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We make a rich variety of judgments on faces, but the
underlying features are poorly understood. Here we
describe a challenging geographical-origin classification
problem that elucidates feature representations in both
humans and machine algorithms. In Experiment 1, we
collected a diverse set of 1,647 faces from India labeled
with their fine-grained geographical origin (North vs.
South India), characterized the categorization
performance of 129 human subjects on these faces, and
compared this with the performance of machine vision
algorithms. Our main finding is that while many machine
algorithms achieved an overall performance comparable
to that of humans (64%), their error patterns across faces
were qualitatively different despite training. To elucidate
the face parts used by humans for classification, we
trained linear classifiers on overcomplete sets of features
derived from each face part. This revealed mouth shape
to be the most discriminative part compared to eyes,
nose, or external contour. In Experiment 2, we confirmed
that humans relied the most on mouth shape for
classification using an additional experiment in which
subjects classified faces with occluded parts. In
Experiment 3, we compared human performance for
briefly viewed faces and for inverted faces. Interestingly,
human performance on inverted faces was predicted
better by computational models compared to upright
faces, suggesting that humans use relatively more
generic features on inverted faces. Taken together, our
results show that studying hard classification tasks can
lead to useful insights into both machine and human
vision.

Introduction

Humans make a rich variety of judgments on faces,
including gender, personality, emotional state, and
more. Understanding the underlying features can help

endow a variety of artificial-intelligence applications
with humanlike performance. While face detection
itself has been extensively studied in computer vision
(Viola & Jones, 2001; Barnouti, Al-Dabbagh, & Matti,
2016; M. Wang & Deng, 2018), face categorization has
largely been studied using only coarse distinctions such
as ethnicity (Caucasian/Black/Asian; Brooks & Gwinn,
2010; Fu, He, & Hou, 2014) and gender (Tariq, Hu, &
Huang, 2009; Fu, He & Hou, 2014; Y. Wang, Liao,
Feng, Xu, & Luo, 2016). Even in humans, only coarse
distinctions such as Caucasian/Black have been studied
(Brooks & Gwinn, 2010; Fu, He & Hou, 2014).
Humans can reliably classify coarse-grained geograph-
ical origin in the absence of salient (but potentially
informative) cues such as skin color, expressions,
cosmetics, ornaments, or attributes such as hair style
(Brooks & Gwinn, 2010). Experience-driven biases can
contribute to asymmetries in coarse-grained geograph-
ical-origin classification (Toole & Natu, 2013).

Despite these advances, several questions remain
unanswered. First, what are the underlying features
used by humans? Because differences in coarse geo-
graphical origins are large, they manifest in a number
of face features. This makes it difficult to identify the
true subset of features used by humans. Computa-
tionally, many successful algorithms—ranging from
local binary patterns (Ojala, Pietikäinen, & Harwood,
1994) to deep neural networks (Krizhevsky, Sutskever,
& Hinton, 2012)—also use representations that are
difficult to interpret. Second, do these algorithms
behave as humans do across faces? Answering this
question will require both humans and machines to
exhibit systematic variations in performance across
faces, which is only possible with hard classification
tasks. We address both lacunae in this study.

There are broadly two approaches to creating hard
classification problems suitable for research. The first is
to impoverish the stimuli, thereby making them harder
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to categorize. This can be done by obscuring various
portions of a face (Gosselin & Schyns, 2001; Scheirer,
Anthony, Nakayama, & Cox, 2014), adding noise
(Gold, Bennett, & Sekuler, 1999), binarizing (Kozunov,
Nikolaeva, & Stroganova, 2018), or blurring faces
(Steinmetz & DaSilva, 2006). Alternatively, the cate-
gories themselves can be made more fine-grained,
thereby increasing task difficulty. While there has been
some work on discriminating between finer grained
geographical origin, such as with Chinese/Japanese/
Korean (Y. Wang et al., 2016), Chinese subethnicities
(Duan et al., 2010), and Myanmar (Tin & Sein, 2011),
these studies have not systematically characterized
human performance. In fact, it is an open question
whether and how well humans can discriminate fine-
grained face attributes across various world popula-
tions.

Here we present a fine-grained face-classification
problem on Indian faces that involves distinguishing
between faces originating from northern or southern
India. India contains over 12% of the world’s
population, with large cultural variability. Its geogra-
phy can be divided roughly into northern and southern
regions (Figure 1A) that have stereotyped appearances
and social and cultural identities with strong regional
mixing. This is accompanied by stereotyped face
structure (Figure 1B). Many Indians are able to classify
other Indian faces as belonging to specific regions or

even states in India but are often unable to describe the
face features they are using to do so. Our goal was
therefore to characterize human performance on this
fine-grained face-classification task and elucidate the
underlying features using computational models. Fur-
thermore, our data set, IISCIFD, which we are making
publicly available (https://github.com/harish2006/
IISCIFD), adds to the relatively few data sets available
for Indian faces (Somanath, Rohith, & Kambhamettu,
2011; Setty et al., 2013; Sharma & Patterh, 2015).

Overview

We performed three experiments. In Experiment 1,
we created a large data set of North and South Indian
faces and characterized the categorization performance
of 129 human subjects. We then trained and analyzed
computational models to identify face features that
predict human performance. We found that computa-
tional models trained on face classification showed
qualitatively different classification compared to hu-
mans. Further, mouth-shape features contributed the
most toward predicting human classification. In Ex-
periment 2, we confirmed that humans indeed rely on
mouth shape by comparing their classification on faces
with occluded parts. In Experiment 3, we investigated
whether subjects made qualitatively different responses

Figure 1. Definitions and examples of North and South Indian faces. (A) Operational definition of northern (blue) and southern (red)

regions of India used in this study. We included states that are generally agreed to be part of these regions, and excluded states with

unique or distinctive cultural identities (e.g., Kerala, West Bengal, Assam). The fact that independent sets of subjects were able to

easily categorize these faces correctly with high accuracy confirms the validity of our definition (see Methods). (B) Example North and

South Indian faces. North faces are shown here with a blue border and South faces with a red border, with male faces in the first row

and female faces in the second row. Faces are sorted from left to right in ascending order of accuracy with which they were classified

correctly across human observers. Each observer saw a given face exactly once. The text above or below each face is the percentage

of human observers who correctly classified it into its respective region. In the actual experiment, subjects saw the cropped face

against a black background. (C) Average faces. Average male and female North Indian (left) and South Indian (right) faces—obtained

by pixel-wise averaging of faces in each group—showing only subtle differences between the faces of the two groups.
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when they were shown only briefly flashed or inverted
faces.

