for airborne microorganisms
with a 220.3 Pa pressure differential. Zhu et al. [76] fabricated a multifunctional poly (vinyl
alcohol)/poly (acrylic acid) (PVA-PAA) composite membranes via green electrospinning
and thermal crosslinking. Then superhydrophobic silica nanoparticles and AgNO3 were
introduced, resulting in a rough surface and the formation of Ag nanoparticles through UV
reduction. The fabricated membranes possessed high PM2.5 filtration efficiency of >98%
and antibacterial and antiviral activities. With the combination of electrospinning polymers
and other materials, antibacterial activity of electrospun membranes can be achieved while
maintaining the good filtration performance.

Nanomaterials 2021, 11, x FOR PEER REVIEW 16 of 28 
 

 

combined with polyvinyl alcohol (PVA) as a middle layer (PVA/P(ADMH-NVF)). Polyvi-
nyl alcohol/ chitosan electrospun membranes (PVA/CS) were then orderly assembled onto 
both sides of the (PVA/P(ADMH-NVF)) membranes to form multilayer membranes. With 
the N-halamine structure, antibacterial activity was introduced, and the morphological 
changes of bacteria were observed (Figure 10a). Bortolassi et al. [74] developed a PAN 
nanofiber air filtration membrane with antibacterial function. They added three different 
particles of titanium dioxide (TiO2), zinc oxide (ZnO), and silver (Ag) into PAN nano-
fibers, and the results showed that the TiO2 _F filter displayed the smallest fiber diameter 
and the highest filtration efficiency, and Ag_F filter showed a low pressure drop. Ag_F 
filter also showed good antibacterial function against Escherichia coli. These hybrid mem-
branes proved that their quality factors were higher than commercially available nano-
fiber membrane for air filtration. Wu et al. [75] prepared an electrospun polyacryloni-
trile/polyurethane (PAN/PU) composite nanofibrous membranes with an added antibac-
terial agent AgTiO2 , and the filtration efficiency is 99.88% for 0.3 mm particles and 
>99.99% for airborne microorganisms with a 220.3 Pa pressure differential. Zhu et al. [76] 
fabricated a multifunctional poly (vinyl alcohol)/poly (acrylic acid) (PVA-PAA) composite 
membranes via green electrospinning and thermal crosslinking. Then superhydrophobic 
silica nanoparticles and AgNO3 were introduced, resulting in a rough surface and the 
formation of Ag nanoparticles through UV reduction. The fabricated membranes pos-
sessed high PM2.5 filtration efficiency of >98% and antibacterial and antiviral activities. 
With the combination of electrospinning polymers and other materials, antibacterial ac-
tivity of electrospun membranes can be achieved while maintaining the good filtration 
performance. 

 
Figure 10. (a) Schematic illustration of fabrication of the multilayer membranes and application on the antibacterial air 
filtration. Reprinted with permission from ref. [55]. Copyright 2020 Elsevier B.V. (b) Representative images of the active 
colonies after 24 h incubation. Antibacterial efficacy of the samples (a) control, (b) PA6/CS-NPs against (1) E. coli and (2) 
S. aureus. Reprinted with permission from ref. [36]. Copyright 2020 Wiley Periodicals, Inc. (c) Photographs of surviving 
colonies of E. coli (a) and S. aureus (b) on nutrient agar dishes evaluated by the shake flask method for PAN/PU composite 

Figure 10. (a) Schematic illustration of fabrication of the multilayer membranes and application on the antibacterial air
filtration. Reprinted with permission from ref. [55]. Copyright 2020 Elsevier B.V. (b) Representative images of the active
colonies after 24 h incubation. Antibacterial efficacy of the samples (a) control, (b) PA6/CS-NPs against (1) E. coli and (2)
S. aureus. Reprinted with permission from ref. [36]. Copyright 2020 Wiley Periodicals, Inc. (c) Photographs of surviving
colonies of E. coli (a) and S. aureus (b) on nutrient agar dishes evaluated by the shake flask method for PAN/PU composite
nanofibrous membranes with different added amount of AgTiO2 (1) 0.0% w/w, (2) 1.0% w/w, (3) 1.5% w/w, (4) 2.0% w/w,
(5) 2.5% w/w, and (6) 3.0% w/w. Reprinted with permission from ref. [72]. Copyright 2018 Yanpeng Wu et al.

