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Abstract: The characteristic features of neurotrophic keratopathy have been well documented by
in vivo and in vitro studies using animal models. However, case reports of neurotrophic keratopathy
induced by neurosurgery are limited. We describe the clinical characteristics, anterior segment optical
coherence tomography (AS-OCT) and in vivo confocal microscopy (IVCM) findings of neurotrophic
keratopathy induced by surgery for intracranial lesions. This is a case series including 6 eyes of
3 patients (mean age, 69.67 ± 12.50 years) with unilateral neurotrophic keratopathy. The clinical
findings of three patients were described and IVCM findings of three patients were analyzed. The
duration of neuropathy ranged from 2 to 30 years (median, 22 years). Thickening of the epithelial
layer and higher reflection density of the anterior stroma were observed during the healing process
using AS-OCT. The mean nerve fiber density of the subepithelial plexus, as determined by IVCM,
was 1943 ± 1000 µm/mm2 for neurotrophic eyes and 2242 ± 600.3 µm/mm2 for contralateral eyes
(p = 0.0347). The mean respective dendritic cell densities were 30.8 ± 21.8 and 6.25 ± 5.59 cells/mm2

(p < 0.0001), while the mean basal cell sizes were 259 ± 86.5 and 185 ± 45.9 µm2 (p < 0.0001),
respectively. These findings suggest that neurosurgery-induced neurotrophic keratopathy may be
associated with alterations in the healing process and immune cell distribution in the cornea.

Keywords: neurotrophic keratopathy; trigeminal nerve; corneal basal cells; dendritic cells Schirmer test

1. Introduction

Neurotrophic keratopathy is a disease in which the corneal epithelial cells cannot
regenerate properly due to impairment of the trigeminal nerve caused by intracranial
lesions, surgery, diabetes mellitus, or corneal herpes. The main diagnostic criterium of NK
is hypesthesia or anesthesia of the cornea.

The trigeminal nerve is believed to be responsible for the homeostasis of the corneal
epithelium. Delayed wound healing, decreased cell proliferation, weak intercellular adhe-
sion, and excessive inflammation have been reported in animal models of neurotrophic
keratopathy [1–5].

In addition, a relationship between neurotransmitters in the trigeminal nerve and
immune cells has long been suggested [6–8]. Recently, the concept of neuro-immune
linkage has been established: studies of animal models have revealed that dendritic cells
and nerve fibers are in close contact, and that damage to the trigeminal nerve alter the
distribution of dendritic cells in the cornea [9–11].

Although the pathogenesis of neurotrophic keratopathy has been analyzed using
animal models to some extent, human cases have been reported mainly with neurotrophic
keratopathy caused by corneal herpes, ocular infections, diabetes mellitus, and after ocular
surgery [12–15]. However, the pathophysiology of these cases may have been modified by
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microbial insults, surgical injury, and metabolic abnormalities, and thus are not suitable for
analyzing pure corneal changes due to neuropathy. It would be desirable to elucidate the
pathophysiological changes in unilateral trigeminal nerve neuropathy caused by intracra-
nial lesions because the differences between both eyes could be compared in each patient.
This can eliminate the influence of individual differences. However, only a few clinical
cases of neurotrophic keratopathy caused by intracranial lesions have been reported to
date [16,17].

We investigated the changes of corneal findings in neurosurgery-induced unilateral
neurotrophic keratopathy by comparing the affected and contralateral eyes.

2. Materials and Methods

This is a case series of 6 eyes of 3 patients with neurotrophic keratopathy. All cases suf-
fered from unilateral neurotrophic keratopathy induced by surgery for intracranial lesions.
The classification of neurotrophic keratopathy was based on Mackie’s classification [18].

2.1. Institutional Review and Recruitment

The procedures used were approved by the Institutional Review Board of Kansai
Medical University (No. 2020018) and they conformed to the tenets of the Declaration of
Helsinki. A signed informed consent form was obtained from each of the patients for the
examination procedures, and the use of any data for future publications. The patients were
assured of anonymity.

2.2. Subjects and Methods

The subjects were three patients and six eyes with unilateral neurotrophic keratopathy
due to neurosurgery. We performed slit-lamp microscopic examination and anterior seg-
ment optical coherence tomography (AS-OCT) imaging (The SPECTRALIS® OCT2 Module
with Anterior Segment Module, Heidelberg Engineering GmbH., Heidelberg, Germany).

