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Abstract
Infants born with congenital heart disease (CHD) are at 
increased risk of neurodevelopmental difficulties in child-
hood. The extent to which perioperative factors, cardiac 
physiology, brain injury severity, socioeconomic status, 
and home environment influence early neurodevelopment 
is not clear. Sixty-nine newborns with CHD were recruited 
from St Thomas’ Hospital. Infants underwent presurgical 
magnetic resonance imaging on a 3-Tesla scanner situated 
on the neonatal unit. At 22 months, children completed the 
Bayley Scales of Infant and Toddler Development-3rd edi-
tion and parents completed the cognitively stimulating par-
enting scale to assess cognitive stimulation at home. Level 
of maternal education and total annual household income 
were also collected. Hospital records were reviewed to cal-
culate days on the intensive care unit post-surgery, time on 
bypass during surgery, and days to corrective or definitive 
palliative surgical intervention. In the final analysis of 56 
infants, higher scores on the cognitively stimulating par-
enting scale were associated with higher cognitive scores at 
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1 |  INTRODUCTION

Congenital heart disease (CHD) is the most common congenital abnormality, affecting approxi-
mately 1% of neonates (EUROCAT, 2015; Hoffman & Kaplan, 2002). Advances in clinical care 
mean increasing numbers of infants with CHD are surviving into adulthood (Wren & Sullivan, 
2001), yet survivors are at increased risk of neurodevelopmental disorders (Latal, 2016). Up to 
50% of children with CHD show developmental impairments including mild intellectual difficul-
ties, poor motor skills, attention and executive function impairments, and speech and language 
disorders (Gaynor et al., 2015; Gerstle et al., 2016; Mebius et al., 2017; Sarrechia et al., 2016; 
Wray, 2006). As survival has increased, the focus of research has shifted to understanding factors 
associated with improved cognitive and behavioral development in this population (Marino et al., 
2012).

Previous research has investigated the impact of disease-related and perioperative clinical factors 
on outcome. Early term birth (<39 weeks) (Costello et al., 2010; Gunn et al., 2016), increased time 
to surgical repair of heart defect (Anderson et al., 2015), presence of brain injury (Claessens et al., 
2018; Mebius et al., 2017), cyanotic heart disease (Wray & Sensky, 2001), and length of hospital stay 
post-surgery (Gaynor et al., 2014, 2016; Gunn et al., 2016; Hansen et al., 2016) have been implicated 
in adverse clinical and cognitive outcomes in children with CHD; however, results are inconsistent 
between studies.

In addition to clinical variables, the impact of environmental factors on development is of 
interest in this population (Miguel et al., 2019). Family environment and socioeconomic factors 
such as deprivation and maternal education impact cognitive and executive function development 
in healthy children (Bradley & Corwyn, 2002; Shah et al., 2016; Zhou et al., 2007) and pediatric 
clinical populations (Bradley et al., 1994; Coscia et al., 2001; Downes et al., 2019; Linver et al., 
2002; Treyvaud et al., 2012). Lower maternal education has been associated with poorer cogni-
tive outcome in infants with CHD (Gaynor et al., 2015). To our knowledge, there are no studies 
assessing the relationship between home environment and cognitive development in children 
with CHD.

The aim of this study was to investigate whether perioperative clinical factors, severity of brain 
injury, type of CHD, stimulating home environment, and socioeconomic status predict cognitive, lan-
guage, and motor abilities at 22 months in children with CHD.

age 22 months, correcting for gestational age at birth, sex, 
and maternal education. There were no relationships be-
tween outcome scores and clinical factors; socioeconomic 
status; or brain injury severity. Supporting parents to pro-
vide a stimulating home environment for children may pro-
mote cognitive development in this high-risk population.
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2 |  METHODS