Experiment 1: Fine-grained face
classification by humans

In Experiment 1, we created a large data set of faces
and characterized human classification on these faces.
We also trained computational models on both
geographical-origin labels and human accuracy. To
identify the face parts that contribute the most toward
classification, we asked how well models trained on
overcomplete representations of each face part can
predict human accuracy.

Methods

Data set: Our operational definition for North and
South Indians is illustrated in Figure 1A. We included
states that are representative of North and South
India and excluded states with unique or ambiguous
identity. The fact that our subjects were easily able to
use this classification confirms the validity of our
definition. Our face data set has a total of 1,647 Indian
faces drawn from two sets of faces, as summarized in
Table 1. We refer to this combined dataset as the
IISCIFD.

Set 1 consists of 459 face images collected with
informed consent from volunteers in accordance with a
protocol approved by the Institutional Human Ethics
Committee of the Indian Institute of Science. Volun-
teers were photographed in high resolution (3,648 3
2,736 pixels) against a neutral background. Photo-
graphs were collected primarily from volunteers who
declared that they as well as both parents belong to a
North Indian or South Indian state. For exploratory
purposes, we also included the faces of 110 volunteers
who declared themselves to be from other regions in
India (e.g., Kerala, West Bengal). In addition to their
geographical origin, volunteers were requested to
report their age, height, and weight.

Set 2 consists of 1,188 faces selected from the
Internet after careful validation. Since Indian names
are strongly determined by ethnicity, we first identified
a total of 128 typical first and 325 last names from each
region based on independently confirming these choices
with four other Indian colleagues (who were not
involved in subsequent experiments). Example first
names were Birender and Payal for North India,
Jayamma and Thendral for South India. Example last
names were Khushwaha & Yadav for North India,
Reddy and Iyer for South India. We then used Google
Image application programming interfaces to search

for face photographs associated with combinations of
these typical first and last names. Frontal faces were
detected using the CART face detector provided in
MATLAB’s (MathWorks, Natick, MA) Computer
Vision Toolbox, and faces in high resolution (at least
150 3 150 pixels) for which at least three of four
colleagues (same as those consulted for names) agreed
upon the geographical-origin label were included.
These faces were then annotated for gender as well.
Validation of Set 2: Because Set 2 faces were sourced
from the Internet, we were concerned about the validity
of the geographical-origin labels. We performed several
analyses to investigate this issue. For this and all
following statistical comparisons, we first performed
the Anderson–Darling test (Anderson & Darling, 1952)
to assess normality, and then used either parametric or
nonparametric tests as applicable. First, post hoc
analysis of classification accuracy revealed that human
accuracy on Set 2 (63.6%) was similar to that on Set 1
(62.88%), and this difference was not statistically
significant (p ¼ 0.51, rank-sum test comparing re-
sponse-correct labels of faces in the two sets). Second,
we asked whether human performance was similarly
consistent on the two sets. To this end, we randomly
selected responses of 20 subjects from each set and
calculated the correlation between the accuracy of two
halves of subjects. We obtained similar correlations for
the two sets (Set 1: r ¼ 0.73 6 0.05; Set 2: r¼ 0.71 6
0.02; correlation in Set 1 . Set 2 in 585 of 1,000
random subsets). Finally, we asked whether classifiers
trained on Set 1 and Set 2 generalized equally well to
the other set. For instance, it could be that the labels of
Set 2 were noisier and therefore constituted poorer
training data. To this end, we selected 400 faces from
each set and trained a linear classifier based on spatial
and intensity features on geographical-origin classifi-
cation. The classifier trained on Set 1 achieved an
accuracy of 66.4% on Set 1 and generalized to Set 2
faces with an accuracy of 55.2%. Likewise, the classifier
trained on Set 2 achieved an accuracy of 61% on Set 2
and generalized to Set 1 with an accuracy of 56.5%.
Thus, classifiers trained on either set generalized
equally well to the other set. In sum, the overall
accuracy and consistency of human subjects, as well as
feature-based classification accuracy, were all extremely
similar on both sets. Based on these analyses we

Face set Total Male Female North South Other

Set 1 459 260 199 140 209 110

Set 2 1,188 710 478 636 552 0

Total 1,647 970 677 776 761 110

Table 1. Summary of Indian face data set. Set 1 consisted of face
photographs taken with consent from volunteers who declared
their own geographical origin. Set 2 consisted of face images
downloaded from the Internet.
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combined the geographical-origin labels of both sets for
all subsequent analyses.
Image preprocessing: We normalized each face by
registering it to 76 facial landmarks (Milborrow &
Nicolls, 2014), followed by rotation and scaling such
that the midpoint between the eyes coincided across
faces and the vertical distance from chin to eyebrow
became 250 pixels without altering the aspect ratio. We
normalized the low-level intensity information across
faces in the data set, since some photographs were
taken outdoors, using histogram equalization (function
histeq in MATLAB) to match the intensity distribution
of all faces to a reference face in the data set.

Human behavior

Subjects: A total of 129 subjects (52 women, 77 men;
aged 18–55 years) with normal or corrected-to-normal
vision performed a binary, face-based geographical-
origin classification task. All experimental procedures
were in accordance with a protocol approved by the
Institutional Human Ethics Committee of the Indian
Institute of Science, Bangalore.
Task: Subjects were first introduced to our working
definition of North and South Indian regions and were
asked to inspect a set of 10 North and 10 South Indian
faces (with equal numbers of male and female faces)
that were not used for the subsequent classification
task. They then performed a classification task
consisting of several hundred trials. On each trial, a
salt-and-pepper noise mask appeared for 0.5 s, followed
by a fixation cross for 0.5 s. This was followed by a face
shown for 5 s or until a response was made. Trials were
repeated after a random number of other trials if a
response was not made within 5 s; we found post hoc
that such repeats were indeed very rare (less than 1% of
total trials) and did not occur at all for most subjects.
Subjects were instructed to indicate using a key press
(N for North, S for South) whether the face shown was
from North or South India. They were instructed to be
fast and accurate, and no feedback was given about
their performance. Subjects were allowed to pause and
resume the experiment using appropriate key presses to
avoid fatigue. Each face was shown only once to a
given subject, and a given subject saw on average 259
faces. The average number of subjects per face was 41
for Set 1 and 28 for Set 2.