Three cases have received the in vivo confocal microscopic (IVCM) examination (Hei-
delberg Retina Tomograph III with Rostock Cornea Module (HRT3/RCM), Heidelberg
Engineering GmbH., Heidelberg, Germany) to measure corneal trigeminal nerve density,
nerve tortuosity, corneal epithelial basal cell area, and dendritic cell density. One hundred
sequences of photographs in the central region of the cornea were taken and the five images
for each analysis were carefully selected. The patient was asked to fixate on the front and
the image was taken at the center of the cornea. We photographed the cornea from the
anterior aspect. We then selected images that were taken at a depth where the nerve plexus
could be observed first and yet were appeared on the entire image.

For analysis of sub-basal nerve plexus, the five images just beneath Bowman’s layer
from IVCM examinations were randomly extracted for each case, the nerve fibers in one
field of a photograph were delineated using Image J software (National Institutes of Health,
Bethesda, MD, USA), and the number of nerve fibers was converted into length per square
millimeter. The degree of tortuosity was analyzed by the same method using Image J,
according to previous reports [19]. To analyze the size of corneal epithelial basal cells, data
from five images just above Bowman’s layer were randomly selected for each case, and the
size of 15 consecutive basal cells in one field of view was measured using Image J. The mean
area of 75 corneal epithelial basal cells per eye was calculated and analyzed. The number of
dendritic cells was counted by the naked eye in one visual field (400 µm × 400 µm) using
five photos by two examiners in masked fashion at the level of the subepithelial plexus
from each case and given as cells per square millimeter. The evaluator of all the images
was blinded about the affected eyes and the contralateral eyes.

2.3. Statistical Analysis

Analysis of variance (ANOVA) was used for statistical analysis. Statistical significance
was established at p < 0.05.
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3. Results

A list of patients is presented in Table 1. The age of the patients ranged from 52 to
79 years (mean, 69.67 ± 12.50 years), and they were all females. Neurosurgical procedures
included auditory schwannoma resection in 3 patients, and post-γ knife irradiation for
brain tumor in 1 patient. The postoperative follow-up ranged from 2 to 30 years, with
median of 16 years. Corneal perception was measured with the Cochet–Bonnet corneal
esthesiometer and was < 5 mm in all three cases. The contralateral eyes were more than
50 mm in all cases. The frequency of recurrence of corneal epithelial erosion was frequent
(once a year on average) in Cases 1 and 2, while Case 3 had no history of epithelial erosion.
Case 1 and 2 were classified into stage 1–2 and case 3 into stage 1 according to Mackie’s
classification. There was no facial paralysis nor other cerebral neurological disease in all
cases. All patients were treated with antimicrobial ointment and eye patch or therapeutic
contact lenses when corneal damage occurred. When the corneal epithelium was stable,
hyaluronic acid eye drops were administered.

Table 1. Patients’ background and clinical findings.

Case 1 Case 2 Case 3

Age/sex 78/F 79/F 52/F

Neurotrophic side Right Left Right

Primary illness auditory
schwannoma

auditory
schwannoma γ-knife brain tumor

Postoperative periods (years) 22 30 2

Corneal sensation (mm) <5 <5 <5

Schirmer test I (mm)
N: Neurotrophic eye
C: Contralateral eye

N: 5 C: 3 N: 5 C: 8 N: 5 C: 8

Recurrence of corneal erosion Several times
(once a year)

Several times
(once a year) No erosion

Mackie’s classification 1–2 1–2 1

3.1. Slit-Lamp Examination and Anterior OCT Observation

Figure 1 shows the slit-lamp micrographs and anterior segment OCT in our cases. OCT
was performed when the corneal erosions were almost healed. Corneal opacity or erosion in
the neurotrophic eye was located slightly below the pupil, and the surface of the epithelium
was slightly elevated when the epithelial erosion was healed. Anterior segment OCT also
showed a hyperintense reflection of the superficial epithelium (arrow) in Cases 1 and 2).
Fluorescein staining showed focal areas of disordered epithelial thickening without the
vortex pattern seen in the normal wound healing process. Although the neurotrophic eye
of Case 3 had no corneal erosion, superficial punctate keratopathy was observed in the
lower part of the cornea.

