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Abstract

Background: Neural inhibition plays an important role in auditory processing and attentional gating. Extrasynaptic GABAA

receptors (GABAAR), containing a4and d GABAAR subunits, are thought to be activated by GABA spillover outside of the
synapse following release resulting in a tonic inhibitory Cl2 current which could account for up to 90% of total inhibition in
visual and somatosensory thalamus. However, the presence of this unique type of inhibition has not been identified in
auditory thalamus.

Methodology/Principal Findings: The present study used gaboxadol, a partially selective potent agonist for d-subunit
containing GABAA receptor constructs to elucidate the presence of extrasynaptic GABAARs using both a quantitative
receptor binding assay and patch-clamp electrophysiology in thalamic brain slices. Intense [3H]gaboxadol binding was
found to be localized to the MGB while whole cell recordings from MGB neurons in the presence of gaboxadol
demonstrated the expression of d-subunit containing GABAARs capable of mediating a tonic inhibitory Cl2 current.

Conclusions/Significance: Potent tonic inhibitory GABAAR responses mediated by extrasynaptic receptors may be
important in understanding how acoustic information is processed by auditory thalamic neurons as it ascends to auditory
cortex. In addition to affecting cellular behavior and possibly neurotransmission, functional extrasynaptic d-subunit
containing GABAARs may represent a novel pharmacological target for the treatment of auditory pathologies including
temporal processing disorders or tinnitus.
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Introduction

The medial geniculate body (MGB) is the thalamic nucleus of the

central auditory system serving to shape and/or gate information as

it is passed on to auditory cortical neurons. Like other sensory

thalamic structures, the MGB is considered more than a simple

relay nucleus as evidenced by recent data showing important roles

for MGB neurons in coding stimulus specific adaptation and

processing temporally complex stimuli [1,2,3]. The primary

divisions of the rat MGB are the dorsal (MGd), medial (MGm)

and ventral (MGv) [4,5,6]. The extralemniscal MGd and MGm

have diverse afferents from the inferior colliculus (IC), auditory

cortex (AC) and spinothalamic tract and efferents to the striatum,

amygdala and areas of AC [7,8]. The lemniscal MGv receives

glutamatergic input from the IC and projects to the auditory cortex

[7,8]. In the rat MGB, the two major sources of inhibition are the

GABAergic projections from IC and the thalamic reticular nucleus

(TRN) as GABAergic interneurons compose ,1% of the cellular

population [7,9,10,11,12,13]. As a result, TRN and IC inhibitory

inputs likely shape MGB response properties through tonotopically

or focused projections onto MGB neurons [1,10,14,15,16].

The GABAA receptor (GABAAR) is a heteromeric member of

the cys-loop superfamily. It forms a Cl2 permeable ion channel

pore and serves as the primary inhibitory neurotransmitter

receptor in the brain. Nineteen GABAAR subunits (a1–6, b1–3,

c1–3, d, e, h, p and r1–3) are known, specific combinations of which

form functional GABAARs. Extensively reviewed by others,

GABAARs lacking the c subunit and containing the d-subunit

(d-GABAARs) are benzodiazepine insensitive, located extrasynap-

tically, show high ligand affinity, exhibit relatively slow desensi-

tization and mediate a tonic inhibitory Cl2 current [17,18].

Functional d-GABAARs that mediate tonic inhibition and alter

neuronal excitability are expressed in visual and somatosensory

thalamocortical neurons, the dorsal lateral geniculate nucleus and

ventrobasal complex, respectively [19,20,21,22], but have not

been reported in the MGB.

In thalamic nuclei, the incorporation of both the a4 and d
subunits within the same GABAAR construct appears required for

tonic current activation and existing data indicate that these

subunits preferentially co-assemble [20,23,24]. Survey studies

reveal the presence of a4d subunit mRNA in the MGB, suggesting

that functional a4d-GABAAR constructs could be present in rat
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auditory thalamus [25]. Collectively, these data underpin the

rationale for the present set of experiments to identify the presence

of functional a4d-GABAARs and tonic inhibition in the MGB.

The present study used gaboxadol (formerly THIP), a d-subunit

specific agonist, which, when present at low (mM) concentrations,

preferentially binds and activates non-c2, d-subunit containing

GABAARs [17,26] to both label and dose-dependently activate

these receptor subtypes in auditory thalamocortical neurons.