Computational models

To elucidate the features used by humans for face
classification, we compared human performance with
that of several computational models. We selected
popular models from the computer-vision literature:
local binary patterns (LBPs), histograms of oriented
gradients (HOGs), and deep convolutional neural

networks (CNNs). We also evaluated the performance
of simple spatial and intensity features extracted from
each face. However, the problem with these models is
that their underlying features are difficult to tease
apart. Therefore, to elucidate the contribution of
individual face parts to human performance, we
evaluated the performance of a number of part-based
models based on features extracted from specific face
parts.
Local Binary Patterns (LBP) and Histogram Oriented
Gradients (HOG): We extracted LBP features over
tiled rectangular 3 3 3, 5 3 5, and 7 3 7 patches and
obtained a 1,328-dimensional feature vector for each
face. Our approach is similar to that of Ahonen, Hadid,
and Pietikainen (2006). HOG features over eight
orientations were extracted over similar patches as
LBP, and we obtained a dense 6,723-dimensional HOG
feature vector for each face. Our approach is also
similar in spirit to that of Déniz Bueno, Salido, & De la
Torre (2011).
CNN models (CNN-A, CNN-G, CNN-F): The first
CNN, VGG-Face (Parkhi, Vedaldi, & Zisserman,
2015), is a face-recognition CNN which we refer to as
CNN-F. The second is a CNN trained for age
classification (Levi & Hassner, 2015), which we refer to
as CNN-A. The third is a CNN trained for gender
classification (Levi & Hassner, 2015), which we refer to
as CNN-G. CNN-A and CNN-G consist of three
convolutional layers with respective filter sizes of 9637
3 7, 2563 53 5, and 3843 33 3, followed by two 512-
node fully connected layers and a single-node decision
layer. CNN-F, on the other hand, is a much deeper
network and has 11 convolutional layers with filter
sizes varying from 64 3 3 3 3 to 512 3 7 3 7, five max
pool layers, and three fully connected layers (Parkhi et
al., 2015). We used the penultimate 512-dimensional
feature vector for each face from CNN-A and CNN-G
and a 4,069-dimensional feature vector from CNN-F.
Spatial and intensity features (S, I, SI, IP, SIex, Mom):
We also compared computational models based on
spatial and intensity features extracted from each face.
The spatial features were obtained by measuring a
number of 2-D distances between various face parts of
interest, and intensity measurements which are based
on statistics of intensity in each local region of the face.
We tested two approaches to evaluate these features:
selective sampling and exhaustive sampling of features.

First, we selectively sampled spatial distances be-
tween specific landmarks and sampled intensity statis-
tics within specific regions in the face. We started by
registering an active appearance model (Milborrow &
Nicolls, 2014) to each face in order to identify 76 facial
landmarks, as illustrated in Figure 2A. These land-
marks were then used to delineate patches, and mean,
minimum, and maximum intensity values were record-
ed along with landmark-based spatial features, yielding
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a set of 23 spatial (S) and 31 intensity (I) measurements
(Figure 2B).

Second, we exhaustively sampled all possible pairs of
2-D distances and intensity measurements. We em-
ployed Delaunay triangulation (Delaunay, 1934) over a
restricted set of 26 landmarks from which we extracted
43 face patches (Figure 2C), each of which covered the
same region across all subjects. We extracted 325 pair-
wise distances from these 26 landmarks and addition-
ally extracted the mean, minimum, and maximum
intensities on all 43 patches, yielding 129 intensity
measurements. Together these features are referred to
as SIex. To investigate the possibility that global
intensity statistics may also contribute to classification,
we included the first six moments of the pixel intensity
distribution (Mom).
Local face features (E, N, M, C, Eb, IP, ENMC): To
model local shape, we selected the following face
features: eyes (E), nose (N), mouth (M), contour (C).
We also evaluated the performance of all these features
concatenated together, which we refer to as ENMC. In
addition we included eyebrow (Eb) shape as well.

In each case, we modeled local shape by calculating
all pair-wise distances across landmarks related to the
two eyes (9C2 for each eye¼ 72 distances), nose (12C2
¼ 66), mouth (18C2¼ 153), eyebrows (15C2 ¼ 105) and
face contour (15C2 ¼ 105). We also calculated 7C2 ¼
21 configural features by taking the centroid-to-
centroid inter-part (IP) distances between all 21 pairs of
seven parts which consisted of left eye, right eye, nose,
mouth, left-contour, right-contour and chin region.

Model training and cross validation

For each model, we reduced feature dimensionality
by projecting feature vectors corresponding to each

face along their principal components and retained
projections that explain 95% of the variance in the data
(Katti, Peelen, & Arun, 2017). Models for binary
geographical-origin classification and gender classifi-
cation were trained using linear discriminant analysis
implemented in the MATLAB classify function.
Regression models to predict age, height, and weight
were trained using regularized linear regression imple-
mented in the MATLAB lasso function, which
optimizes the squared error subject to a sparsity
constraint. We performed 10-fold cross validation
throughout to avoid overfitting. In all cases, model
performance is reported by concatenating the predic-
tions across the 10 folds and then calculating the
correlation with observed data.

Results

We generated a data set with 1,647 Indian faces
labeled with fine-grained geographical origin and
gender. A fraction of faces also contained self-
reported age (n¼ 459), height (n¼ 218), and weight (n
¼ 253). We obtained fine-grained geographical-origin
classification performance from total of 129 subjects.
We tested a number of computational models for
their ability to predict all these data given the face
image.

Our results are organized as follows. First, we
describe human performance on fine-grained geo-
graphical-origin categorization. Second, we evaluate
the ability of computational models in predicting the
same labels. We found that while several models
achieved human levels of performance, their error
patterns were qualitatively different. Third, we evaluate
whether models can predict human accuracy when

Figure 2. Spatial and intensity feature extraction from faces. (A) Each face was registered to 76 active-appearance-model landmarks

using standard methods. (B) We defined a basic set of intensity features (I) from manually defined regions on the face. (C) We defined

a basic set of spatial features (S), which were manually defined distances between specific landmarks on the face. (D) We also defined

a more exhaustive set of spatial and intensity features by calculating all pair-wise distances between a subset of landmarks (for spatial

features) and intensity features from regions demarcated using Delaunay triangulation on these landmarks. This exhaustive set of

features is denoted in subsequent analyses as SIex.
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explicitly trained on this data. This yielded improved
predictions but models were still far from human
performance. By comparing features derived from
individual face parts, we were able to elucidate the face
parts that contribute to human accuracy. Fourth, we
investigate whether these models can predict other
associated labels such as gender, age, height, and
weight.

Human performance

In all, we obtained responses from 129 subjects for
1,423 faces across both sets, with over 16 responses for
each face. Example faces are shown in Figure 1.
Subjects found the task challenging: The average
accuracy was 63.6%, but this performance was signif-
icantly above chance (p , 0.0005; sign-rank test
comparing response-correct labels across 1,423 faces
against a median of 0.5). Nonetheless, there were
variations in accuracy across faces, as shown in Figure
3A. These variations were highly systematic, as
evidenced by a high correlation between the accuracy
obtained from one half of subjects with that of the
other half (r ¼ 0.64, p , 0.0005; Figure 3B).