4.4. Environment-Friendliness and Biodegradability

Green and biodegradable materials are gaining increasing popularity and focus among
researchers due to its environment-friendly nature. The most common green and natural
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polymer materials, including cellulose, starch, chitosan, and proteinaceous materials such
as wool and silk, are ideal polymer materials and easy to be decomposed by microorgan-
isms, and green electrospinning materials produced from natural waste such as chitin, can
become raw chemical materials after being processed [60].

As one of the most bountiful natural resources on earth, cellulose is well-known
for its biocompatibility, biodegradability, physical strength, chemical resistance, thermal
and mechanical properties, and regenerative and sustainable properties [77]. The applica-
tion of cellulose in electrospinning is quite extensive. Kurokawa et al. [78] compounded
cellulose-acetate nanofibers (CA-NF) and regenerated cellulose nanofibers (RC-NF) through
electrospinning separately with polylactide (PLA), which is also a biodegradable material
(Figure 11a). Because the mechanical property of PLA was not enough for industrial
applications, CA-NF and RC-NF were introduced as reinforcement materials. Both CA-NF
and RC-NF showed reinforcing efficiency for the improvement of the mechanical property
of PLA. Zhang et al. [79] fabricated cellulose nanofiber membrane via electrospinning by
adding certain amount of tetra butyl ammonium chloride (TBAC) into the cellulose acetate
solution followed by a deacetylation treatment process (Figure 11b). The air filtration
efficiency of cellulose acetate nanofiber membrane reached 99.58%. Ahne et al. [80] devel-
oped a cellulose-acetate-based nanofibers via electrospinning, and the maximum filtration
efficiency measured was 99.8%.
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Chitosan, or deacetylated chitin, is extensively applied in industry, agriculture,
medicine, environmental protection, etc. As it is nontoxic and biodegradable, chitosan is a
potential material for electrospinning to fabricate air filtration membranes. Zhu et al. [81]
reported a multifunctional and bio-based chitosan/poly (vinyl alcohol) air filtration electro-
spun membrane. The superhydrophobic silica nanoparticles were introduced to increase
filtration efficiency and the Ag nanoparticles were fabricated on the surface through UV
reduction of AgNO3 to realize antibacterial function. The CS/PVA@SiO2/Ag air filtra-
tion membrane possesses both excellent filtration performance and antibacterial activities,
and has great potential application in individual protection against air pollution. Wang
et al. [82] first prepared quaternary ammonium chitosan (HTCC) by chitosan and then
electrospun with PVA to produce HTCC/PVA composite nanofiber membranes. The mea-
sured maximum filtration rates of PM10, PM2.5, and PM1.0 were about 92%, 86%, and 82%
respectively, and the antibacterial rates of Escherichia coli and Staphylococcus aureus were
both over 99% when the ratio of PVA-HTCC reached 6:4.

4.5. Discussion

The different and unique characteristics greatly explore the application range of
nanofibrous membranes. In addition to the structures that have been discussed previously
in this review, the usage and mixtures of materials are important factors that can greatly
affect the characteristics of electrospun membranes. The spectrum of electrospinning
materials includes conventional basic materials, green materials, and additional agents.
With the addition of different agents, the membranes are given unique characteristics and
functions without sacrificing the filtration performance. With the introduction of agents
like PSA, BaTiO3, ZIF, etc., thermal stability is ensured. The antibacterial agents including
AgTiO2, N-halamine, Ag_F made antibacterial function of electrospun membranes possible.
In the future, the spectrum of electrospinning materials is surely expanding and awaits
further exploration.