A prospective cohort of 69 infants with critical or serious CHD were recruited after birth from the 
Neonatal Unit at St Thomas’ Hospital, London between 2014 and 2017. Critical CHD was defined as 
hypoplastic left heart syndrome, transposition of the great arteries, pulmonary atresia with intact ven-
tricular septum, interruption of the aortic arch, and all infants requiring surgery within the first 28 days 
of life with the following conditions: coarctation of the aorta; aortic valve stenosis; pulmonary valve 
stenosis; tetralogy of Fallot; pulmonary atresia with ventricular septal defect; and total anomalous 
pulmonary venous connection. Serious CHD was defined as any cardiac lesion not defined as criti-
cal, which requires cardiac catheterization or surgery before age one (Ewer et al., 2011; Kelly et al., 
2019). Exclusion criteria included suspected or confirmed chromosomal abnormality or congenital 
syndrome, previous neonatal surgery before recruitment (excluding cardiac catheterization proce-
dures) or suspected congenital infection (Kelly et al., 2019).

The project was approved by the National Research Ethics Service West London committee (07/
H0707/105), and informed written parental consent was obtained during the neonatal period and at 
follow-up in accordance with the declaration of Helsinki.

Hospital records were reviewed to calculate days on the intensive care unit (ICU) post-sur-
gery, time on bypass during surgery, and days to corrective or final palliative surgery. In children 
who underwent more than one surgery, days on ICU and time on bypass were summed across 
procedures.

2.1 | Magnetic resonance imaging

Infants underwent magnetic resonance imaging (MRI) during the neonatal period before cardiac 
surgery. Neuroimaging was performed on a 3-Tesla Philips Achieva MRI system situated on the 
Neonatal Unit at St Thomas’ Hospital with a 32-channel head coil. T1-weighted magnetization pre-
pared rapid acquisition gradient echo (repetition time (TR): 17 ms, echo time (TE): 4.6 ms, inver-
sion time (TI): 1465 ms, flip angle: 13°, resolution: 0.8 × 0.8 × 0.5 mm3 or TR: 11 ms, TE: 4.6 ms, 
TI: 714  ms, flip angle: 9°, resolution: 0.76  ×  0.76  ×  0.8  mm3), T2-weighted fast spin echo (TR: 
14,473 ms, TE: 160 ms, resolution: 0.86 × 0.86 × 1 mm3, or TR: 12,000 ms, TE: 156 ms, resolu-
tion: 0.8 × 0.8 × 0.8 mm3), susceptibility-weighted MRI (TR: 32 ms, TE: 25 ms, flip angle: 12°, 
resolution: 0.4 × 0.4 × 1.8 mm3), and diffusion-weighted MRI (TR: 7536 ms, TE: 49 ms, resolution: 
1.75 × 1.75 × 2 mm3, 32 non-collinear directions, b-value; 750 s/mm2 or TR: 3800 ms, TE: 90 ms, 
resolution: 1.75 × 1.75 × 1.5 mm3, 300 non-collinear directions, b-values: 400, 1000, 2600 s/mm2) 
were collected. MRI was performed during natural sleep without sedation, and pulse oximetry, respi-
ration, temperature, and electrocardiography were monitored throughout by a nurse and pediatrician 
experienced in neonatal MRI procedures.

Images were reported by two neonatal neuroradiologists. All images were subsequently rereviewed 
to ensure consistency, and lesions classified as focal arterial ischemic stroke, white matter injury 
(WMI), cerebellar hemorrhage, or intraventricular hemorrhage as we have reported previously (Kelly 
et al., 2019). The location and properties of lesions on T1-weighted and T2-weighted imaging, suscep-
tibility-weighted imaging and apparent diffusion coefficient maps were recorded. WMI was classified 
into normal (no WMI), mild (≤3 foci and all ≤2 mm), moderate (>3 and ≤10 foci or any >2 mm), or 
severe (>10 foci) (Beca et al., 2013).

Overall each baby was categorized into one of four brain injury groups: normal, mild (intraven-
tricular hemorrhage, and/or cerebellar hemorrhage ≤2 mm, and/or mild WMI), moderate (cerebellar 
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hemorrhage >2 mm and/or moderate WMI), and severe brain injury (focal arterial ischemic stroke 
and/or severe WMI) (see Figure 1 for examples of injuries) (Kelly et al., 2019).