3.2. Nerve Fiber Density of Subepithelial Nerve Plexus

Representative photographs of nerve fibers observed by confocal laser microscopy
in Cases 1, 2, and 3 are shown in Figure 2. The number of nerve fibers decreased in the
neurotrophic eye (upper panel) more than in the contralateral eye (lower panel). Five
photographs were randomly selected in each eye, with mean nerve fiber densities of
1943 ± 1000 µm/mm2 in the affected eye and 2242 ± 600.3 µm/mm2 in the contralateral
eye. ANOVA results showed that the nerve fiber density was significantly decreased in
neurotrophic eyes relative to that in contralateral eyes (Table 2). The mean tortuosity
grading in neurotrophic and contralateral eyes were 1.85 and 1.78, respectively, with a
significant difference (p = 0.0438).
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Figure 1. Characteristics of a neurotrophic keratopathy evaluated by slit-lamp examination. 

Neurotrophic keratopathy is present in the paracentral region with superficial stromal opacity. The 

vortex pattern, known as the normal healing pattern, was not observed with fluorescein staining. 

Focal thickening of the epithelium was sustained after erosion, which indicates disturbances in the 

healing process. Anterior segment optical coherence tomography also showed focal thickening of 

the epithelium with high density. 
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Cases 1, 2, and 3 are shown in Figure 2. The number of nerve fibers decreased in the 

neurotrophic eye (upper panel) more than in the contralateral eye (lower panel). Five 

photographs were randomly selected in each eye, with mean nerve fiber densities of 1943 

± 1000 μm/mm2 in the affected eye and 2242 ± 600.3 μm/mm2 in the contralateral eye. 

ANOVA results showed that the nerve fiber density was significantly decreased in 

neurotrophic eyes relative to that in contralateral eyes (Table 2). The mean tortuosity 

grading in neurotrophic and contralateral eyes were 1.85 and 1.78, respectively, with a 

significant difference (p = 0.0438). 

Table 2. Comparison of both corneas by IVCM (analysis of variance : ANOVA). 

 Nerve Fiber Density (μm/mm2) 
Number of Dendritic Cells 

(cells/mm2) 
Size of Basal Epithelial Cell (μm2) 

 Neurotrophic Contralateral Neurotrophic Contralateral Neurotrophic Contralateral 

Case 1 1032 ± 459.5 1890 ± 426.3 7.50 ± 6.10 10.0 ± 6.10 227 ± 87.0 157 ± 27.0 

Case 2 1600 ± 445.4 1904 ± 417.6 27.5 ± 12.2 10.0 ± 3.10 327 ± 82.7 192 ± 49.1 

Case 3 3198 ± 435.7 2932 ± 322.7 10.0 ± 3.10 1.25 ± 2.50 226 ± 38.6 209 ± 42.5 

mean 1943 ± 1000 ** 2242 ± 600.3 30.8 ± 21.8 ## 6.25 ± 5.59 259 ± 86.5 ## 185 ± 45.9 

P value ** P = 0.0347 ## P < 0.0000 ## P < 0.0000 

Figure 1. Characteristics of a neurotrophic keratopathy evaluated by slit-lamp examination. Neu-
rotrophic keratopathy is present in the paracentral region with superficial stromal opacity. The
vortex pattern, known as the normal healing pattern, was not observed with fluorescein staining.
Focal thickening of the epithelium was sustained after erosion, which indicates disturbances in the
healing process. Anterior segment optical coherence tomography also showed focal thickening of the
epithelium with high density.
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Figure 2. Sub-basal nerve plexus assessed by in vivo confocal microscopy. The upper panels show 

the neurotrophic cornea, and the lower panels show the contralateral cornea. We traced all nerve 

fibers (yellow line) and determined the mean density of the sub-basal nerve plexus using five 

photographs in each patient. Note that there was a significant decrease in nerve fiber density in the 

neurotrophic eye. 