5. Applications in Air Filtration

As stated above, electrospun polymer membranes have already been proved highly
effective against PM2.5 pollution. The unique features of high filtration efficiency and
low pressure drop together guarantee the extensive application in the field of air filtration
of PM2.5. The filtration performance is further enhanced by the development of electro-
spinning process, structures, and materials, making the electrospun membranes highly
adaptable in individual protection both outdoor and indoor.

5.1. Outdoor Protection

The application of outdoor protection is concentrated on high-efficiency filtration
masks. In addition to high filtration efficiency, low pressure drop is another key factor
which is decisive to the actual usage of electrospun membranes, because as a piece of pro-
tective garment, masks should exhibit good air permeability and breathability. Moreover,
these masks provide protection for individuals even in harsh conditions owing to their
special advantages such as high porosity, high mechanical strength, and multi-functions
like thermostability, antibacterial activity.

As for the applications of PM2.5 filtration masks, Huang et al. [83] fabricated an
efficient air filtration mat using electrospinning technique and solvent vapor annealing
(SVA). During the SVA process, the fiber surface was wrinkled and therefore enhanced the
PM2.5 filtration. Compared with commercial masks, this air filtration mat exhibited higher
filtration efficiency under thick haze. Yang et al. [56] fabricated composite multilayer-
structured membrane, which exhibited filtration efficiency of 99.3%, a low pressure drop of
64 Pa, and a good air permeability of 278 mm s−1. The membrane was able to maintain
the face cool and was comfortable even in a hygrothermal environment. Wang et al. [84]
developed a fabrication strategy for electret nanofiber filter medium of PES/BaTiO3 via
electrospinning. The fabricated NFM1.5 mask displayed high filtration efficiency of 99.99%,
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low pressure drop of 67 Pa, and low basis weight of 4.32 g/m2. More importantly, due to
its ultralight basis weight and high porosity, NFM1.5 mask had a distinct radiative cooling
effect, which guaranteed the wearing comfort while providing better protection than
commercial face masks (Figure 12b). Šišková et al. [85] recycled ethylene terephthalate (PET)
from domestic plastic waste and fabricated nanofibrous membrane via electrospinning.
The results showed that the filter area and filter shape could improve the breathability
of the membrane. Li et al. [53] fabricated masks using graphene oxide/polyacrylonitrile
(GOPAN) composite membranes with an olive-like beads-on-a-string structure. The masks
showed remarkable filtration efficiency of 99.97% for PM2.5 and low pressure drop of
8 Pa (Figure 12a). Huang et al. [86] fabricated nanofibrous protective masks from PAN
and MC by electrospinning, and these masks displayed strong antimicrobial efficacies
against both S. aureus and E. coli O157:HH7. Hashmi et al. [87] fabricated PAN/CuO
nanofibers via electrospinning. The strength and the air permeability of the membranes
were enhanced by the added copper oxide nanoparticles, and the prepared membranes
showed good antimicrobial activity and release properties. Liu et al. [88] reported a
new self-powered electrostatic adsorption mask based on the poly(vinylidene fluoride)
electrospun membrane and a triboelectric nanogenerator driven by respiration. The mask
showed that the removal efficiency of coarse and fine particles was higher than 99.2% and
86.9% for that of ultrafine particles.

