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Abstract: In this work, we theoretically studied the optical absorption properties of a layer-stacked
cocrystal heterogeneous material Spe-TCNB cocrystal (STC) which is produced by supramolecular
self-assembly of organic conjugated monomers SPE and TCNB. The highly ordered aggregate struc-
ture in the cocrystal STC will lead to intermolecular interactions such as π∼π, hydrogen bonds and
van der Waals forces, resulting in significant charge transfer characteristics and large cross-sectional
two-photon absorption characteristics. The physical mechanism of one-photon and two-photon
charge transfer of cocrystal molecules is specifically discussed and the interaction between molecules
and their role in charge transfer are quantitatively analyzed. We found that the charge transfer
between molecular junctions composed of hydrogen bonds is mainly cross-bridge charge transfer,
while the charge transfer between molecular junctions caused by accumulation is mainly cross-space
charge transfer. This discovery is of great significance to the design of organic photoelectric functional
materials.

Keywords: two-photon absorption; one-photon absorption; cross bridge/space charge transfer;
molecular crystals; molecular junctions

1. Introduction

Two-photon absorption (TPA), a third-order nonlinear optical effect [1,2] has many
potential applications in physics [3], chemistry [4,5], and life sciences [6,7], where TPA
can be used to excite high-excitation energy systems at long wavelengths for nondestruc-
tive photo-catalysis [8–10] or to observe physical processes such as two-photon excited
fluorescence (TPEF) [11–13]. In photo-catalysis, long-wavelength pulsed lasers minimize
the damage and thermal effects of the light source on the catalytic substrate, which not
only allows for sustainable reactions but also eliminates thermal effects in the studied
mechanism. TPEF is a good in vivo bioassay because long-wave light penetrates well
into skin tissue. To design systems with good TPA properties, the TPA transition process
of polymer systems has been studied in detail by a three-state model [14–16] based on
the sum-of-states (SOS) method [17]. Some charge-transfer properties in this process are
different from those of one-photon absorption (OPA), such as super-exchange and serial
charge transfer [18]. However, for the application of TPA, it is essential to discuss the inter-
molecular TPA charge transfer properties between molecules, even in molecular crystals.
This is because the heterogeneous molecules have different front-line orbital energy levels
and form molecular junctions co-excited by a light source. In this process, there must be
local excitation or charge transfer excitation, which is especially important for the electronic
properties of molecular crystals or hetero-molecular co-crystals. For example, for highly
stable surface phallocentric compounds as hole transportation layers in perovskites solar
cells (PSCs) [19,20]. The intermolecular electron–hole separation properties (charge transfer
properties) under illumination are extremely important for device performance. Recently,
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studies have shown that TCNB can retain the TPA properties of the donor molecule, and
that by properly selecting the donor and acceptor molecules, the intermolecular interac-
tions can be controlled, thereby selectively modulating the properties of the co-crystal [21].
Therefore, in this work, we chose a co-crystal composed of Spe and TCNB molecules to
discuss the TPA leap characteristics in a heterogeneous molecular constituted co-crystal
system. We adopted the crystal structure for the theoretical study to quantify the roles
played by molecules at different positions in the super crystalline cell in the charge transfer
process, i.e., donor, receiver, or bridge. The ratio of charge transfer across a bridge to
space is discussed quantitatively. In addition, the relationship between hetero molecular
dipole moments and intermolecular interactions and charge transfer capability in molecular
crystals is quantitatively studied.

2. Methods

First, we used Gaussian 16 A03 software [22] combined with density functional theory
(DFT)-based [23], B3LYP functional [24], and 6-311G (d, p) [25] basis functions to geometri-
cally optimize the crystal structure of individual H elements [26] and extract the monomer
molecules for study. Then, based on the optimized structure, the excited state calculations
were performed by combining the time-dependent density functional theory (TDDFT)
method with the CAM-B3LYP functional [27] and the 6-311G (d, p) basis function. Based
on the results of these calculations, the three-state model SOS method calculates the TPA
absorption cross-section [15]. The results of this method are in good agreement with the
experiments and the quadratic response theory [14,18]. We used a Gaussian function to
broaden the OPA and TPA spectrum. The Gaussian function is defined as:

G(ω) =
1

c
√

2π
e−

(ω−ωi)
2

2c2 (1)

c =
FWHM
2
√

2ln2
(2)

where ω is the abscissa of the spectrum, ωi is the transition energy, FWHM is the full width
at half maximum.

Finally, the Multiwfn 3.7 [28] program is used to implement the electron–hole pair
density, transition density matrix, intermolecular interactions, and cross bridge/space
analysis.