3.3. Dendritic Cell Densities 

Dendritic cells at the level of the subepithelial nerve plexus observed by confocal 

laser microscopy are shown in Figure 3. As shown in Figure 3a, cells with dendrites visible 

to the naked eye were measured. The mean number of dendritic cells was determined for 

each eye in each patient using five randomly selected photographs. The mean dendritic 

cell densities in Cases 1, 2, and 3 were 30.8 ± 21.8 cells/mm2 in the neurotrophic eye and 

6.25 ± 5.59 cells/mm2 in the contralateral eye, with a significant difference (p < 0.0001) 

(Table 2). 

Figure 2. Sub-basal nerve plexus assessed by in vivo confocal microscopy. The upper panels show the
neurotrophic cornea, and the lower panels show the contralateral cornea. We traced all nerve fibers
(yellow line) and determined the mean density of the sub-basal nerve plexus using five photographs in
each patient. Note that there was a significant decrease in nerve fiber density in the neurotrophic eye.
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Table 2. Comparison of both corneas by IVCM (analysis of variance: ANOVA).

Nerve Fiber Density (µm/mm2) Number of Dendritic Cells (Cells/mm2) Size of Basal Epithelial Cell (µm2)

Neurotrophic Contralateral Neurotrophic Contralateral Neurotrophic Contralateral

Case 1 1032 ± 459.5 1890 ± 426.3 7.50 ± 6.10 10.0 ± 6.10 227 ± 87.0 157 ± 27.0

Case 2 1600 ± 445.4 1904 ± 417.6 27.5 ± 12.2 10.0 ± 3.10 327 ± 82.7 192 ± 49.1

Case 3 3198 ± 435.7 2932 ± 322.7 10.0 ± 3.10 1.25 ± 2.50 226 ± 38.6 209 ± 42.5

mean 1943 ± 1000 ** 2242 ± 600.3 30.8 ± 21.8 ## 6.25 ± 5.59 259 ± 86.5 ## 185 ± 45.9

P value ** P = 0.0347 ## P < 0.0000 ## P < 0.0000

3.3. Dendritic Cell Densities

Dendritic cells at the level of the subepithelial nerve plexus observed by confocal laser
microscopy are shown in Figure 3. As shown in Figure 3a, cells with dendrites visible to
the naked eye were measured. The mean number of dendritic cells was determined for
each eye in each patient using five randomly selected photographs. The mean dendritic
cell densities in Cases 1, 2, and 3 were 30.8 ± 21.8 cells/mm2 in the neurotrophic eye and
6.25 ± 5.59 cells/mm2 in the contralateral eye, with a significant difference (p < 0.0001)
(Table 2).
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Figure 4. Observation of basal cells by in vivo confocal microscopy. Fifteen cells per photo were 

randomly selected and marked, and the mean cell size was determined from five photographs in 

Figure 3. In vitro confocal microscopy observation of dendritic cells. All dendritic cells (red circle)
were manually counted. The numbers of dendritic cells were counted from 5 photographs in each
patient. The mean number of dendritic cells in the neurotrophic eyes was larger than that in the
contralateral eyes.

3.4. Size of Corneal Epithelial Basal Cells

Figure 4 shows corneal epithelial basal cells observed by confocal laser microscopy:
15 consecutive cells in 1 photograph were depicted for analysis, and 75 cells per eye were
measured and employed for analysis. The mean basal cell size was 259 ± 86.5 µm2 in the
affected eye and 185 ± 45.9 µm2 in the contralateral eye. ANOVA results showed that
the area of corneal epithelial basal cells was significantly increased in neurotrophic eyes
relative to that in contralateral eyes (p < 0.0001) (Table 2).
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Figure 4. Observation of basal cells by in vivo confocal microscopy. Fifteen cells per photo were
randomly selected and marked, and the mean cell size was determined from five photographs in
each patient using Image J. Note the larger size of the basal cells in neurotrophic corneas than in
contralateral corneas.

4. Discussion

In human cases of neurotrophic keratopathy due to surgery for intracranial lesions,
which can eliminate the effects of microbial or surgical manipulation, we found that affected
eyes had lower nerve fiber density, increased dendritic cells, and larger corneal epithelial
basal cells. Although pathological changes by repeated corneal erosion may have affected
the corneal findings, our manuscript reveals aberrant corneal homeostasis in neurosurgery-
induced neurotrophic keratopathy.