In addition to measuring categorization perfor-
mance, we collected information from each subject
about their own geographical origin. A small number
of subjects tested were of non-Indian origin (n ¼ 6).
Their performance was essentially at chance (average
accuracy¼51%), and so we removed their data from all

further analysis. The remaining 129 subjects were
chosen for further analyses.

To investigate whether subjects’ own geographical
origin affected their performance, we compared the
average accuracy of each subject on faces matching
their own geographical origin with accuracy on faces
from a different geographical origin. This revealed no
systematic difference (mean accuracy 6 SD: 63.8% 6
13.4% for own, 64.5% 6 12.2% for other; p , 0.55;
rank-sum test). Likewise, subjects showed no prefer-
ential bias for their own or other gender in their
classification performance (mean accuracy 6 SD:
65.1% 6 3.2% for own, 63.4% 6 3.1% for other; p ¼
0.21; rank-sum test).

Predicting fine-grained geographical-origin labels

We then evaluated the ability of computational
models to predict the ground-truth geographical-origin
labels. The cross-validated performance of all the
models is summarized in Table 2. Three models yielded
equivalent accuracy (i.e., 63% correct): spatial and
intensity features (SI), HOG, and CNN-F. To evaluate
how local features contribute to geographical origin, we
calculated pair-wise spatial distances between facial-
landmark points on each specific part of the face (eye,
nose, mouth, eyebrows, and contour). This yielded an
extensive set of measurements for each part that
contained a complete representation of its shape. We
then asked which of these feature sets (or a combina-
tion thereof) are most informative for classification.

Figure 3. Human performance on fine-grained face classification. (A) Distribution of human accuracy across faces on the North/South

Indian face-classification task. Accuracy is calculated as the percentage of participants who correctly guessed the label. (B) Human

accuracy for each face calculated from even-numbered subjects plotted against that obtained from odd-numbered subjects. The high

correlation indicates that humans were highly consistent: Faces that were accurately judged by one group of subjects were also

accurately judged by another independent group.
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The results are summarized in Table 2. Mouth shape
was the most discriminative part for this classification
task, and including all other face parts did not improve
performance.

Comparing machine predictions with human classification

Next, we wondered whether faces that were easily
classified by humans would also be easy for the models
trained on ground-truth labels to classify. This would
indicate whether humans and computational models
use similar feature representations. To this end, we
computed the correlation of accuracy/error patterns
between every pair of models as well as between human
accuracy/errors and all models. To compare these

correlations with human performance, we calculated
the correlation between the average accuracy of two
halves of human subjects. However, this split-half
correlation underestimates the true reliability of the
data, since it is derived from comparing two halves of
the data rather than the full data. We therefore applied
a Spearman–Brown correction (Spearman, 1910;
Brown, 1910) on this split-half correlation to estimate
the true reliability of the data, which is given as
rc¼ 2r/(rþ 1), where rc is the corrected correlation and
r is the split-half correlation.

In the resulting color map, shown in Figure 4,
models with similar error patterns across faces show
high correlations. Importantly, error patterns of all
models were poorly correlated with human perfor-
mance (Table 2, Figure 4B). This poor correlation
between model and human errors could result poten-
tially from models being trained on a mix of weak and
strong geographical-origin labels, or from different
feature representations. To distinguish between these
possibilities, we trained models directly to predict
human accuracy using regression methods. Since
different features could contribute to an accurately
classified North face and a South face, we trained
separate models for each class and then concatenated
their predictions. The resulting model performance is
summarized in Figure 4C. Despite being explicitly
trained on human performance, models fared poorly in
predicting it.

We conclude that human performance cannot be
predicted by most computational models, which is
indicative of different underlying feature representa-
tions.

Finally, we asked whether the agreement between the
responses of two different humans was in general better
than the agreement between two models using different
feature types. We performed this analysis on faces from
Set 1 that had a higher number of human responses
than Set 2. The average correlation between correct
response patterns for two human subjects (r¼0.46) was
higher than the average pair-wise correlation between
models trained for North/South categorization (r ¼
0.08). The average correlation between two human
subjects was also significantly higher (p , 0.0001, rank-
sum test) than the agreement between models trained to
predict human accuracy (r¼ 0.35).

Face-part information in model representations

Since mouth shape was most informative for North
vs. South geographical-origin labels (Table 2), we asked
whether models trained on whole faces were preferen-
tially encoding mouth information. To this end, we
calculated the correlation in the accuracy across faces
for each whole-face model with the accuracy predicted
by models based on eyes, nose, mouth, or eyebrow

N/S classification

accuracy

Correlation with

human accuracy

Model df % Rank df Correlation Rank

#Faces - 1,537 - - 1,423 -

Human - 64% 6 6.7% - - 0.76 -

S 10 54% 6 0%* 11 11 0.19 6 0.00* 10

I 14 63% 6 0% 2 15 0.33 6 0.00* 2

SI 24 63% 6 0% 1 24 0.36 6 0.00 1

SIex 56 57% 6 1%* 8 57 0.24 6 0.01* 6

Mom 2 50% 6 0%* 17 2 0.16 6 0.00* 12

LBP 172 54% 6 0%* 12 157 0.12 6 0.00* 18

HOG 487 63% 6 1% 3 423 0.29 6 0.01* 4

CNN-A 124 59% 6 0%* 6 121 0.29 6 0.01* 3

CNN-G 53 58% 6 1%* 7 50 0.22 6 0.00* 7

CNN-F 737 61% 6 1%* 4 722 0.20 6 0.01* 9

E 5 51% 6 1%* 14 5 0.14 6 0.01* 16

N 7 53% 6 1%* 13 7 0.15 6 0.00* 13

M 6 56% 6 0%* 9 6 0.20 6 0.00* 8

C 5 51% 6 1%* 16 5 0.15 6 0.00* 14

Eb 4 51% 6 1%* 15 5 0.13 6 0.00* 17

IP 6 49% 6 1%* 18 6 0.14 6 0.01* 15

ENMC 16 56% 6 1%* 10 16 0.18 6 0.00* 11

Table 2. Model performance on geographical-origin classifica-
tion. We trained each model on the ground-truth geographical-
origin labels (North vs. South). The numbers in the table under
% indicate the mean 6 standard deviation of 10-fold cross-
validated accuracy of each model across 100 splits. *Asterisks
indicate that the model’s performance is below the best model
in more than 95 of the 100 cross-validated splits, which we
deemed statistically significant. Rows in boldface correspond to
the best models for either overall accuracy or human accuracy.
Notes: df ¼ degrees of freedom/number of principal compo-
nents; S¼ spatial features; I¼ intensity features; SI¼ spatial and
intensity features; SIex¼ exhaustive spatial and intensity
features; Mom ¼moments of face-pixel intensity; LBP ¼ local
binary patterns; HOG¼ histogram of oriented gradients; CNN-A,
CNN-G, CNN-F¼deep networks; E¼eye; N¼nose; M¼mouth;
C ¼ contour; Eb ¼ eyebrows; IP ¼ interpart distances; ENMC ¼
eye, nose, mouth, and contour together (see text).
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Figure 4. Comparison of error patterns between models and humans. (A) Significant pair-wise correlations between the accuracy and

error rates across faces for models and humans (p , 0.05). We deemed a correlation significant if less than 5% out of 100 cross-

validated splits were below zero. A high artifactual correlation (r¼ 1) between CNN-G and eye shape is marked with #. (B) Correlation

between the accuracy of each model (trained on ground-truth labels) and human accuracy across faces. Error bars represent the

standard deviation calculated across 1,000 iterations in which faces were sampled with replacement. The rightmost bar depicts

human reliability—that is, correlation between average accuracy of one half of subjects with that of the other half of subjects.