2.2 | Follow-up assessment

Sixty-four infants (five died before follow-up) were invited to attend a follow-up assessment at 
22 months either at St Thomas’ Hospital or as a home visit. Sixty-two infants (two refused follow-
up) were assessed at 22 months by a developmental pediatrician (AC) blinded to cardiac diagnosis 
and clinical factors. The Bayley Scales of Infant and Toddler Development-3rd edition (Bayley-III) 
was administered to obtain standardized cognitive composite scores, language composite scores, and 
motor composite scores (Bayley, 2006).

The cognitively stimulating parenting scale (Wolke et al., 2013) was completed by parents during 
the follow-up assessment. This is a 21-item questionnaire adaptation of the Home Observation for 
Measurement of the Environment (HOME) Inventory (Bradley & Caldwell, 1984) designed to assess 
the level of cognitive stimulation available in the home (acceptable internal consistency: Cronbach 
α = 0.77). Sixteen items are yes/no response questions investigating the child's access to stimuli (six 
questions; in your home, does your child have access to: e.g., toys that teach colors and shapes?); 
parental interactions (seven questions; in your home, do you teach your child: e.g., animals’ names?), 
and parental behaviors (three questions: e.g., do parents read in their free time?). Five items are scales 
investigating frequency of reading/telling stories between parents and infants, number of books in 
the home, frequency of family excursions, frequency of family holidays, and frequency of museum 
visits. The original yes/no response questions were adapted to reflect current technological advances: 
one question was changed from does your child have access to a “cassette player” to “cassette/CD/
DVD player,” and three questions were added asking the following: does your child have access to 
“YouTube,” “computers/iPads/iPhone,” and “learning apps such as Peak-a-boo, Peppa Pig or Fish 

F I G U R E  1  Examples of mild, moderate, and severe brain injury identified in the cohort
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School.” Four additional questions were added to the yes/no scale: does your child have access to gross 
motor toys such as trains cars bikes to sit on and push along?; does your child have access to a child-
size table?; does your child have access to toys that teach household tasks such as sweeping, ironing, 
washing or other daily activities? and do parents follow current affairs? For the 23 yes/no items, “yes” 
was scored as “1” and no was scored as “0.” Responses were totaled across the yes/no items and scale 
items to give a cognitively stimulating parenting scale score (minimum 0, maximum 46).

Parents were also asked to report total annual household income (eight categories: <£20,000, 
£20,000–29,999, £30,000–39,999, £40,000–59,999, £60,000–79,999, £80,000–99,999, £100,000–
149,999, >£149,999) as a measure of socioeconomic status and maternal education level (four cate-
gories: GCSE/O-levels, A-levels, vocational/college education, higher education) at time of follow-up 
assessment.

2.3 | Statistical analysis

Histograms and skewness and kurtosis values were used to assess normality. Bayley-III scores were 
compared to the standardized test mean (100) using one-sample t tests. Associations between categor-
ical variables and Bayley-III scores were tested using Kruskal–Wallis H and Mann–Whitney U tests. 
Associations between continuous variables and Bayley-III scores were tested using Spearman's rank 
correlations. Significant variables were entered into a multiple linear regression to predict Bayley-III 
scores co-varying for sex, gestational age at birth and maternal education level (GCSEs/O-levels as 
the baseline level of education). Missing data were excluded from analyses in a pair-wise manner. 
Holm correction was used to control the family-wise error rate for multiple comparisons (corrected 
p-values reported as pFWE). Groups with three or fewer participants were combined with adjacent 
groups for statistical analyses. When comparing household income levels, responses were combined 
into four categories (<£30,000, £30,000–59,999, £60,000–99,999, >£100,000) to ensure adequate 
statistical power. Statistical analyses were performed in SPSS version 24 and Python version 3.7.

3 |  RESULTS

The final analysis sample included 56 infants (six with syndromic conditions diagnosed after recruit-
ment were excluded; Figure 2) with heterogeneous diagnoses of CHD who underwent follow-up as-
sessment at a median of 22.23 months (Table 1).