Materials and Methods

All experiments were completed using Fischer Brown Norway

(FBN) male rats maintained on an ad libitum diet and reversed

light-dark cycle. Procedures were in accordance to protocols

approved by the Laboratory Animal Care and Use Committee of

Southern Illinois University-School of Medicine (SIU Animal

Protocol Numbers: 41-06-024 and 41-01-002).

Quantitative Receptor Binding Autoradiography
FBN rats (11-months-old) were decapitated and brains were

rapidly removed, rinsed in ice-cold phosphate buffer at 4uC
(pH 7.4), frozen in powdered dry ice and stored at 280uC. Serial

transverse sections were cut at 16 mm using a Leica CM1850

cryostat at 218uC. Selected sections were thaw-mounted onto

Superfrost/Plus slides and stored at 220uC. Anatomical locations

of the MGB were verified to match neural structures with those

previously described [4].

[3H]Gaboxadol (Merck & Co. Inc., Rahway, NJ) was used with

modified protocols from Milbrandt and Caspary [27] and Bjarke

Ebert (personal communication). In brief, tissue sections were

subjected to pre-wash twice for 5 minutes in buffers, followed by

incubating with [3H]gaboxadol: 10–400 nM and post-wash with

buffers for 4 quick dips. Buffer solutions used were 50 mM Tris-

citrate (pH 7.1). Non-specific binding was determined in adjacent

sections by the addition of cold excessive GABA to the ligand

buffer.

Dried slides were apposed to [3H]-hypersensitive phosphor

screens for 3–5 days at room temperature. The phosphor screens

were scanned using a Cyclone storage phosphor system. The

MGB was outlined and analyzed using OptiQuant image analysis

software which provided tools for gray-scale quantification in

digital light units (DLU). DLUs were then converted to nCi/mg

protein using a standard curve generated from co-exposed 3H-

embedded plastic standards (ARC, St. Louis, MO) [28].

Voltage Clamp Whole Cell Recordings
22-30-day-old and 6-7-month-old FBN rats were anesthetized

with 2.5–3.0% Isolfurane gas and decapitated. Brains were rapidly

removed and placed in ice-cold solution containing (in mM): 250

sucrose, 2.5 KCl, 26 NaHCO3, 1.26 NaH2PO4, 5 MgCl2, 0.5

CaCl2, 10 glucose. To increase cell survivability, slices from six

month old animals were collected in an identical sucrose based

solution which also contained 2 mM kynurenic acid. Horizontal

slices, 200–300 mm thick containing the ventral division of MGB

were prepared using a Vibratrome 1000 Plus (Leica Microsystems

GmbH, Wetzlar, Germany) and transferred to a storage chamber

where slices were perfused for 30 minutes at 30uC with artificial

cerebrospinal fluid (ACSF) containing (in mM): 125 NaCl, 3 KCl,

1.26 NaH2PO4, 2 CaCl2, 1 MgCl2, 26 NaHCO3, 10 glucose. Slices

were then transferred to the recording chamber one at a time as

needed. All recordings were conducted at room temperature.

Voltage-clamp recordings were conducted using a MultiClamp-

700B amplifier and digitized by a Digidata 1440A (Molecular

Devices, Sunnyvale, CA) at 5–10 kHz and filtered at 2–2.2 kHz.

Data were analyzed offline with Clampfit 10.2. Gaboxadol

(THIP), gabazine (SR-95531) and kynurenic acid were obtained

from Sigma Aldrich (St. Louis, MO). Tetrodotoxin (TTX) was

purchased from Tocris Biosciences (Ellisville, MO).

Patch-clamp recording pipettes were pulled from single-filament

borosilicate glass (O.D. 1.5 mm, I.D. 0.86 mm) using a Sutter

P-87 micropipette puller and were filled with an intracellular

solution containing (in mM): 130 CsCH3SO3, 10 HEPES, 6 NaCl,

2 MgCl, 2 MgATP and 0.3 NaGTP with a pH of 7.33 adjusted

with CsOH. The recording pipette tip resistance was 3–7 MV.

Pipettes used for focal drug application were similar to the

recording pipettes except for the tip resistance which was increased

to 6–9 MV. Once a gigaseal (.1 GV seal) was obtained, the cell

membrane was ruptured resulting in whole-cell access. Patches

that exhibited a series resistance higher than 30 MV were

improved by application of additional negative pressure or

discarded. Voltage-clamp recordings were conducted at a holding

voltage of 210 mV.