Corresponding to the decrease in corneal perception using the Cochet–Bonnet corneal
anesthesiometer, the density of the corneal trigeminal nerve was significantly lower in the
affected eye than in the contralateral eye. This was supported by the IVCM findings. The
decrease in nerve fiber density in Case 3 (3198 µm/mm2), which had a relatively short
post-onset period, was lower than that in Cases 1 and 2 (1032 µm/mm2, 1600 µm/mm2,
respectively), both of whom had a longer history of trigeminal neuropathy. This indicates
that long-term neuropathy leads to morphological changes in nerves over time. Since there
was no history of epithelial erosion in Case 3, the effects of neuropathy may be influenced
by the duration of neuropathy.

Along with the decrease in nerve fiber density, the degree of tortuosity was signif-
icantly altered in neurotrophic eyes. The degree of tortuosity of the trigeminal nerve in
severe neurotrophic corneas may have been evident because of the degradation of nerve
fibers. In recent years, corneal nerve regeneration has been reported when minimally
invasive corneal neurotization is performed within 6 months of intracranial surgery for
trigeminal neurotrophic keratitis. Although the efficacy of this procedure in long-term
neurotrophic keratitis such as our cases is not yet known, it is a very promising new
treatment [20].

The concept of neural-immune coupling has been established, and neural regulation is
known to govern the behavior of immune cells. In the present study, dendritic cells in the
neurotrophic eyes increased in Cases 1, 2, and 3. This was supported by animal models by
Hamrah et al. [10], in which dendritic cells were increased in the neurotrophic cornea. They
also described that the dendritic cells, which are normally in the corneal limbus, easily
expand to the central cornea in a denervated cornea. This phenomenon might suggest that
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a denervated cornea easily reacts to stimuli and is prone to inflammation. We could not
clarify the changes in the distribution of dendritic cells due to the narrow measurement
range of the confocal laser microscope. However, excessive corneal opacities observed on
OCT may be due to excessive inflammation induced in the neurotrophic cornea.

In this study, we observed an increase in the size of basal cells in the cornea under
neurotrophic conditions. This increase in epithelial basal cell area or decrease in density
may be due to decreased tropism, abnormal differentiation, or expression of compensation
due to insufficient cell supply from stem cells. Liu et al. also stated that herpes-induced
corneal stem cell exhaustion affects basal cell density in the central cornea [21]. In our
opinion, the same phenomenon was observed in our patients with neurotrophic keratitis. It
has been reported that corneal basal cells are tightly associated with neural axons through
the fusion of cell membranes [22,23]. In addition, according to Okada and colleagues, the
trigeminal nerve influences the differentiation of limbal stem cells [24]. Although the exact
mechanism underlying the increase in the basal cell area remains unclear, it is possible that
impairment of the trigeminal nerve may have affected the division and differentiation of
basal cells, resulting in changes in their size.

In our observation, the mean area of epithelial basal cells was 259 ± 86.5 µm2 in the
neurotrophic eye and 185 ± 45.9 µm2 in the normal eye. This means that the mean cell
densities were 4346 ± 1451 cells/mm2 and 5760 ± 1429 cells/mm2, respectively. Previously,
Liu et al. and Sterenczak et al. reported epithelial basal cell densities of normal cornea
were 3650 ± 746 cells/mm2 and 8190.39 cells/mm2 [21,25]. Although there is a wide
range of values for basal cell density based on IVCM observation, our data do not deviate
from their data [21,25]. The high-intensity reflections in the epithelial surface layer after
wound healing observed in OCT might be due to hyperplasia caused by abnormal cell
differentiation or dysplasia caused by insufficient intercellular adhesion system.

It is also possible that the tear quantity and/or quality over the cornea might have
had an impact on the ocular surface health status. Eyes with corneal neuropathy with a
Schirmer test value of less than or equal to 5mm appear to have several erosion recurrences.
Schirmer test results of the contralateral eyes in all cases were 3-8mm, which are low for a
normal eye. The neurotrophic condition of the other eye might have some effects on the
contralateral eyes. Future prospective studies in a large number of subjects would provide
interesting information in our belief.

Tight junctions might be related to these findings because reports in the field of
dermatology have shown that tight junctions in the skin epithelium are disrupted by
neuropathy [26]. However, this requires further research.