Significance is calculated as in (A). (C) Correlation between predicted and observed average human accuracy for each model. Here,

models were trained to predict human accuracy. Significance is calculated as in (A).

Figure 5. Whole-face model predictions correlate better with mouth shape. The bar plot shows the significant correlations (p , 0.05)

between predicted geographical-origin labels for models trained on whole-face information with predicted labels for models trained

on eyes (E), nose (N), mouth (M), or eyebrow shape (B). The sole exception is CNN-G, which is particularly dependent on eye shape

(see text). Predictions based on intensity moment (Mom) did not have significant correlations with those from models trained with

eyes, nose, mouth, or eyebrow information. We deemed a correlation significant if less than 5% out of 100 cross-validated splits were

below zero.
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shape. The results are summarized in Figure 5. Across
models trained on a variety of features, classification
performance was best correlated with models based on
mouth features. The interesting exception is that the
CNN trained for gender classification (CNN-G) is best
correlated with eye shape. This particular correlation
has been noted before (Binder, Bach, Montavon,
Müller, & Samek, 2016), where it was attributed to
biases in the training data set and a lack of real-world
priors in CNNs trained from scratch with face
databases and gender labels.

Predicting gender, age, weight, and height attributes

Humans are adept at judging not only geographical
origin but also several other attributes from a given
face, such as gender, age, height, and weight. We
surmised that there is a common feature representation
that can be flexibly reweighted to learn decision
boundaries for different attributes. We therefore tested
the ability of computational models to predict these
attributes. The results are summarized in Table 3.

It can be seen that all models perform gender
classification much better than fine-grained geograph-

ical-origin classification: The best model for gender was
the HOG model, and eyebrow shape (Eb) was the best
single part compared to eyes, nose, mouth, contour,
and interpart distances.

To a smaller degree, we were also able to predict age
and weight using computational models: The best
model for age was LBP, and the best single parts were
nose (N) and contour (C). The best model for height
was also LBP, and the best single parts were interpart
distances (IP). The best model for weight was interpart
distances (IP). Since we did not collect human
estimates for these variables, it is difficult to say
whether humans would perform better or worse than
these predictions.

Experiment 2: Face-part occlusion

The results of Table 2 show that, among individual
face parts such as eyes, nose, and mouth, classifiers
trained on mouth features are the most accurate at
fine-grained geographical-origin predictions, and

Gender (n ¼ 1,647) Age (n ¼ 459) Height (n ¼ 218) Weight (n ¼ 253)

Feature Dims df Accuracy Rank Correlation Rank Correlation Rank Correlation Rank

S 23 11 0.68 6 0.00* 12 0.28 6 0.01* 3 0.32 6 0.01* 10 0.34 6 0.01* 8

I 31 15 0.77 6 0.00* 8 0.21 6 0.02* 10 0.58 6 0.02* 4 0.11 6 0.07* 14

SI 54 24 0.79 6 0.00* 6 0.26 6 0.01* 4 0.59 6 0.02* 3 0.31 6 0.02* 10

SIex 126 57 0.82 6 0.00* 4 0.06 6 0.03* 15 0.36 6 0.02* 6 0.40 6 0.02* 3

Mom 7 2 0.58 6 0.00* 16 0.02 6 0.02* 16 0.33 6 0.01* 9 0.03 6 0.04* 16

LBP 1,328 157 0.55 6 0.00* 17 0.36 6 0.01 2 0.77 6 0.01 1 0.37 6 0.03* 6

HOG 77 51 0.94 6 0.00 1 0.38 6 0.01 1 0.71 6 0.01* 2 0.45 6 0.02 2

CNN-A 512 121 0.79 6 0.00* 7 0.22 6 0.03* 7 0.02 6 0.04* 17 0.25 6 0.05* 13

CNN-G 512 50 0.80 6 0.00* 5 0.18 6 0.03* 11 0.08 6 0.01* 16 0.29 6 0.05* 11

CNN-F 4,096 722 0.87 6 0.01* 2 0.10 6 0.02* 13 0.10 6 0.02* 15 0.05 6 0.12* 15

E 72 5 0.68 6 0.00* 11 0.00 6 0.03* 17 0.24 6 0.02* 13 0.38 6 0.01* 5

N 66 7 0.68 6 0.00* 13 0.24 6 0.02* 5 0.32 6 0.02* 11 0.32 6 0.01* 9

M 153 6 0.60 6 0.00* 15 0.07 6 0.02* 14 0.25 6 0.02* 12 0.00 6 0.07* 17

C 105 5 0.64 6 0.00* 14 0.23 6 0.01* 6 0.35 6 0.01* 7 0.37 6 0.01* 7

Eb 30 5 0.83 6 0.00* 3 0.14 6 0.02* 12 0.24 6 0.02* 14 0.29 6 0.01* 12

IP 21 6 0.71 6 0.00* 9 0.22 6 0.01* 8 0.36 6 0.02* 5 0.47 6 0.01 1

ENMC 396 16 0.70 6 0.00* 10 0.21 6 0.02* 9 0.34 6 0.02* 8 0.40 6 0.01* 4

Table 3. Model performance on gender, age, height, and weight prediction. To classify gender, models were trained on the face
features together with gender labels. Model accuracy reported is based on 10-fold cross-validation, as before. To predict age, height,
and weight, we projected the face features for the available faces into their principal components to account for 95% of the variance,
and then performed regularized regression of the features against each attribute. *Asterisks indicate that the given model’s
performance was below the best model (in bold) on more than 95 of 100 cross-validated splits, which we considered statistically
significant. Notes: Dims ¼ total number of features; df ¼ number of principal-component projections selected for classification/
regression; S ¼ spatial features; I ¼ intensity features; SI ¼ spatial and intensity features; SIex¼ exhaustive spatial and intensity
features; Mom¼moments of face-pixel intensity; LBP¼ local binary patterns; HOG¼histogram of oriented gradients; CNN-A, CNN-G,
CNN-F¼ deep networks; E¼ eye; N¼ nose; M¼mouth; C¼ contour; Eb¼ eyebrows; IP¼ interpart distances; ENMC¼ eye, nose,
mouth, and contour together.