All experiments were conducted in ACSF containing 2–3 mM

kynurenic acid to block ionotropic glutamate receptors. Gabox-

adol was applied to the ACSF and gabazine, a selective GABAAR

antagonist, was pressure-applied focally via a picospritzer pipette

(1–3 psi) positioned 20–30 mm from the recorded cell. TTX

(0.15 mM) was applied to ACSFto block voltage-gated Na+

channels in experiments using 22-30-day-old animals only.

Results

Receptor binding assay indicates high levels of
[3H]gaboxadol binding in the MGB

[3H]gaboxadol displayed high levels of binding at low ligand

concentrations in the rat MGB (n = 4) (Figure 1). Saturation

Figure 1. Receptor Binding Assay Indicating High Levels of d-containing GABAARs on MGB Neurons: Representative autoradiographs of
[3H] gaboxadol binding in young adult rats. Warm colors (red) indicate higher levels of binding while cooler colors (blue) represent lower levels
(referenced to Relative Optical Density spectrum at left). At all three concentrations shown here (75 nM, 125 nM and 250 nM), [3H]gaboxadol binds
selectively to GABAARs in MGB with little binding in brain regions shown in this coronal section, except for hippocampus and upper layers of
neocortex. The MGB and hippocampus are indicated by arrows labeled ‘‘MGB’’ and ‘‘HP’’, respectively with primary auditory cortex labeled as ‘‘A1’’.
doi:10.1371/journal.pone.0016508.g001
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analysis indicates a Bmax of 151.11621.47 nCi/mg protein and Kd of

194.64636.92 nM in the MGB (mean 6 SEM). Figure 1 shows

representative coronal sections through the MGB, displaying lower

levels of [3H]gaboxadol binding in hippocampus. It is likely that other

sensory thalamic areas, cortex, cerebellum, etc. known to express d-

GABAAR s would show similar levels of binding, but are not present

in Figure 1 [29]. Regionally specific high levels of [3H]gaboxadol

binding was seen in the MGB. This was in contrast to the relative

absence of binding in neighboring structures, but consistent reports

providing evidence for a4d-GABAARs in the hippocampus [30,31].

[3H]gaboxadol binding in both MGB and hippocampus contrasts

with the relative absence of [3H]gaboxadol binding at low ligand

concentrations in other brain regions, consistent with the low levels of

a4 and d-GABAAR subunit protein[32].

Gaboxadol activates a tonic change in whole-cell
baseline current blocked by gabazine

In vitro whole cell voltage-clamp recordings from visually

identified neurons in the MGv were conducted in control ACSF

or in ACSF containing gaboxadol (0.1, 0.3, 1, 2 or 5 mM). Under

these experimental conditions, activation of extrasynaptic GA-

BAARs caused a shift in baseline current (in voltage-clamp) or

potential (in current-clamp), suggesting the functional expression

of a4d-GABAARs in recorded neurons. For each condition, focal

application of gabazine (50 mM), a selective GABAAR antagonist,

was used to block all GABAAR-mediated currents, revealing the

presence of constitutive (control) and/or gaboxadol elicited tonic

currents. The membrane potential was clamped at 210 mV,

therefore GABAAR-mediated currents were detected as outward

shifts. Gabazine blockade caused a decrease in tonic outward

current, represented as an inward shift in baseline current

(Figure 2A). The Cl2 equilibrium potential was estimated to be

near 260 mV. The difference between the holding current before

and during focal gabazine application (DI) was defined as the

amplitude of the tonic current in response to activation of a4d-

GABAARs. The value of DI increased as a function of gaboxadol

concentration, however even in the absence of gaboxadol, a small

tonic current was detected supporting the presence of constitutive

activation of extrasynaptic a4d-GABAARs in MGB neurons

(Figure 2B).

In an effort to address the disparity in subject age between the

two sets of experiments, MGB neurons from adult (6-7-month-old)

FBN rats were examined. In 6-month-old neurons DI for 1 mM

gaboxadol was 86.4622.8 pA (n = 3; mean6SEM). Analyzed as

current density to account for any developmental morphological

changes, DI for 1 mM gaboxadol was significantly greater in 6-

month-old MGv neurons (0.9160.05 pA/pF; n = 3) in compari-

son to 22-30-day-old MGv neurons (0.5060.09; n = 6) (t-test;

p = 0.024).

Discussion

These findings strongly support the presence of functional a4d-

GABAARs in MGB neurons. Receptor-binding autoradiorgraphy

at low ligand concentrations of the subunit selective GABAA

superagonsit gaboxadol [33] show evidence of a4d-GABAARs

expression on auditory thalamocortical cell membranes while whole

cell recordings from brain slices provide evidence for functional

likely extrasynaptic a4d-GABAARs mediating tonic inhibition.