This study has several limitations. First, the number of cases was small, and the
age of cases was variable. Second, we performed IVCM observation at one timepoint
for each patient, and changes over time could not be analyzed. A neurosurgery-induced
neurotrophic keratopathy is a rare condition, Therefore, five images of IVCM were used
for analysis in each patient. Especially, for basal cells, the area of 15 cells per image was
measured. In other words, we measured the area of 75 cells per patient. Although this is
small size samples, the statistical process is accurate. Our findings are the results at this
time, and we think further studies with a larger number of cases are needed.

In conclusion, clinical cases of neurotrophic keratopathy caused by surgery of in-
tracranial diseases has rarity value. We believe that our findings will help to clarify the
pathogenesis of neurotrophic keratopathy.

5. Conclusions

We found a decrease in nerve fibers and an increase in dendritic cells in neurosurgery-
induced neurotrophic keratopathy, as well as in an animal model [10–13,27]. The increase
in the size of basal cells in the neurotrophic cornea is a new finding. These changes may
be related to the clinical characteristics of excessive inflammation, epithelial detachment,
irregular wound healing, and severe scars.



J. Clin. Med. 2022, 11, 3804 8 of 9

Author Contributions: Conceptualization, K.A.-S.; methodology, K.A.-S. and T.K.; software, T.K.;
validation, S.O., T.K. and K.A.-S.; formal analysis, K.A.-S., T.K. and S.O.; investigation, K.A.-S. and
D.M.; resources, S.O. and T.C.; data curation, S.O. and T.C.; writing—original draft preparation, S.O.
and K.A.-S.; writing—review and editing, T.K. and D.M.; visualization, S.O. and K.A.-S.; supervision,
K.T.; project administration, K.A.-S.; funding acquisition, K.A.-S. All authors have read and agreed to
the published version of the manuscript.

Funding: This research was funded by Osaka Eye Bank Research Grant and Johnson and Johnson
Medical Research Grant.

Institutional Review Board Statement: The study was conducted in accordance with the Declaration
of Helsinki and approved by the Institutional Review Board of Kansai Medical University (protocol
code 2020018 approved on 15 June 2020).

Informed Consent Statement: Informed consent was obtained from all subjects involved in the study.

Acknowledgments: We express our gratitude to Tomoki Kitawaki (Department of Mathematics of
Kansai Medical University) for guidance on statistical methods. We would like to thank Haruka
Kudo (Department of Virology II, National Institute of Infectious Diseases of Keio University) for
technical support.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Alper, M.G. The anesthetic eye: An investigation of changes in the anterior ocular segment of the monkey caused by interrupting

the trigeminal nerve at various levels along its course. Trans. Am. Ophthalmol. Soc. 1975, 73, 323–365. [PubMed]
2. Mishima, S. The effects of the denervation and the stimulation of the sympathetic and the trigeminal nerve on the mitotic rate of

the corneal epithelium in the rabbit. Jpn. J. Ophthalmol. 1957, 1, 65–73.
3. Beuerman, R.W.; Schimmelpfennig, B. Sensory denervation of the rabbit cornea affects epithelial properties. Exp. Neurol. 1980, 69,

196–201. [CrossRef]
4. Shigelman, S.; Friedenwald, J. Mitotic and wound-healing activities of the corneal epithelium. Arch. Ophthalmol. 1954, 52, 46–57.

[CrossRef]
5. Araki, K.; Ohashi, Y.; Kinoshita, S.; Hayashi, K.; Kuwayama, Y.; Tano, Y. Epithelial wound healing in the denervated cornea. Curr.

Eye Res. 1994, 13, 203–211. [CrossRef]
6. Hosoi, J.; Murphy, G.F.; Egan, C.L.; Lerner, E.A.; Grabbe, S.; Asahina, A.; Granstein, R.D. Regulation of Langerhans cell function

by nerves containing calcitonin gene-related peptide. Nature 1993, 363, 159–163. [CrossRef]
7. Asahina, A.; Hosoi, J.; Grabbe, S.; Granstein, R.D. Modulation of Langerhans cell function by epidermal nerves. J. Allergy Clin.