Journal of Vision (2019) 19(7):1, 1–17 Katti & Arun 9



their performance correlates best with human per-
formance.

This in turn predicts that humans base their
classification judgements on mouth shape more than on
eye or nose shape. We set out to test this prediction
using a behavioral experiment on humans. We note
that this was by no means a foregone conclusion simply
because it was observed using computational analyses:
For instance, humans might adaptively use the visible
features for classification, thereby maintaining the same
accuracy even when a face part is occluded. It could
also be that humans use some other complex features
based on other face parts that only correlate with a
particular face part but can still be extracted when that
part is occluded. Testing this prediction in an actual
experiment is therefore critical.

Methods

In this experiment, human subjects were asked to
perform fine-grained geographical-origin classification
on faces in which the eyes, nose, or mouth were
occluded in separate blocks. They also performed the
same fine-grained classification on unoccluded faces.
Importantly, some faces were unique to each block and
others were common across blocks. This approach
allowed us to compare accuracy for both unique and
repeatedly viewed faces across occlusion conditions.
Data set: From the 1,647 faces in the data set, we chose
544 faces spanning moderate (50%) to easy (100%)
levels of difficulty, with half the faces being North
Indian and the other half South Indian. We then
created three occlusion conditions to evaluate the
relative importance of the eye, the lower half of the
nose, and mouth shape in fine-grained geographical-
origin discrimination. Example faces are shown in
Figure 6. Our approach is similar in spirit to
computational (Zhao, Chellappa, & Rosenfeld, 2003)
and behavioral studies (Ellis, Shepherd, & Davies,
1979) that selectively expose face-part information. The
occluding band was of the same height in all three
cases, and we took care to avoid occluding other face
parts (e.g., eyebrows while occluding eyes, or nose
while occluding mouth). We then created four sets of
faces corresponding to no-occlusion, eye-occluded,
nose-occluded, and mouth-occluded conditions. There
were a total of 217 faces in each of these conditions, of
which 108 were common to all four conditions and 109
were unique to that condition. We ensured during
selection that the average human accuracy on North vs.
South categorization on the intact versions of each set
of 217 faces was comparable and around 69%, based on
evaluating accuracy across the full data set.
Subjects: We recruited 24 Indian volunteers (nine
women, 15 men; aged 25.7 6 4.46 years) and obtained
informed consent as before. We instructed subjects to
indicate geographical-origin labels using key-press
responses (N for north and S for south). Each subject
was presented with a unique permutation of the 4!¼ 24
possible permutation orders of the four occlusion
blocks. Only one response was collected for each of the
217 faces shown within a condition.

Results

We analyzed the accuracy of subjects in each
occlusion condition separately for the 108 faces
common across conditions, as well as for the 109 faces
unique to each condition. These data are shown in
Figure 6. Subjects were the most accurate on unoc-
cluded faces, as expected (average accuracy¼ 65.8%).
Importantly, classification performance was maximally

Figure 6. Effect of occluding face parts on classification: (A)

Human classification accuracy and (B) response times in each of

the occlusion conditions. Error bars indicate standard deviation

about the means. Asterisks represent statistical significance: *p

, 0.05, **p , 0.005, and ***p , 0.0005 on a rank-sum test

performed on binary response-correct labels for all faces

concatenated across subjects.
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impaired for the mouth-occluded (59.8%; p , 0.0005
compared to accuracy on unoccluded and p , 0.005
compared to accuracy on eye-occluded faces; Wilcoxon
rank-sum test performed on binary response-correct
labels for all faces concatenated across subjects) and
nose-occluded (61.1%; p¼ 0.335 compared to accuracy
on mouth-occluded faces; Wilcoxon rank-sum test)
conditions, but not as much in the eye-occluded
condition (63.6%). Subjects also faced greater difficulty
in categorizing mouth-occluded faces, as indicated by
longer response times when compared to unoccluded,
eye-occluded, and nose-occluded conditions (p ,
0.0005 compared to unoccluded, p , 0.05 compared to
eye-occluded or nose-occluded; Wilcoxon rank-sum
test performed on response times for all faces concat-
enated across subjects). We conclude that fine-grained
geographical-origin classification depends on mouth
shape more than eye or nose shape, thereby validating
the prediction from computational modeling.

Experiment 3: Speeded and
inverted faces

The results of Experiments 1 and 2 show that mouth
shape plays an important role in fine-grained geo-
graphical-origin classification in upright faces. In these
experiments, upright faces were shown to subjects until
they made a response, thereby allowing them to make
eye movements to potentially sample face parts. We
therefore wondered whether subjects would make
qualitatively different responses if they were only
shown a briefly flashed face to preclude detailed
scrutiny. Likewise, we wondered whether subjects
would make qualitatively different responses when they
viewed inverted faces, where face features appear in an
unfamiliar orientation and configuration. To address
these questions, we performed an additional experi-
ment involving upright faces presented for either short
or long durations and involving inverted faces.

Methods

Subjects categorized faces presented either in up-
right, inverted, or speeded conditions. Faces were
presented in blocks comprising upright faces shown for
5 s, as in Experiments 1 and 2; upright faces presented
for 100 ms followed by a noise mask; and inverted faces
shown for 5 s as before. In all three cases the trial
continued until a response or 5-s time-out. Subjects
were instructed to be fast and accurate, and the order of
blocks was counterbalanced across subjects.
Data set: From the 1,647 faces in the data set, we chose
592 faces (296 North, 296 South), with an equal

number of male and female faces. This chosen subset of
faces was as difficult as the full set of 1,647 faces
(median accuracy: 66% for the 592 faces, 58% for all
faces; p¼ 0.82; rank-sum test for equal medians).
Subjects: We recruited 25 Indian volunteers (12 women,
13 men; aged 28 6 5.7 years) and obtained informed
consent as before. We instructed subjects to indicate
geographical-origin labels using key-press responses (N
for north and S for south). Only one response was
collected for each unique face in a block. We omitted
the data of one participant who later reported not
having followed instructions correctly and was at
chance in all three blocks

Results

We presented blocks of 592 faces in one of three
conditions: upright faces presented until response or for
5 s (regular upright), upright faces presented briefly for
100 ms followed by a noise mask (speeded upright), or
inverted faces presented until response or for 5 s.
Subjects’ performance was above chance in all condi-
tions (average accuracies: 59% for regular upright
faces, 57% for speeded upright faces, 55% for inverted
faces; p , 0.05 for regular and speeded upright, p ,
0.0001 for inverted faces; chi-square test comparing
total correct and wrong responses with a 50/50 split).