Tonic GABAAR mediated inhibition was recorded from neurons

in 22-30-day-old and 6-7-month-old animals for consistency with

[3H]gaboxadol binding results. These recordings suggest a

qualitative similarity between 22-30-day-old and adult MGB

neurons, but find a developmental increase in the amplitude of

the tonic current. This increase in current amplitude likely reflects

the developmental increase in d-subunit containing GABAAR

expression seen in the cerebellum and thalamus [29].

Figure 2. GABAAR Mediated Tonic Inhibition in MGB Neurons: A) Representative traces of gaboxadol-induced tonic Cl2 currents (outward)
revealed by gabazine block, resulting in an inward shift in baseline current for MGB neurons held at 210 mV. The solid black line above the first trace
represents the continuous focal application of (50 mM) gabazine for all traces. B) Bar graph of tonic current amplitude changes revealed by focal
application of gabazine in the presence of increasing concentrations of GABAAR agonist, gaboxadol (GBX), applied to the ACSF. Current amplitudes
are represented on the y-axis with the concentration of gaboxadol on the x-axis. (*p,0.005 when compared to Control using Dunnett’s post-hoc
analysis, data underwent first-order Winsorization; n = control: 8; 0.1 mM: 4; 0.3 mM: 6; 1 mM: 6; 2 mM: 6; 5 mM: 6).
doi:10.1371/journal.pone.0016508.g002
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GABAergic inputs onto MGB neurons from IC and mostly from

TRN are likely to activate tonic GABAAR currents through

feedforward or feedback inhibition (Figure 3) [1,7,9,10,11,12,13,16].

As a4d-GABAARs have been shown to regulate neuronal excitability

different from classical synaptic GABAARs in other sensory systems,

they may prove to play a significant role in processing acoustic

information. Enhanced inhibitory tone in auditory thalamic neurons

may then serve to increase signal fidelity by decreasing ‘‘jitter’’ or noise

level through hyperpolarization of the resting membrane potential

[34]. A GABA-induced persistent hyperpolarization would lower the

probability of excitatory input generated by intrinsic background noise

to cause depolarizations great enough to reach action potential

threshold. This damping/inhibition may be most important when

coding temporally complex sounds like speech under severe/noisy

listening conditions. However, work in understanding the role a4d-

GABAARs in stimulus coding in sensory thalamus is sparse.

The effect of a4d-GABAAR activation on cellular excitability

has been examined in the studies described above but under-

standing the role of this receptor subtype in terms of neurotrans-

mission per se has received less attention. For example,

hyperpolarization via a4d-GABAAR mediated tonic inhibition

has been shown to be involved in the transition from a tonic to

burst response mode in thalamic neurons through the hyperpo-

larized potential’s interaction with T-type Ca2+ channels [22]. It

follows that this receptor subtype may participate in the generation

of thalamic oscillations. Exactly what this means in an intact

system has not been determined but dysfunctional tonic inhibition

in the MGB may be associated with tinnitus [35]. An additional

hypothesis for a functional role of a4d-GABAARs is in mediating

novelty detection through stimulus specific adaptation [1,3].

Increased ambient GABA levels from TRN inhibitory afferents

to MGB could contribute to decreased stimulus evoked firing rates

through the activation of tonic GABAAR mediated hyperpolariz-

ing currents. This type of regulation of firing rates in response to

repetitive acoustic stimuli in the MGB may be similar to what is

observed in stimulus specific adaptation in the IC and AC

[36,37,38]. Recently, the TRN, a major part of the network

responsible for generating rhythmic thalamic oscillations, was

shown to play an integral role in the detection of novel stimuli by

MGB neurons [1]. In conclusion, while the physiological role of

tonic inhibition and how exactly it influences neurotransmission is

still under investigation, candidate roles for a4d-GABAARs in the

auditory system include, but are not limited to, the regulation of

general cellular excitability, enhancement of temporal coding

fidelity and novel stimuli detection. Future studies will focus on

examining the role of a4d-GABAARs in the auditory thalamus,

providing insight into how tonic inhibition may contribute to the

extraction and/or processing of meaningful sounds. Finally, this

GABAA receptor subtype could provide a unique target for new

therapeutic agents to treat tinnitus or improve speech processing in

age-related hearing loss, two maladies thought to involve the

selective down-regulation of inhibition as a function of partial

peripheral deafferentation.
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