Immunol. 1995, 96, 1178–1182. [CrossRef]
8. Seyed-Razavi, Y.; Chinnery, H.R.; McMenamin, P.G. A novel association between resident tissue macrophages and nerves in the

peripheral stroma of the murine cornea. Investig. Ophthalmol. Vis. Sci. 2014, 55, 1313–1320. [CrossRef]
9. Kowtharapu, B.S.; Stachs, O. Corneal cells: Fine-tuning nerve regeneration. Curr. Eye Res. 2020, 45, 291–302. [CrossRef]
10. Hamrah, P.; Seyed-Razavi, Y.; Yamaguchi, T. Translational immunoimaging and neuroimaging demonstrate corneal neuroimmune

crosstalk. Cornea 2016, 35, S20–S24. [CrossRef]
11. Gao, N.; Yan, C.; Lee, P.; Sun, H.; Yu, F.S. Dendritic cell dysfunction and diabetic sensory neuropathy in the cornea. J. Clin. Investig.

2016, 126, 1998–2011. [CrossRef] [PubMed]
12. Cruzat, A.; Qazi, Y.; Hamrah, P. In vivo confocal microscopy of corneal nerves in health and disease. Ocul. Surf. 2017, 15, 15–47.

[CrossRef] [PubMed]
13. Cruzat, A.; Witkin, D.; Baniasadi, N.; Zheng, L.; Ciolino, J.B.; Jurkunas, U.V.; Chodosh, J.; Pavan-Langston, D.; Dana, R.; Hamrah,

P. Inflammation and the nervous system: The connection in the cornea in patients with infectious keratitis. Investig. Ophthalmol.
Vis. Sci. 2011, 52, 5136–5143. [CrossRef]

14. Mastropasqua, L.; Nubile, M.; Lanzini, M.; Carpineto, P.; Ciancaglini, M.; Pannellini, T.; Di Nicola, M.; Dua, H.S. Epithelial
dendritic cell distribution in normal and inflamed human cornea: In vivo confocal microscopy study. Am. J. Ophthalmol. 2006,
142, 736–744. [CrossRef] [PubMed]

15. Yamaguchi, T.; Calvacanti, B.M.; Cruzat, A.; Qazi, Y.; Ishikawa, S.; Osuka, A.; Lederer, J.; Hamrah, P. Correlation between human
tear cytokine levels and cellular corneal changes in patients with bacterial keratitis by in vivo confocal microscopy. Investig.
Ophthalmol. Vis. Sci. 2014, 55, 7457–7466. [CrossRef] [PubMed]

16. Lambiase, A.; Sacchetti, M.; Mastropasqua, A.; Bonini, S. Corneal changes in neurosurgically induced neurotrophic keratitis.
JAMA Ophthalmol. 2013, 131, 1547–1553. [CrossRef] [PubMed]

17. Bonzano, C.; Bonzano, E.; Cutolo, C.A.; Scotto, R.; Traverso, C.E. A case of neurotrophic keratopathy concomitant to brain
metastasis. Cureus 2018, 10, e2309. [CrossRef]

http://www.ncbi.nlm.nih.gov/pubmed/813349
http://doi.org/10.1016/0014-4886(80)90154-5
http://doi.org/10.1001/archopht.1954.00920050048005
http://doi.org/10.3109/02713689408995778
http://doi.org/10.1038/363159a0
http://doi.org/10.1016/S0091-6749(95)70203-2
http://doi.org/10.1167/iovs.13-12995
http://doi.org/10.1080/02713683.2019.1675175
http://doi.org/10.1097/ICO.0000000000001014
http://doi.org/10.1172/JCI85097
http://www.ncbi.nlm.nih.gov/pubmed/27064280
http://doi.org/10.1016/j.jtos.2016.09.004
http://www.ncbi.nlm.nih.gov/pubmed/27771327
http://doi.org/10.1167/iovs.10-7048
http://doi.org/10.1016/j.ajo.2006.06.057
http://www.ncbi.nlm.nih.gov/pubmed/17056357
http://doi.org/10.1167/iovs.14-15411
http://www.ncbi.nlm.nih.gov/pubmed/25324281
http://doi.org/10.1001/jamaophthalmol.2013.5064
http://www.ncbi.nlm.nih.gov/pubmed/24158681
http://doi.org/10.7759/cureus.2309


J. Clin. Med. 2022, 11, 3804 9 of 9

18. Mackie, I.A. Neuroparalytic keratitis. In Current Ocular Therap; Fraunfelder, F., Roy, F.H., Meyer, S.M., Eds.; WB Saunders:
Philadelphia, PA, USA, 1995.

