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Due to diverse reasons, most drug candidates cannot eventually become marketed
drugs. Developing reliable computational methods for prediction of drug-likeness of
candidate compounds is of vital importance to improve the success rate of drug
discovery and development. In this study, we used a fully connected neural networks
(FNN) to construct drug-likeness classification models with deep autoencoder to
initialize model parameters. We collected datasets of drugs (represented by ZINC
World Drug), bioactive molecules (represented by MDDR and WDI), and common
molecules (represented by ZINC All Purchasable and ACD). Compounds were encoded
with MOLD2 two-dimensional structure descriptors. The classification accuracies of
drug-like/non-drug-like model are 91.04% on WDI/ACD databases, and 91.20% on
MDDR/ZINC, respectively. The performance of the models outperforms previously
reported models. In addition, we develop a drug/non-drug-like model (ZINC World Drug
vs. ZINC All Purchasable), which distinguishes drugs and common compounds, with a
classification accuracy of 96.99%. Our work shows that by using high-latitude molecular
descriptors, we can apply deep learning technology to establish state-of-the-art
drug-likeness prediction models.
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INTRODUCTION

Over the past several decades, various novel and effective techniques, such as high-throughput
screening(HTS), fragment-based drug discovery (FBDD), single-cell analysis, have been developed
and led to remarkable progresses in the field of drug discovery. However, it is noted that the amount
of new chemical entities (NCEs) approved by FDA did not grow as rapidly as expected (Darrow
and Kesselheim, 2014). According to statistics, the success rate of candidate compounds found in
preclinical detection is about 40%, while the rate of candidate compounds entering the market is
only 10% (Lipper, 1999).

About 40% of the candidate compounds not being marketed is due to their poor
biopharmaceutical properties, also commonly referred to as drug-likeness, which includes poor
chemical stability, poor solubility, poor permeability and poor metabolic (Venkatesh and Lipper,
2000). Drug-likeness, derived from structures and properties of existing drugs and drug candidates,

Abbreviations: 5-CV, 5-fold cross-validation; ACC, accuracy; AE, autoencoder; AUC, areas under the receiver operating
characteristic curve; DL, deep learning; DNN, deep neural network; FNN, fully connected neural network; MCC, Matthews
correlation coefficient; SAE, stacked autoencoder; SE, sensitivity; SP, specificity; SVM, support vector machine.
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has been widely used to filter out undesirable compounds in early
phases of drug discovery. The initial concept of drug-like rules is
proposed by Lipinsky, known as the rule-of-five which contains
four simple physicochemical parameter definitions (MWT≤ 500,
log P ≤ 5, H-bond donors ≤ 5, H-bond acceptors ≤ 10)
(Lipinski, 2004). Using these definitions may predict whether a
compound can become an oral drug candidate. In 2012, Hopkins
et al. propose the quantitative estimate of drug-likeness (QED)
measure, which was a weighted desirability function based on
the statistical distribution of eight selected molecular properties
for a set of 771 orally absorbed small molecule drugs and
applied to molecular target druggability assessment (Bickerton
et al., 2012). Due to the ambiguous definition of molecular
properties between the drugs and non-drug and the prediction
is not satisfactory with few descriptors, later works tried to
combine more comprehensive descriptors and a large amount of
compound data to develop drug-likeness prediction models with
high accuracies from a quantitative perspective.