Subjects were slightly less accurate in this experiment
(average accuracy: 59%) compared to Experiment 1
(average accuracy: 65% on the same faces), presumably
because of having to switch blocks. Importantly, they
were less accurate on speeded upright faces (average
accuracy: 57%) and inverted faces (average accuracy:
55%) compared to regular upright faces (average
accuracy: 59%). Subjects were more accurate on regular
upright faces than speeded upright faces and inverted
faces. These comparisons were statistically significant
(p , 0.05 in both cases; sign-rank test comparing
regular upright with speeded upright or with inverted).

To investigate whether these differences in accuracy
were due to speed–accuracy tradeoffs, we compared
response times in these three blocks as well. Response
times varied systematically across blocks (average: 1.15,
0.95, and 1.31 s, respectively, for regular, speeded, and
inverted faces). While subjects were significantly faster
on speeded than regular upright faces (p , 0.0001;
rank-sum test), they were significantly slower on
inverted than regular upright faces (p , 0.0001; rank-
sum test). Thus, the lower accuracy and faster
responses to speeded faces compared to regular upright
faces stem from a speed–accuracy tradeoff.

Next, we examined the consistency of subjects’
responses in the three blocks. To this end we measured
the correlation between the average accuracy across
faces calculated separately for odd- and even-numbered
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subjects. This revealed a significant split-half correla-
tion for regular upright faces (r ¼ 0.80, p , 0.01) and
speeded upright faces (r ¼ 0.83, p , 0.01), and a
correlation approaching significance for inverted faces
(r ¼ 0.64, p ¼ 0.06). The split-half correlation for
inverted faces was significantly different from both
regular and speeded upright faces (p , 0.0001 for both
comparisons; Fisher’s z test).

Next, we asked whether variations in human
accuracy across faces could be predicted using com-
putational models as before. The results are summa-
rized in Table 4. As before, models based on spatial and
intensity features (SI and I) predicted human accuracy
the best across upright, speeded, and inverted faces.
Among face parts, mouth shape was the most
informative part (compared to eye, nose, and contour)
for regular upright faces only, whereas contour was the
most informative part for speeded upright and inverted
faces.

We also observed an interesting pattern in the ability
of the best model to explain human accuracy varia-
tions. The correlation between predicted and observed
human accuracy for the best model was highest for
inverted faces compared to upright faces (r¼ 0.40, 0.45,
and 0.47, respectively, for regular upright, speeded
upright, and inverted faces). The higher performance of
the best model cannot be explained by a difference in
response consistency in the three conditions, because
the response consistency is in fact higher for upright
compared to inverted faces.

To quantify model performance relative to response
consistency, we calculated for each set of faces a
composite measure of model fit by dividing the best
model correlation by the consistency of human subjects
on each set. The resulting normalized correlation will
have an upper bound of 1 if model predictions are as
consistent as humans are with each other. Interestingly,
this normalized correlation was larger for inverted faces

Regular upright Speeded upright Inverted

Human accuracy - - 59% - 57% - 55% -

rdata - - 0.80 (p , 0.01) - 0.83 (p , 0.01) - 0.64 (p ¼ 0.06) -

Best rmodel - - 0.5 - 0.54 - 0.75 -

Feature Dims nPC Correlation Rank Correlation Rank Correlation Rank

S 23 10 0.28 6 0.01* 12 0.25 6 0.01* 12 0.39 6 0.01* 10

I 31 15 0.40 6 0.02 1 0.44 6 0.01 2 0.47 6 0.01 2

SI 54 24 0.39 6 0.02 2 0.45 6 0.02 1 0.47 6 0.01 3

SIex 126 56 0.29 6 0.01* 10 0.30 6 0.01* 8 0.37 6 0.01* 13

Mom 7 2 0.29 6 0.01* 8 0.29 6 0.00* 9 0.41 6 0.00* 6

LBP 1328 226 0.31 6 0.02* 6 0.31 6 0.02* 7 0.41 6 0.01* 7

HOG 6723 342 0.37 6 0.02 3 0.39 6 0.01* 3 0.44 6 0.02* 5

CNN-A 512 142 0.34 6 0.01* 4 0.34 6 0.01* 6 0.46 6 0.01* 4

CNN-G 512 59 0.30 6 0.01* 7 0.37 6 0.01* 5 0.41 6 0.01* 8

CNN-F 4096 261 0.34 6 0.01* 5 0.38 6 0.02* 4 0.48 6 0.01 1

E 72 5 0.27 6 0.01* 14 0.22 6 0.01* 17 0.37 6 0.00* 15

N 66 7 0.26 6 0.01* 17 0.23 6 0.01* 14 0.36 6 0.01* 17

M 153 6 0.29 6 0.01* 9 0.22 6 0.01* 15 0.37 6 0.00* 14

C 105 6 0.27 6 0.01* 13 0.26 6 0.01* 10 0.40 6 0.00* 9

Eb 30 4 0.27 6 0.00* 15 0.22 6 0.01* 16 0.36 6 0.00* 16

IP 21 6 0.26 6 0.01* 16 0.24 6 0.01* 13 0.38 6 0.01* 12

ENMC 396 16 0.28 6 0.01* 11 0.26 6 0.01* 11 0.38 6 0.01* 11

Table 4. Model performance on predicting human accuracy in upright, speeded, and inverted faces. To predict human accuracy on
upright, speeded, and inverted faces, we projected model features for all 592 faces into their principal components to account for
95% of the variance, and then performed regularized regression. Regular upright and inverted faces were shown for up to 5 s;
speeded upright faces were shown for 100 ms followed by a noise mask. *Asterisks indicate that a given model’s performance was
below the best model (in bold) on more than 95 of 100 cross-validated splits, which we considered statistically significant. Notes:
Human-pc % ¼ classification accuracy of humans; rdata¼ internal consistency of human responses measured using split-half
correlation; Best rmodel¼ normalized best model correlation calculated as the ratio of best model correlation and internal consistency
of human responses (rdata); Dims ¼ total number of features in the model; nPC ¼ number of principal components along which
features are projected for subsequent regression; S¼ spatial features; I¼ intensity features; SI¼ spatial and intensity features; SIex¼
exhaustive spatial and intensity features; Mom¼moments of face-pixel intensity; LBP¼ local binary patterns; HOG¼ histogram of
oriented gradients; CNN-A, CNN-G, CNN-F ¼ deep networks; E ¼ eye; N ¼ nose; M ¼mouth; C ¼ contour; Eb ¼ eyebrows; IP ¼
interpart distances; ENMC ¼ eye, nose, mouth, and contour together.
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compared to upright faces (rnorm ¼ 0.5, 0.54, and 0.75,
respectively, for regular upright, speeded upright, and
inverted faces). To assess the statistical significance of
these differences, we computed the best model corre-
lation in each of the three conditions using matched
fivefold splits and computed the normalized correla-
tion. We repeated this process 1,000 times and counted
the number of times the normalized correlation in the
inverted condition was smaller than in both upright
conditions. This revealed a small fraction of splits with
this effect, indicative of statistical significance (fraction
p , 0.001 for both comparisons).