Mean cognitive composite [mean (SD) = 91.5 (13.3); t(55) = −4.76, pFWE < 0.0001], language 
composite [mean (SD) = 89.8 (16.6); t(52) = −4.45, pFWE < 0.0001], and motor composite [mean 
(SD) = 93.4 (12.8); t(54) = −3.84, pFWE = 0.000329] scores were significantly below the Bayley-
III standardized test mean [mean (SD) = 100 (15)]. For cognitive composite scores, three children 
scored below two standard deviations (<70) and 10 scored 1–2 standard deviations (70–84) below the 
standardized test mean. For language composite scores, four children scored below two standard de-
viations and 18 scored 1–2 standard deviations below the test mean. For motor composite scores, four 
scored below two standard deviations and three scored 1–2 standard deviations below the test mean.

Thirty-five (63.6%) participants had no visible brain injury on presurgical MRI (Table 1). Eleven 
infants were classified as having a mild brain injury (10 mild WMI, one small cerebellar hemorrhage). 
Six infants had a moderate brain injury (four moderate WMI, one moderate WMI with cerebellar hem-
orrhage, one moderate cerebellar hemorrhage). Three children had a severe brain injury (two arterial 
ischemic infarcts and one severe WMI).
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Cognitively stimulating parenting scale scores were significantly correlated with cognition and 
language abilities (Table 2). There were no other significant associations between clinical and envi-
ronmental factors and Bayley-III scores.

Cognitively stimulating parenting scale scores significantly predicted cognitive composite score 
(Figure 3) when co-varying for gestational age at birth, sex, and maternal level of education (F(6, 
40) = 3.04, p = 0.015, R2 = 0.313, adjusted R2 = 0.210; Table 3). The full model explained 30% of 
the variance in cognitive composite scores. Cognitively stimulating parenting scale scores were not 
a significant predictor of language composite score when co-varying for gestational age at birth, sex, 
and maternal level of education (F(6, 38) = 2.21, p = 0.064, R2 = 0.258, adjusted R2 = 0.141; Table 
3). A post hoc regression revealed adding brain injury severity rating and categorization of cardiac 
defect did not alter the relationship between stimulating parenting and cognitive scores (Table 4). 

F I G U R E  2  Flowchart of participant recruitment from initial consent to final analysis sample
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T A B L E  1  Characteristics of the final analytical sample of children with CHD

Measure N = 56

Demographics

Age at birth median (IQR) 38.43 (0.57)

Corrected age at follow-up in months median (IQR) 22.23 (0.722)

Male number (%) 31 (55.4)

Cardiac physiology

Cyanotic heart disease number (%) 44 (78.6)

Heart defect causing abnormal mixing of blood

Transposition of the great arteries number (%) 26 (46.4)

Truncus arteriosus number (%) 2 (3.6)

Left-sided abnormalities of the heart

Coarctation of the aorta number (%) 9 (16.1)

Hypoplastic left heart syndrome number (%) 2 (3.6)

Right-sided abnormalities of the heart

Tetralogy of Fallot number (%) 9 (16.1)

Pulmonary stenosis number (%) 3 (5.4)

Pulmonary atresia number (%) 3 (5.4)

Tricuspid atresia number (%) 2 (3.6)

Clinical characteristics

Brain injury seen on presurgical MRI number (%)

None 35 (63.6)

Mild 11 (20)

Moderate 6 (10.9)

Severe 3 (5.5)

Cumulative number of days on ICU post-surgery median (IQR) 4.5 (4.75)

Days to corrective or palliative surgery median (IQR) 16.5 (140.5)

Cumulative minutes on bypass during surgery median (IQR) 149 (113.75)

Follow-up assessment scores

Bayley-III cognitive composite score mean (SD) 91.5 (13.3)

Bayley-III language composite score mean (SD) 89.8 (16.6)

Bayley-III motor composite score mean (SD) 93.4 (12.8)

Cognitively stimulating parenting scale mean (SD) 31.1 (6.73)

Socioeconomic factors

Highest maternal level of education at follow-up assessment number (%)

GCSE/O-levels 6 (12.5)

A-levels 4 (8.3)

Vocational/college education 13 (27.1)

Higher education 25 (52.1)

Annual household income at follow-up assessment number (%)

(Continues)
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Mean cognitive composite scores in infants with highly stimulating parenting were 20 points higher 
than in infants with the lowest cognitively stimulating parenting scale scores (Appendix S1).