A drug-likeness prediction model introduced by Wagener
et al., involved molecular descriptors related to numbers of
different atom types and decision trees for discriminating
between potential drugs and nondrugs. The model was trained
using 10,000 compounds from the ACD and the WDI, and its
prediction ACC on an independent validation data set of 177,747
compounds was 82.6% (Wagener and van Geerestein, 2000). In
2003, Byvatov and co-workers used various different descriptor
sets and descriptor combinations to characterize compound and
applied SVM and artificial neural network (ANN) systems to
solve the drug/nondrug classification problem. Both methods
reached 80% correct predictions and their results indicated SVM
seemed to be more robust (Byvatov et al., 2003). A later model
reported by Muller was also based on SVM with a careful
model selection procedure for improving the prediction results
of Byvatov et al. (2003) (Müller et al., 2005). In 2008, Li et al
implemented ECFP_4 (Extended Connectivity Fingerprints) for
characterizing the molecules and used a probability SVM model
to classify drug-like and non-drug-like molecules. The model
significantly improved the prediction ACC when compared to
previous work on the same data sets, and it is surprising that
when using a larger data set of 341,601 compounds the classifier
increased the ACC to 92.73% (Li et al., 2007). Schneider et al.
applied decision trees to perform a gradual in silico screening
for drug-like compounds based on SMARTS strings and the
molecular weight, XlogP, and the molar refractivity as descriptor
space for compounds (Schneider et al., 2008). In 2012, Tian
et al implemented 21 physicochemical properties and the LCFP_6
fingerprint encoding molecules and used the naive Bayesian
classification (NBC) and recursive partitioning (RP) to construct
drug-like/non-drug-like classifier, which achieved 90.9% ACC
(Tian et al., 2012). These studies showed that machine learning
techniques are highly potential for the drug-likeness prediction
problem combined with big data sets.

Deep learning is a new wave of machine learning based on
artificial neural networks (ANN) (Bengio, 2009; Vincent et al.,
2010). Since 2006, DL has been showing superior performances
in many fields, such as computer vision (Hinton et al., 2006;
Coates et al., 2011; Krizhevsky et al., 2012; He et al., 2016),

TABLE 1 | Detailed information of the dataset pairs.

Dataset pair Number of
positive

Number of
negative

Total

WDI/ACD 38,260 288,540 326,800

MDDR/ZINC 171,850 199,220 371,070

WORLDDRUG/ZINC 3,380 199,220 202,600

natural language processing (Dahl et al., 2012; Socher et al.,
2012; Graves et al., 2013; Mikolov et al., 2013; Bahdanau et al.,
2016), bioinformatics and chemoinformatics (Di Lena et al., 2012;
Lyons et al., 2014; Heffernan et al., 2015; Chen et al., 2016; Zeng
et al., 2016). Compared to traditional machine learning methods,
DL with multiple levels of layers can automatically transform
raw data into a suitable internal feature representation which
is beneficial for detection or classification tasks (LeCun et al.,
2015). In this study we used deep autoencoder neural networks
to construct powerful prediction models for drug-likeness and
manually built three larger data sets abstracted from MDDR
(MACCS-II Drug Data Report [MDDR], 2004), WDI (Li et al.,
2007), ACD (Li et al., 2007) and ZINC (Irwin et al., 2012; Sterling
and Irwin, 2015). The molecular descriptors of compound
were calculated by Mold2 (Hong et al., 2008) and Padel (Yap,
2011). The classification accuracies of drug-like/non-drug-like
model are 91.04% on WDI / ACD databases, and 91.20% on
MDDR /ZINC, respectively. The performance of the models
outperforms previously reported models. In addition, we
developed a drug/non-drug-like model (ZINC World Drug vs.
MDDR), which distinguishes drugs and common compounds,
with a classification ACC of 96.99%. Our work shows that

TABLE 2 | Data preprocessing and post-processing steps used in this study.

Data processing

Step Name/ Software Step description

Element filter/ KNIME (Berthold
et al., 2009)

Hydrocarbons are removed. Molecules
containing elements other than C H O
N P S Cl Br I Si are removed.

Remove Mixture/ KNIME (Berthold
et al., 2009)

All records containing more than one
molecules are removed.

Standardize/ ChemAxon
Standardizer (ChemAxon
Standardizer, 2010)

Neutralize, tautomerize, aromatize, and
clean 2D

Remove duplicate / OpenBabel
(O’Boyle et al., 2011)

Two molecules having the same
InChI(including stereochemistry) means
duplication. If a molecule appears in
both drug set and nondrug set, it is
removed from nondrug set. As for
duplications in the same set, only the
one that appears first is kept.