To combat the new diseases caused by bacteria or viruses like coronavirus pandemic,
researchers have been seeking solutions in nanotechnologies. Application of electrospun
multifunctional nanofibrous filtration masks, serving as an effective physical protection, is
a key strategy to prevent viral infection [89]. The most essential component of the filtration
mask is the fibrous membrane used as the filtration layer [90], so the antivirus activity of
the electrospun filtration membrane is the most decisive factor of the protection effect. Sivri
et al. [91] introduced a novel face mask prototype. During the electrospinning process,
vinyl alcohol and PVA/SAP were simultaneously coated onto face masks, resulting in
their virus protection and comfort properties. The adsorbing capability was enhanced
and the masks were able to absorb the sweat in the vapor form, and antivirus activity
was reported. Ahmed et al. [92] reported a novel design from Egypt, utilizing a reusable,
recyclable, customizable, antimicrobial, and antiviral mask by electrospinning (Figure 12d).
To fabricate this newly designed antiviral mask, polylactic acid and cellulose acetate were
combined with copper oxide nanoparticles. The polymeric network could block the air-
borne viral particles, and the added particles would further inactivate the bacteria and
viruses. Chowdhury et al. [93] first fabricated an antiviral mask by electrospinning using
antimicrobial licorice root extract mixed with PVA (Figure 12c). The results indicated that
the fabricated mask’s diameter was about 15–30 µm with random porosity and orientation
which have the capability to terminate the virus. The mask also exhibited good breathabil-
ity, with porosity less than the size of COVID-19. He et al. [94] introduced a method of 3D
printing based on electrospinning to make mask filters that were changeable in shape and
biodegradable. PLA nanofiber web was fabricated, which had a self-reinforced hierarchical
structure and a transparent look. The unique transparency of the mask had a positive
effect on reducing communication barrier for wearers with mutism or hearing impairment,
because lipreading is possible. In addition to electrospun masks, antimicrobial materi-
als could be made into protective clothing, which had potential in providing extra and
extensive protection. For example, Khanzada et al. [95] fabricated nanofiber membranes
using aloe vera and polyvinyl alcohol (AV/PVA) via electrospinning, and these membranes
showed excellent antimicrobial activity against S. aureus and E. coli. Xu et al. [96] developed
a roll-to-roll method to fabricate masks based on fast transfer of electrospun nanofiber film
from roughed metal foil to a receiving mesh substrate. This method, compared with direct
electrospinning method, is ten time faster and the fabricated masks have better filtration
performance and higher transmittance.
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vated ultrathin PVDF-TrFE nanofiber air filter with high PM1.0 filtration efficiency of 94%. 
This nanofiber filter also exhibited good light transmittance of 65%, which allows it to be 
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Figure 12. (a) (i). Photographs of the mask preparation process with 05GOPAN membrane as a wearable air filter. (ii)
Photographs and SEM images (insets) showing the filter effect of 05GOPAN membrane after filtration of different times.
Scale bars: 5 µm. Reprinted with permission from ref. [53]. Copyright 2018 Elsevier B.V. (b) Thermal images of bare face
and faces covered with NMF1.5 and two commercial face masks. Adapted with permission from ref. [84]. Copyright 2018
Elsevier Inc. (c) Virus deactivation mechanism of the antiviral mask. Reprinted with permission from ref. [93]. Copyright
2020 Elsevier Inc. (d) Schematic representation of the design of the nanofibrous respirator face mask; (i) depicts the respirator
filter containing multilayers of CuONPs/GO@PLA and CuONPs/GO@CA nanofibers. Part (ii) represents the fixed part of
the face mask. The assembly of the multilayers consisting of nanofibers into a respirator filter is shown in (iii). The face
shield containing two parts and fabricated via the molding procedure is shown in (iv). Reprinted with permission from
ref. [92]. Copyright 2020 Elsevier Ltd.

5.2. Indoor Protection

The indoor air quality, as one of the most important living conditions, is of residents’
concern because like outdoor PM pollution, the indoor air pollution is also a threat to public
health because of the long time of exposure. Unlike the outdoor application of filtration
masks, which are mostly worn outside, the indoor air filtration mainly relies on air filters
to screen the PM off the household or other indoor settings. There are already several air
filters in service [97], but the novel electrospun nanofiber membranes with exceptional
filtration efficiency can easily outperform their commercial rivals.