4 |  DISCUSSION

This study investigated the influence of environmental, perioperative clinical risk, and disease-related 
factors on cognitive, language, and motor abilities at 22 months in children with CHD. A cognitively 
stimulating home environment was associated with better cognitive abilities, and this relationship was 
not explained by level of maternal education. Post hoc analyses also revealed type of cardiac defect, 
and preoperative brain injury severity did not account for the relationship between home environment 
and cognition. Cardiac physiology, preoperative brain injury severity, and perioperative clinical fac-
tors were not associated with outcome scores.

To our knowledge, this is the first study reporting the relationship between a stimulating home 
environment and cognitive abilities in toddlers with CHD. Extensive research has character-
ized the relationship between stimulating home environment and improved cognition in children 
without congenital heart disease, including in low- and middle-income countries, even when 
controlling for socioeconomic factors (Aboud et al., 2013; Nguyen et al., 2018; Obradović et al., 
2016; Pitchik et al., 2018). There is some evidence that home environment can enable children 
to overcome the effects of socioeconomic status and ill health on early cognitive development 
(Nampijja et al., 2018; Ronfani et al., 2015). In children born prematurely or with low birth-
weight, better home environment has been associated with improved cognitive outcome (Bradley 
et al., 1994; Lynch & Gibbs, 2017; Treyvaud et al., 2012; Wolke et al., 2013) and home environ-
ment mediates the relationship between socioeconomic status and cognitive development (Linver 
et al., 2002). Early intervention programs have also been shown to improve cognitive outcomes 
throughout early childhood in children born prematurely (Spittle et al., 2015). Providing a stim-
ulating home environment may be a potential interventional strategy to promote cognitive devel-
opment in children with CHD.

In rodent models of neurological disorders, environmental enrichment paradigms combining exer-
cise, social interaction, as well as novel, complex and stimulating experiences improve performance 
on cognitive tasks with research pointing to a general mechanism of experience-dependent neural 
plasticity (Nithianantharajah & Hannan, 2006). To our knowledge, there have been no studies exam-
ining the effect of environmental enrichment in a rodent model of CHD; however, rodents exposed 

Measure N = 56

<£20,000 7 (12.3)

£20,000–29,999 4 (7)

£30,000–39,999 6 (10.5)

£40,000–59,999 11 (19.3)

£60,000–79,999 4 (7)

£80,000–99,999 4 (7)

£100,000–149,999 4 (7)

>£149,999 3 (5.3)

Abbreviation: ICU, intensive care unit. 

Table 1 (Continued)
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to neonatal hypoxia-ischemia, an event which deprives the brain of glucose and oxygen, show better 
motor and behavioral development when exposed to an enriched environment with opportunities for 
investigation, peer interaction, and exercise compared to a standard laboratory environment (Galeano 
et al., 2015; Kiss et al., 2013; Rojas et al., 2015). These behavioral improvements may be accompanied 
by attenuated brain volume loss and reduced histological tissue damage (Durán-Carabali et al., 2018, 
2019; Schuch et al., 2016). In a mouse model of preterm brain injury, prolonged early environmental 
enrichment was associated with improved oligodendrogenesis, myelination, and functional outcomes 
(Forbes et al., 2020). Interestingly, the authors report that environmental enrichment did not promote 
myelination in healthy tissue, suggesting at-risk populations may uniquely benefit from environmental 
interventions. Further animal research is needed to determine whether an enriched environment might 
modify the detrimental effects of CHD on brain and cognitive development; however, we hypothesize 
that this effect may underlie the relationship between cognition and stimulating parenting reported in 
this study.