Data post-processing

Remove error values / Python If a descriptor has the value of N/A or
‘infinity’, the molecule it belongs to is
removed.

Remove constant descriptors /
Python

If a descriptor has the same value
across all molecules, the descriptor is
removed from the descriptor list.
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FIGURE 1 | A schematic architecture of a stacked autoencoder. Left) the architecture of autoencoder, layer-by-layer can be stacked. Right) a pre-trained
autoencoder to initialize a fully connected network with the same structure for classifying.

by using high-latitude molecular descriptors, we can apply DL
technology to establish state-of-the-art drug-likeness prediction
models.

Datasets
Benchmark Datasets
In this study, the whole chemical space was divided into
drug, drug-like and non-drug-like. Marketed drug molecules
were represented by ZINC WORLD DRUG (Sterling and
Irwin, 2015) (version 2015, 2500 molecules) dataset. Drug-like
molecules were represented by MDDR (MACCS-II Drug
Data Report [MDDR], 2004) (200 k molecules) dataset and
WDI (Li et al., 2007) (version 2002, 40k molecules) dataset.
Non-drug-like molecules were represented by ACD (Li et al.,
2007) (version 2002, 300 k molecules) and ZINC ALL
PURCHASABLE (Irwin et al., 2012) (version 2012) datasets;
the latter was randomly sampled to reduce its size to 200 k.
Originally, drug-like datasets contained both marketed and
drug-like molecules, and non-drug-like datasets contained
the other two datasets. All datasets contained 2D molecular
structure information in SDF format. Detailed information
of the dataset pairs used in this study can be found in
Table 1.

Data Preprocessing
Data cleaning can be a crucial step in cheminformatics
calculation, as expounded by Fourches et al. (2010). We
used a process (see Table 2) similar to that of Fourches
et al. to preprocess our raw data downloaded, making it
less error-prone in descriptor calculation. After descriptor
calculations, we also post-processed the resulting descriptor
matrix (see Table 2).

Descriptor Calculation
We used 2D descriptors to encode the molecules.
Molecules after preprocessing were calculated by MOLD2
(Hong et al., 2008), resulting a descriptor matrix of
∼700 descriptors per molecule. Then descriptor matrix
was subjected to post-processing described in Table 2.
We also tried the Padel descriptors (Yap, 2011), which

TABLE 3 | Hyper-parameter settings of the stacked autoencoder.

Hyperparameter Setting

Initializer TruncatedNormal

Number of hidden layers 1

Number of hidden layer nodes 512

L2 Normalization term 1e-4

Dropout rate 0.14

Activation Relu

Batch size 128

Optimizer Adam

Loss mse for AE, binary
crossentropy for classifier

showed inferior performance in this study and was
discarded.

Over-Sampling Algorithms
Due to the special classification task, the positive and negative
samples collected by us were not balanced in this study.
Predictive model developed using imbalanced data could be
biased and inaccurate. Therefore, we adopted two methods to
balance our data sets to make the ratio of positive and negative
samples approximately equal. The first method was to copy
the minority class making the ratio 1:1, the second one was
to use SMOTE (Chawla et al., 2002; Han et al., 2005; Nguyen
et al., 2011), which is an improved scheme based on random
oversampling algorithm. Here we used imbalanced-learn package
downloaded from1 to apply SMOTE. For each task, we used
these two oversampling methods to balance the data. For each
model, firstly, we randomly split the datasets on the proportion
of 9:1 as training set and validation set, secondly, we used
the above two methods to balance the training set, so that
the number of positive and negative samples during training
was equal. The training set was used to train models with
5-CV and the additional validation set was used to evaluate
models.

1http://contrib.scikit-learn.org/imbalanced-learn/stable/install.html
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TABLE 4 | Performance on the training sets with 5-CV.