As for the advanced electrospun filters, Han et al. [98] reported an electrically activated
ultrathin PVDF-TrFE nanofiber air filter with high PM1.0 filtration efficiency of 94%. This
nanofiber filter also exhibited good light transmittance of 65%, which allows it to be
installed on the window frames of houses as an economically affordable way to prevent
indoor air pollution instead of applying expensive air circulation systems (Figure 13a).
Gobi et al. [99] produced composite electrospun membrane electret filter using PAN and
SiO2NPs between nonwoven fabrics, and the fabricated membrane with SiO2 showed
better filtration performance than commercial filter medium.

Another source of PM that possibly exists in the household is the industrial dust emit-
ted from 3D printing, as 3D printers are becoming increasingly accessible. Rao et al. [100]
studied the four different stages when PM was generated during the fused deposition
modeling (FDM) 3D printing process, and fabricated PCL nanofiber-based air-filters to
capture the emitted PM2.5 particles. Cao et al. [101] expanded the application scenarios of
electrospun filters to industrial emissions like 3D printing. The electrospinning process
was optimized using design of experiment (DOE), and bead-free PAN nanofibers with
diameter of <100 nm was formed. The fabricated membranes were used to filter PM2.5



Nanomaterials 2021, 11, 1501 21 of 28

emissions from FDM 3D printing and the PAN membrane with diameter of 77 nm showed
a filtration efficiency of 81.16% (Figure 13b).
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5.3. Discussion

The most common applications of electrospun filtration membranes can be roughly
concluded as outdoor protection and indoor protection, namely filtration masks and indoor
air filters. As a wearable protection against air pollution, the application of filtration masks
shows a trend toward good wearing comfort, extra functions that can offer protection even
in harsh conditions, while the indoor air filters, which often serve as guards around the
household, demand good transmittance, high durability, and low cost.

Despite the above eye-catching progress, there are still problems and challenges to be
solved and tackled in the future for these electrospun membranes to become off-the-shelf
productions. One is the disposal and recycle of the product after use. To solve this problem,
the spectrum of electrospinning materials needs to be enlarged. Green and biodegradable
materials introduced in Section 4.4 are ideal candidates for the environment-friendly
disposal of these nanofibrous masks and filters. Furthermore, research on electrospinning
using recycled materials needs to be done, as domestic plastic waste can be a promising
source for the recycled polymers [85].

6. Summary and Future Perspectives
6.1. Summary

Air pollution caused by ambient PM2.5 is an environmental problem that cannot be
ignored. Due to the advantages of high filtration efficiency, low pressure drop, high porosity,
large specific area, good mechanical strength and multi-functions, nanofibrous membrane
fabricated using electrospinning techniques have gained unshakeable status in the field of
PM filtration. The development of novel electrospinning techniques, including needleless
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electrospinning, multi-needle electrospinning, and solvent-free electrospinning, is trending
toward fast-speed, large-scale and non-toxic production. Unique structures such as bead-on-
string and multilayer, along with different applications and combinations of electrospinning
materials, gives membranes optimized filtration performance, characteristics and functions
like thermal stability, antibacterial activity, and biodegradability. Finally, electrospun masks
and filters are reliable and promising applications that can be used in both outdoor and
indoor settings. It is concluded from the studies that the electrospun membranes as the PM
filter medium has the following advantageous characteristics.

(1) Effective in protection against PM while maintaining good wearing comfort. Unique
characteristics of electrospun membranes such as high porosity, low pressure drop,
and different structures together allow air flow through the filter more easily, and the
breathability and thermal comfort are therefore guaranteed, which are crucial factors
of protective masks.

(2) Relatively easy to fabricate, and large-scale production is possible. The most widely
used single nozzle electrospinning is simple to set up and operate. Other electro-
spinning techniques such as needleless and multi-needle electrospinning can simul-
taneously produce multiple polymer jets, supporting the large-scale and fast-speed
production of membrane filters.

(3) Good versatility and adaptability to harsh conditions. With the introduction of
different agents, various functions like thermal stability and antibacterial ability can
be achieved. These diverse functions together with the notable filtration performance
provide reliable protection even in harsh environments.