19. Oliveira-Soto, L.; Efron, N. Morphology of corneal nerves using confocal microscopy. Cornea 2001, 20, 374–384. [CrossRef]
20. Wu, Y.; Zhang, J.; Ding, W.; Chen, G.; Shao, C.; Li, J.; Wang, W.; Wang, W. Clinical outcomes of minimally invasive corneal

neurotization after cerebellopontine angle neurosurgical procedures. Curr. Eye Res. 2022, 47, 670–676. [CrossRef]
21. Liu, X.; Xu, S.; Wang, Y.; Jin, X.; Shi, Y.; Zhang, H. Bilateral limbal stem cell alterations in patients with unilateral herpes simplex

keratitis and herpes zoster ophthalmicus as shown by in vivo confocal microscopy. Investig. Opthalmol. Vis. Sci. 2021, 62, 12.
[CrossRef]

22. Gao, N.; Lee, P.; Yu, F.S. Intraepithelial dendritic cells and sensory nerves are structurally associated and functional interdependent
in the cornea. Sci. Rep. 2016, 6, 36414. [CrossRef] [PubMed]

23. Stepp, M.A.; Tadvalkar, G.; Hakh, R.; Pal-Ghosh, S. Corneal epithelial cells function as surrogate Schwann cells for their sensory
nerves. Glia 2017, 65, 851–863. [CrossRef] [PubMed]

24. Okada, Y.; Sumioka, T.; Ichikawa, K.; Sano, H.; Nambu, A.; Kobayashi, K.; Uchida, K.; Suzuki, Y.; Tominaga, M.; Reinach, P.S.;
et al. Sensory nerve supports epithelial stem cell function in healing of corneal epithelium in mice: The role of trigeminal nerve
transient receptor potential vanilloid 4. Lab. Investig. 2019, 99, 210–230. [CrossRef] [PubMed]

25. Sterenczak, K.A.; Winter, K.; Sperlich, K.; Stahnke, T.; Linke, S.; Farrokhi, S.; Klemm, M.; Allgeier, S.; Köhler, B.; Reichert, K.-M.;
et al. Morphological characterization of the human corneal epithelium by in vivo confocal laser scanning microscopy. Quant.
Imaging Med. Surg. 2021, 11, 1737–1750. [CrossRef]

26. Wang, X.; Miao, Y.; Ni, J.; Wang, Y.; Qian, T.; Yu, J.; Liu, Q.; Wang, P.; Yi, S. Peripheral nerve injury induces dynamic changes of
tight junction components. Front. Physiol. 2018, 9, 1519. [CrossRef]

27. Gao, N.; Yin, J.; Yoon, G.S.; Mi, Q.S.; Yu, F.S. Dendritic cell-epithelium interplay is a determinant factor for corneal epithelial
wound repair. Am. J. Pathol. 2011, 179, 2243–2253. [CrossRef]

http://doi.org/10.1097/00003226-200105000-00008
http://doi.org/10.1080/02713683.2022.2025843
http://doi.org/10.1167/iovs.62.6.12
http://doi.org/10.1038/srep36414
http://www.ncbi.nlm.nih.gov/pubmed/27805041
http://doi.org/10.1002/glia.23102
http://www.ncbi.nlm.nih.gov/pubmed/27878997
http://doi.org/10.1038/s41374-018-0118-4
http://www.ncbi.nlm.nih.gov/pubmed/30413814
http://doi.org/10.21037/qims-20-1052
http://doi.org/10.3389/fphys.2018.01519
http://doi.org/10.1016/j.ajpath.2011.07.050

	Introduction 
	Materials and Methods 
	Institutional Review and Recruitment 
	Subjects and Methods 
	Statistical Analysis 

	Results 
	Slit-Lamp Examination and Anterior OCT Observation 
	Nerve Fiber Density of Subepithelial Nerve Plexus 
	Dendritic Cell Densities 
	Size of Corneal Epithelial Basal Cells 

	Discussion 
	Conclusions 
	References