Model Copy the minority class SMOTE over-sampling

ACC SE SP AUC ACC SE SP AUC

WDI/ACD 0.8923 0.8991 0.8859 0.9598 0.9265 0.9244 0.9286 0.9783

MDDR/ZINC 0.9095 0.8855 0.9302 0.9701 0.9116 0.9141 0.9092 0.9719

WORLD/ZINC 0.9910 0.9961 0.9859 0.9986 0.9906 0.9937 0.9874 0.9990

TABLE 5 | Performance of the models on the validation sets.

Model Using SMOTE over-sampling

ACC SE SP MCC AUC

WDI/ACD 0.9014 0.7683 0.9191 0.6014 0.9271

MDDR/ZINC 0.9025 0.9012 0.9036 0.8043 0.9669

WORLD/ZINC 0.9800 0.7544 0.9838 0.5690 0.9707

MATERIALS AND METHODS

Stacked Autoencoder
An autoencoder was an unsupervised learning algorithm that
trains a neural network to reconstruct its input and more
capable of catching the intrinsic structures of input data,
instead of just memorizing. Intuitively, it attempted to build an
encoding-decoding process so that the output x̂ of the model
is approximately similar to the input x. The SAE was a neural
network consisting of multiple layers of sparse autoencoders,
where the output of each layer was connected to the inputs of the
successive layer. A schematic architecture of a SAE was shown in
Figure 1. We trained the AE model with 2D chemical descriptors
to find the intrinsic relationship between descriptors, then used

the parameters of the AE model to initialize the classification
model.

Defining Models
According to the partition of chemical space into drug, drug-like
and non-drug-like, there can be two kinds of classification
models, drug-like/non-drug-like, drug/non-drug-like. The first
one matched the traditional definition of drug-likeness. The
second one also bore considerable practical value, but no
model had been published to address it. In this study,
to address drug-like/non-drug-like classification, we proposed
two models, MDDRWDI/ZINC (which means MDDR and
WDI as positive set, ZINC as negative set) and WDI/ACD.
To address drug/non-drug-like classification, we proposed
WORLDDRUG/ZINC (which means ZINC WORLD DRUG as
positive set, ZINC ALL PURCHASABLE as negative set) model.

Network Training and Hyperparameter
Optimization
In this study, we used the open-source software library Keras
(Chollet, 2015) based on Tensorflow (Abadi et al., 2016)
to construct SAE model and classification model. Firstly, a
single hidden layer AE was trained. The number of hidden
layer nodes K, was a hyperparameter needs to be compared

FIGURE 2 | Evaluations of different models vary with weight of positive sample loss.
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across different networks and tuned. During training, we used
Truncated-Normal initializer to generates a truncated normal
distribution of layer weights. In all case, we applied Bayesian
optimization (Hyperas, a python library based on hyperopt2) to
optimize the hyperparameter, such as the number of hidden layer
nodes K, the value of L2 weight regularizer, the value of dropout,
the type of activation function, the type of optimizer, the value of
batch size. The final optimal hyper-parameter settings were listed
in Table 3.

Considering that although the data set has been balanced, the
model results may be overfitting, so we optimized the weight of
the positive and negative sample loss of the logarithmic likelihood
loss function as:

L = −
n∑

k=1

(wyk(log ak)+ (1− w)(1− yk) log(1− ak)) (1)

where yk represented the kth compound label. yk = 1 or 0, means
kth compound was the drug-like or non-drug-like compound,
respectively. ak = P(yk = 1|xk) was the probability to be the
drug-like compound of kth compound calculated by model. w
was the weight of the positive sample loss. For different cases, we
chose the most suitable w from the range of (0.5∼1.0) to avoid
overfitting. Then we trained all models with 5-CV and enforced
early stopping based on classification ACC on the test set. Finally,
each case had 5 trained models and the average value was the final
judgement of these models.