6.2. Future Perspectives

Although electrospun nanofibrous filtration membrane and its application have al-
ready been studied deeply and extensively, there are still some possibilities and perspectives
that need exploration, and more work is required in this context. Future perspectives and
trends are summarized in Figure 14.

(1) Standardization and industrialization of novel electrospinning techniques. As the
solid foundation of broad applications, new electrospinning techniques need to be
standardized to guarantee mass production. The electrospinning techniques intro-
duced in this review, especially multi-needle and needleless electrospinning, are
suitable for large-scale production of nanofibrous membranes. However, only a small
number of electrospinning apparatus have achieved large-scale and fast-speed pro-
duction of nanofibrous membranes, like the electrospinning equipment mentioned in
the work of Liang et al. [102] and the actual realization of these novel electrospinning
techniques on the large-scale production and industrialization is still very limited and
is a major challenge due to the control difficulty, unstable quality, lack of standardized
testing procedures, etc. The diameter of electrospun membranes is affected by a num-
ber of parameters, like nozzle distance, voltage strength, solution flow rate, collection
speed, ambient temperature, solution concentration, etc. Changes of these parameters
will finally result in the deviation of filtration performance. In the industrialization
of the novel electrospinning techniques, parameters of these techniques require stan-
dardization to guarantee the fast-speed and large-scale production of nanofibrous
membranes with the expected filtration performance. Moreover, because multi-needle
and needleless electrospinning techniques both include specially designed spinnerets
with unique structures, structure of the highest production rate and the corresponding
design parameters of this structure need to be determined and standardized.

(2) Auxiliary methods during the electrospinning process. Since the relatively weak
mechanical property of membranes is a shared challenge faced by all types of elec-
trospinning techniques, especially solution electrospinning, auxiliary methods that
can enhance the mechanical property of nanofiber membranes are highly desirable.
Ultrasound sonication prior to electrospinning process [103] and latex fluid as an
additive to polymer solution [104] are two auxiliary methods that have been proved
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effective in the improvement of mechanical property. However, the related research is
still rare. In the future, auxiliary mechanisms and methods, such as increasement of
solution viscosity and introduction of different additives, need to be explored in both
width and depth.

(3) Generalization of multifunctional masks and filters. Nanofibrous membranes have
already proven to be promising in the realization of various characteristics such as
thermal stability, antibacterial function, environment-friendliness, and biodegrad-
ability. In these unique characteristics, antibacterial function is most crucial to shield
humans from hazardous bacteria and viruses, therefore the advanced antibacterial
masks and filters need to be generalized and put into actual use. The research of
antibacterial mechanisms such as new additional agents and surface functionalization,
awaits further development. Another problem is the certification procedure of these
filtration products. Before putting into the market, the filtration membranes need
to be tested and evaluated to meet the standards. For example, in EU, air filters
are certificated according to ISO 16890 and EN1822:2019, which require stringent
filtration tests. However, the testing procedures of the newly produced membranes
corresponding with the standards are still lacking. In future research of these novel
filters, standardized tests should be done following the experiments. With the gradual
industrialization process of novel nanofibrous membranes, the unified test stan-
dards of these products need to be set to evaluate the characteristics of membranes
more precisely.

(4) Disposal and recycling of nanofibrous products. The inevitable problem of proper dis-
posal and recycling of the electrospun air filtration membranes comes with the applica-
tions of these membranes. To meet the demand of environment-friendliness, research
on the electrospun air filtration membranes is trending toward green, biodegradable,
recyclable, and non-toxic materials. In the electrospinning techniques summarized in
this review, the solvent-free electrospinning technique is bright in green and non-toxic
production of nanofibrous membranes because it discards the toxic solvents. The
structure of membranes should be designed as such to make it reusable and easily
degradable. The spectrum of electrospinning materials needs to be expanded and
reusable, green, and biodegradable materials deserve more focus.
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