We also reported that cognitive, motor, and language scores were significantly lower than the 
standardized population mean at 22 months in children with CHD. This is in line with previous liter-
ature which report a small (<1SD) but significant decrease in cognitive, motor, and language scores 
on the Bayley Scales of Infant Development in young children with CHD without syndromic diag-
noses (Gaynor et al., 2015; Gunn et al., 2016; Latal, 2016; Mebius et al., 2017; Wray, 2006). It con-
firms that this group of infants with adverse outcomes are susceptible to environmental influences.

In previous studies, longer times to surgery in infants with hypoplastic left heart syndrome have 
been associated with increased morbidity, healthcare costs, and postsurgical white matter injury 
(Anderson et al., 2015; Lynch et al., 2014). Longer hospital stay post-surgery has been associated with 
lower cognitive scores in samples of children with hypoplastic left heart syndrome and other single 
ventricle physiologies, transposition of the great arteries, and tetralogy of Fallot (Gaynor et al., 2014, 
2016; Hansen et al., 2016). Our study included a wider range of CHD diagnoses than those previously 
published, which may explain why our findings with respect to increased time to surgery and longer 

T A B L E  2  Associations between Bayley-III scores and clinical and environmental factors

Cognitive 
composite

Language 
composite

Motor 
composite

Brain injury rating (moderate and severe injury 
combined)

Ha =0.733c H = 0.326 H = 0.823

Cyanotic or acyanotic Ub  = 199 U = 194.5 U = 215

Cardiac disease category H = 1.83 H = 1.26 H = 1.04

Days in ICU Rho = 0.002 Rho = 0.049 Rho = 0.052

Time on bypass Rho = 0.221 Rho = 0.198 Rho = 0.023

Time to surgery Rho = 0.071 Rho = 0.073 Rho = 0.051

Maternal education level H = 3.93 H = 4.34 H = 1.22

Total annual household income (four categories) H = 4.95 H = 2.76 H = 3.55

Cognitively stimulating parenting scale Rho = 0.529d Rho = 0.453e Rho = 0.299
aH is Kruskal–Wallis statistic.  
bU is Mann–Whitney statistic.  
cpFWE = 1.00 unless otherwise indicated.  
dpFWE = 0.0017.  
epFWE = 0.033.  
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hospital stay differ to previous reports. The size of the study group may also explain these missing 
associations, but equally suggests that the home environment has a powerful effect on cognitive de-
velopment. It is also possible that clinical variables differentially influence developmental outcome in 
different types of CHD; however, larger samples are needed to address this hypothesis.

We found no relationship between preoperative brain injury severity and outcome at 22 months. 
The literature regarding preoperative brain injury and developmental outcome is inconsistent (Mebius 
et al., 2017). Claessens and colleagues reported moderate-severe white matter injury perioperatively 
was associated with poorer cognitive outcome and injury to the descending motor tracts in the poste-
rior limb of the internal capsule was associated with poorer motor outcome (Claessens et al., 2018). 
However, the incidence of brain injury in our group was low, with almost two-thirds having no ev-
idence of injury and only three having severe injury. In children born prematurely, socioeconomic 
status may attenuate the effect of brain injury on cognitive development (Benavente-Fernández et al., 
2019). Environmental factors such as a stimulating home environment may attenuate the impact of 
brain injury on cognitive outcome in other at-risk groups; however, this requires further research.

4.1 | Limitations and future research

Our study has some limitations. The sample size is relatively small, and future studies with larger 
samples are required to confirm the relationship between home environment and outcome in CHD. In 
addition, it is possible that postsurgical brain injury, which we did not assess, has a larger influence 
on subsequent outcome. The cognitively stimulating parenting scale, while derived from validated 
tests in a principled fashion, has been used in only a few studies (Wolke et al., 2013) and confirma-
tion of these results is required. Our study considered the effect of cognitively stimulating parenting 
on outcome, yet parenting behaviors encompass other characteristics known to affect development 
such as sensitivity (Wolke et al., 2013), responsiveness (Coscia et al., 2001; Lynch & Gibbs, 2017), 
and family functioning (Downes et al., 2019). Future research could characterize the effect of other 
aspects of parenting on development in children with CHD. In addition, there is limited evidence 