Model Evaluation
All models were evaluated by five indexes. The ACC, SP,
and sensitivity(SE), MCC, area under the receiver operating
characteristic curve (AUC), the previous four criteria were
defined, respectively, as follow:

ACC =
TP + TN

TP + TN + FP + FN
(2)

SP =
TN

TN + FP
(3)

SE =
TN

TP + FN
(4)

MCC =
TP × TN − FP × FN

√
(FP + TN)(FP + TP)(FN + TN)(FN + TP)

(5)

RESULTS

Compare Different Over-Sampling
Methods
After we tried pre-training on validation test with 5-CV, we
found that more layers and neuron numbers did not improve
the predictive power. In all case, one hidden layer was sufficient
for our classification objective. By analyzing the two different

2https://github.com/maxpumperla/hyperas

TABLE 6 | Performance on the training set after optimizing the weight of loss
function.

Model SMOTE over-sampling

ACC SE SP MCC AUC

WDI/ACD 0.9104 0.9694 0.8515 0.8270 0.9757

MDDR/ZINC 0.9120 0.9219 0.9020 0.8243 0.9726

WORLD/ZINC 0.9699 0.9985 0.9414 0.9416 0.9955

TABLE 7 | Performance on the validation set after optimizing the weight of loss
function.

Model SMOTE over-sampling

ACC SE SP MCC AUC

WDI/ACD 0.8458 0.8524 0.8449 0.5286 0.9253

MDDR/ZINC 0.9046 0.9174 0.8935 0.8095 0.9699

WORLD/ZINC 0.9366 0.8804 0.9376 0.4049 0.9622

over-sampling methods to balance datasets, copy the minority
class and SMOTE, we found the latter can achieve better
prediction accuracies in Table 4.

With the same dataset, the ACC of a SVM model built by
Li et al was 92.73% (Li et al., 2007) and our WDI/ACD model
achieves an ACC of 92.65%, almost identical to Li’s results.
Our MDDRWDI/ZINC model classified drug-like/non-drug-like
molecules with a satisfactory ACC of 91.16%, making it the
state-of-the-art drug-likeness prediction model. These results
suggest that autoencoder is a potential machine learning
algorithm in drug-likeness prediction. The ACC of our drug/non-
drug-like prediction model based on World Drug/ZINC dataset
was as high as 99.06%, showing that it is easier to distinguish
compounds from drugs or non-drugs. Although it is not excluded
that the ACC of the latter models is related to the serious
imbalance of the original data set, we believe that such drug/non-
drug-like prediction model will likely benefit drug development.

Optimize the Weights in the Loss
Function
We observed that when using the independent external validation
set pre-segmented from the original data to evaluate model, the
prediction ACC of the model tended to be slightly lower than that
of training, but the sensitivity value was significantly lower and
the SP value was higher (Table 5), indicating that the models have
some over-fitting in training.

The underlying reason may be that the positive sample ratio
in the original data was too low, and we randomly divided the
positive and negative samples in the original data set according
to 9:1 to build the training set and the validation set. Even if the
SMOTE method was used to balance the positive and negative
samples in the train set, the new positive sample generated by
SMOTE depended on positive sample in the original training set,
so the positive sample information of the external verification set
was less included.

In order to overcome the over-fitting on the negative samples,
we increased the weight of positive sample loss in the loss
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function to enhance the learning ability of the model to the
positive sample side. We tested the weigh values (details in
Formula 1) from 0.5 to 1 with 20 intervals, and record the values
of ACC, SE, and SP on the validation set varying with weight, as
shown in Figure 2.

For different models, the intersection point of SE and SP
in the curves of Figure 2 corresponded to a balanced weight
value. By fine-tuning, the weights corresponding to the four
models are (0.69, 0.55 and 0.9). After using these weights for the
loss functions, the ACC of the training set in different models
fells slightly and the SE improves. As the model reinforces the
prediction of positive samples, the SE and SP of the validation set
in different models are close (shown in Tables 6, 7).