We conclude that humans rely on more generic face
features while categorizing inverted faces compared to
upright faces.

General discussion

Here we set out to elucidate the features underlying
face perception in humans using a challenging face-
classification task involving geographical-origin labels
on Indian faces. Our main findings are the following:
(a) humans show highly systematic variations in
accuracy across faces, indicating that they learn similar
feature representations despite widely differing face
experience; (b) many computational models achieved
human levels of performance, but their error patterns
were qualitatively different; (c) a variety of other
secondary attributes such as age, gender, and even
height and weight were also predictable using compu-
tational modeling; (d) mouth shape was the strongest
contributor to fine-grained geographical-origin classi-
fication compared to other face parts, as evidenced by
high accuracy of classifiers trained on face parts; (e) we
confirmed this empirically by showing that humans
showed the largest drop in accuracy when the mouth
was occluded compared to other parts; (f) human
performance on inverted-face classification was pre-
dicted better by computational models compared to
upright faces, suggesting that humans use more generic
representations for inverted compared to upright faces.
We review each of these findings in the context of the
existing literature.

Our main finding is that computational models
achieve human levels of performance but show
qualitatively different error patterns. This is an
important observation for several reasons. It suggests
that humans use qualitatively different features. For
instance, humans might use features that we did not
reliably extract from faces, such as their three-
dimensional shape or skin texture. It is also possible
that the computer-vision classifiers learn very differ-
ently from humans or are susceptible to outliers or
noise in face labels. Distinguishing between these

possibilities will require systematically training and
testing humans on challenging face-classification tasks.

We found mouth shape to be the strongest predictor
of fine-grained face classification of North versus South
Indian, compared to other face parts. We further
confirmed that mouth shape was critical to this
classification by comparing human performance on
faces with the eyes, nose, or mouth occluded. It was
absolutely critical to establish this experimentally: The
finding that human classification is best predicted by
mouth shape does not guarantee that humans use
mouth shape to classify faces. For instance, humans
might be using some other feature correlated with
mouth shape (but not quantified in this study), in which
case occluding the mouth would have had no effect.
Likewise, humans may adaptively use whichever
features are visible to classify faces, in which case
occluding the mouth would leave classification unaf-
fected even though mouth shape is used for unoccluded
face classification.

That mouth shape contributes the most to fine-
grained geographical-origin classification is consistent
with the sensitivity to part shape observed in behavioral
readouts of face processing (Valentine, 1991; Abudar-
ham & Yovel, 2016). We have found that face-contour
features best predict gender classification, suggesting
that different face parts may be informative for
different types of judgements. However, these findings
do not rule out the contribution of configural features
that can interact with local part shape in upright faces
(Sergent, 1984; Tanaka & Farah, 1993) or when top
and bottom halves of different faces can give rise to
new identities in the composite face illusion (Rossion,
2013). On inversion, such interactions can result in new
face identities when top and bottom halves of different
faces are combined (Young, Hellawell, & Hay, 1987).

It is worth noting that classifiers trained on simpler
feature banks yielded comparable or even better
performance compared to deep neural networks in our
study (Tables 2, 3). This is interesting because a variety
of studies have demonstrated a coarse match between
object representations across layers in CNNs with those
in the visual cortical hierarchy (Yamins et al., 2014),
and CNNs have been applied to predict various face
attributes such as identity (Chatfield, Simonyan,
Vedaldi, & Zisserman, 2014), gender, and age (Levi &
Hassner, 2015) with remarkable success. The poor
performance of CNNs in predicting human perception
may indicate qualitative differences between the two
representations despite the overall coarse similarity.
This finding also raises the intriguing possibility that
face classification in humans may be based on simpler,
more interpretable features in contrast to the unin-
terpretable features used by CNNs (Lapuschkin,
Binder, Montavon, Müller, & Samek, 2016; Lapusch-
kin & Binder, 2017). This finding also suggests that
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human accuracy could be used as complementary
information to augment and improve face-recognition
algorithms (Scheirer et al., 2014), as we have demon-
strated for object classification (Katti, Peelen, & Arun,
2019).

Our finding that a variety of other secondary
attributes were predictable by computational models
demonstrates that the face carries many other inter-
esting signals. While it is not surprising that age,
gender, and weight are predictable from the face, it is
somewhat more interesting that a whole-body attribute
such as height can be predicted by computational
models. This finding suggests that there are hidden
correlations between the face and the rest of the body.
Indeed, face shape is correlated with hand shape (Fink
et al., 2005), and a number of other such interesting
correlations are emerging from genetic studies (Shaffer
et al., 2016; Claes et al., 2018). Face shape may also be
modulated by selection pressures that favor diversity in
features so as to enable individual identification
(Sheehan & Nachman, 2014).

Face inversion is a popular manipulation because it
preserves all local image features while altering their
orientation and arrangement, and is the basis for
striking illusions (Thompson, 2009). We have found
that computational models are able to predict human
performance on inverted faces better than upright
faces. Thus, humans rely on features that are more
congruent with those used by computational models
when they classify inverted faces. Interestingly, human
performance on classifying inverted faces was predicted
better by the face contour, whereas upright-face
classification was predicted best by the mouth. Taken
together, these findings show that humans rely on
qualitatively different features for classifying upright
and inverted faces.

Finally, our findings are based entirely on faces in
front view. Whether the visual system extracts view-
specific features or view-invariant features is an
important open question (Freiwald & Tsao, 2010;
Murty & Arun, 2018). It is possible that humans use
entirely different features at different views or prioritize
features differently when relevant features are obscured
with changing viewpoint. Evaluating these possibilities
will require careful testing of face classification with
faces shown at varying viewpoints. It is also possible
that humans prefer to view faces at specific viewpoints
where all features are visible. While this has been
observed for objects, whether it is true for faces remains
to be tested.

In sum, our results show that humans show highly
systematic variations in classification performance on a
challenging face-recognition task, and that these
variations are qualitatively different from computa-
tional models. Our results suggest that discriminative
face parts for specific classification tasks can be

identified computationally and evaluated experimen-
tally by face-part occlusion.

Keywords: face categorization, ethnicity,
computational models, deep convolutional networks,
feature representation
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