F I G U R E  3  Relationship between cognitively stimulating parenting scale score and cognitive composite scores in 
toddlers with CHD
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from randomized controlled trials that parenting interventions can improve cognitive outcome in early 
childhood (Bonnier, 2008; Shah et al., 2016) and therefore randomized trials are required to assess 
whether interventions to promote a stimulating home environment improves cognitive outcome in 
children with CHD.

Finally, in this study we considered the effect of home environment at 22 months on developmental 
outcome in CHD. Prenatal as well as postnatal environmental enrichment improves outcome in rats 
with perinatal hypoxia-ischemia (Duran-Carabali et al., 2018; Durán-Carabali et al., 2019), and we 

T A B L E  3  Regression coefficients predicting cognitive composite score and language composite score in children 
with CHD.

Cognitive composite Language composite

Coefficient 
(standard 
error)

Coefficient 
95% 
confidence 
intervals p-Value

Coefficient 
(standard 
error)

Coefficient 
95% 
confidence 
intervals

p-
Value

Gestational age 
at birth

1.10 (0.97) −0.870 to 3.07 0.266 0.499 (1.25) −2.04 to 3.03 0.693

Male Sex −0.972 (3.88) −8.81 to 6.87 0.803 −8.25 (5.05) −18.5 to 1.97 0.110

A-levels 3.70 (8.45) −13.4 to 20.8 0.664 5.00 (10.9) −17.0 to 27.0 0.648

Vocational 
education/
college

5.76(5.93) −6.22 to 17.7 0.337 2.20 (7.61) −13.2 to 17.6 0.774

Higher education −4.38 (6.33) −17.2 to 8.41 0.493 5.16 (8.17) −11.4 to 21.7 0.531

Cognitively 
stimulating 
parenting 
scale

1.19 (0.343) 0.492 to 1.88 0.001 0.791 (0.443) −0.105 to 
1.686

0.082

T A B L E  4  Regression coefficients predicting cognitive composite score composite score including additional 
co-variatesa

Variables Coefficient (standard error)  p-Value
Coefficient 95% 
confidence intervals

Gestational age at birth 1.17 (1.12) 0.303 −1.11 to 3.45

Male sex 0.266 (4.47) 0.953 −8.82 to 9.36

A-levels 4.06 (10.1) 0.689 −16.4 to 24.5

Vocational education/college 4.40 (6.92) 0.529 −9.66 to 18.5

Higher education −6.14 (7.50) 0.419 −21.4 to 9.11

Left heart abnormalities 4.02 (5.35) 0.457 −6.84 to 14.9

Right heart abnormalities 0.448 (4.46) 0.921 −8.61 to 9.51

Mild brain injury −0.640 (5.12) 0.901 −11.0 to 9.77

Moderate brain injury 3.53 (6.33) 0.581 −9.33 to 16.4

Severe brain injury −5.30 (8.35) 0.529 −22.2 to 11.6

Cognitively stimulating parenting scale 1.27 (0.369) 0.002 0.516 to 2.02
aF(11, 34) = 1.7, p = 0.115, R2 = 0.355 adjusted R2 = 0.147.  
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have previously observed altered white matter development in infants born prematurely who experi-
enced prenatal stress exposure (Lautarescu et al., 2019). An improved prenatal environment such as 
increased maternal exercise or reduced maternal stress may improve brain and cognitive development 
(Miguel et al., 2019). The effect of prenatal maternal well-being on development in infants with CHD 
requires further study.

5 |  CONCLUSIONS

A stimulating home environment is associated with higher cognitive scores at 22 months in infants 
with CHD. This provides the first evidence of a modifiable environmental factor in children with 
CHD who are at risk for intellectual impairments and other learning disabilities. Supporting parents to 
provide a stimulating home environment in early childhood may support early cognitive development 
in this population.
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