Although the MCC is generally regarded as a balanced
measure, it is seriously affected by the number gap between
positive and negative samples of data sets and the confusion
matrix calculated by the model. The MCC is satisfactory for the
balanced training sets. But in the validation sets, the data set
becomes more unbalanced, and the MCC becomes smaller, which
was inevitable.

DISCUSSION

In image recognition problems, where AE was originated, several
layers of AE are often stacked to make a SAE. Though SAE
was found to be more powerful than single layer AE there, we
found that SAE is flawed here in drug-likeness problems, making
multi-layer SAE perform much poorer than single layer AE.

When a layer of AE is trained, it is expected to give output
as close as possible to its input, and the error can be defined
as the mean value of output minus input. In this study, when
training the model, we found that the ACC of the normalized
(z-score) input was much higher than scaling input to [−1,1].
After standardizing the data, the error of AE is 0.8, an order
of magnitude higher than typical values in image recognition.
Stacking layers of AE will further amplify the error, making the
SAE-initialized NN perform poorly in classification.

We propose that such a flaw of AE stems from how input data
in different dimensions are interrelated. In image recognition,
each pixel is a dimension; in drug-likeness prediction and related
areas, each descriptor is a dimension. The training goal of AE
is to learn the relationship among dimensions, to encode input
information into hidden layer dimensions. So it is very likely
that AE would do worse if the relationship among dimensions is
intrinsically more chaotic and irregular. The relationship among
pixels is regular in that they are organized as a 2D grid and that
neighbor pixels bare some similarity and complementarity. Such
good properties are absent in relationship among descriptors,
resulting in the failure of AE input reconstruction process.
Despite the fact that AE reconstruction error is large, our model
still performs well in classification. In our opinion, this is due to
the regularization effect of AE pre-training. With unsupervised
pre-training, the model is more capable of truly learning data, less
prone to simply memorizing data.

Imbalanced data sets are a common problem. Although there
are some methods such as SMOTE, which can generate new data

to balance the data set, this method of generating data is much
dependent on the distribution of samples. Once the distribution
of samples is very sparse, then the new data is likely to deviate
from the space where the original data is exited. Developing
method to find data mapping spaces based on the distribution of
existing data is critical to generating data to balance the data set,
such as the current popular deep generation model. Developing
new algorithms to train unbalanced data sets is also an important
research direction.

In this study, DL has once again shown its capacity for
improving prediction models. Despite the success, we believe
that there is still much space for further development. A key
aspect is to adapt current DL methods to specific problems.
Such adaptations should be based on a better comprehension of
current DL methods. That is, knowing which part of the method
can be universally applied, and which part should be modified
according to the nature of data. For example, in this study,
we believe that the regularization effect of AE pre-training is a
universal part, while the part of AE input reconstruction should
be canceled or modified when input data is irregular.

CONCLUSION

In this study, we manually built two larger data sets,
drug-like/non-drug-like and drug/non-drug-like. Then using
the AE pre-training method, we developed drug-likeness
prediction models. The ACC of classification based on WDI
and ACD databases was improved to 91.04%. Our model
achieved classification ACC of 91.20% on MDDRWDI/ZINC
dataset, making it the state-of-the-art drug-likeness prediction
model, showing the predictive power of DL model outperforms
traditional machine learning methods. In addition, we developed
a drug/non-drug-like model (ZINC World Drug vs. ZINC
All Purchasable), which distinguished drugs and common
compounds, with a classification ACC of 96.99%. We proposed
that AE pre-training served as a better regularization method
in this study. The fail of multi-layer SAE reconstruction in this
study indicated that due to the specific nature of data, some
modifications may be needed when applying DL to different
fields. We hope machine learning researchers and chemists
collaborate closely to solve such a problem in the future,
bringing further comprehension and applications of DL method
in chemical problems.
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