3. Results and Discussion
3.1. Molecular Structure

The STC crystal was synthesized by supramolecular self-assembly from monomers
4-styrylpyridine (Spe) and 1,2,4,5-tetracyanobenzene (TCNB). Figure 1c shows a molecular
unit of STC. This unit is alternately connected by two Spe and two TCNBs to form a layered
structure. These layers are superimposed to form a stacked structure, but this accumulation
is staggered due to the differences in molecular length and the arrangement of Spe and
TCNB. There are three kinds of intermolecular interactions in the intercepted STC periodic
unit (Table 1), among which the interlayer interaction comes from two Spe monomers
(3.55 Å) and the π bond formed by Spe and TCNB (3.24 Å). The interaction connecting
the stacked layers is CH···N bond (2.04 Å) formed by adjacent Spe and TCNB. Therefore,
supramolecular self-assembly shortens the distance between monomer molecules in the
STC system. This close bond promotes charge transfer between molecules and enhances
the degree of electron delocalization between monomer molecules.
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Table 1. Three kinds of intermolecular interactions in the STC crystal, molecular distance, and
hydrogen bond length.
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Molecular
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C–H···N – 2.04

3.2. OPA and TPA Spectrum

As shown in the black curve of Figure 2a, the OPA Spectrum shows that the STC co-
crystal after supramolecular self-assembly has three absorption peaks in the near-ultraviolet
region, and there are two strong absorption peaks, of which the absorption peak at 301
nm is mainly composed of two transitions from the ground state to excited states S10 and
S14. The combination causes the two excited states, and the absorption peak at 255 nm is
caused by S73, see Figure S1a. These two strong absorption peaks are derived from the
two monomers. The larger molar absorption coefficient corresponds to the monomer Spe’s
absorption peak near 286 nm (red line in Figures 1a and S1c), and the weaker absorption
peak corresponds to the monomer TCNB near 259 nm. The absorption peak (blue line in
Figures 2a and S1e) is different from the monomer in that the co-crystal STC produces a
new weak absorption peak at 360 nm. This absorption peak’s contribution comes from the
two transitions from the ground state to excited states S2 and S7, see Figure S1a, which
indicates that the two monomers have intermolecular interactions within the STC after the
supramolecular self-assembly. It is worth mentioning that STC originates a new absorption
band in the near-ultraviolet region at 340 to 400 nm. The absorption peak is of great
significance to the analysis of the structure of its molecules.
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We found that the TPA spectrum was significantly narrower than the OPA spectrum.
There are two main reasons for this, First, the molar absorptivity of OPA and TPA differs
by two orders of magnitude. Second, the spectrum of TPA is twice as wide as that of OPA.
These cause the absorption peak of the TPA spectrum to appear relatively narrow. The
TPA spectrum fitting graph shows that the eutectic STC has a very large molar absorption
coefficient (refer to black curve in Figure 1b) and the molar absorption coefficients of Spe
and TCNB are small. To clearly analyze the TPA spectrum, the molar absorption coefficient
of STC in the range of 700–750 nm is processed by ×5 and the molar absorption coefficient
of Spe in the range of 480–600 nm is processed by ×200 (refer to red curve in Figure 1b).
The absorption rate is represented by a small graph, where the difference between STC and
Spe multiples is 102, and that of TCNB is 109. This also proves that STC can show a large
TPA cross-section, while the two monomers do not show a TPA cross-section. The TPA of
STC concentrates on two absorption peaks, the strong absorption peak ranges from 550 nm
to 600 nm, and its main contribution comes from four transitions from the ground state
to excited states S1, S2, S7, and S8. The weak absorption peak ranges from 700 to 750 nm,
its primary contributions being three transitions from the ground state to excited states
S15, S25, and S34, see Figure S1b. It is worth noting that S2 and S7 are both OPA and
TPA excited states. Experiments have proved that the TPA characteristic of STC comes
from the intermolecular interaction between Spe and TCNB, and the delocalization of
π–conjugated. electrons in the entire STC crystal system leads to electronic polarization
in the supramolecular structure [28]. TPA Spectroscopy theoretically proves that it is
feasible to use supramolecular self-assembly to generate molecular systems with large TPA
cross-sections.

3.3. Transition Characteristics of OPA

The analysis of intramolecular electron transition behavior is an effective method to
study supramolecular polarization in crystal systems [29]. We calculated and plotted the
electronic transition density matrix (TDM) of the STC excited state and the electron–hole
pair density to investigate the conjugated electron delocalization behavior. TDM is a matrix
that contains information about the characteristics of electronic transitions. TDM can reflect
the influence of the coupling between different positions of the system on the electronic
excitation and can also describe the transition strength. Combined with the electron–hole
pair density, the transition characteristics of different excited states can be vividly described.
S2 (the second excited state) is the charge transfer excited state, and the electron–hole
system is concentrated between Spe and TCNB atoms 83–96 (the atomic numbers are
shown in Figure S2, lower right corner, see Figure 3a,b). The transition density matrix of
S7 shows that charge transfer transitions occur on the benzene ring of STC and the four
cyano groups (atoms 51–64), see Figure 3c. The corresponding electron–hole pair density
shows that the electron–hole isosurface is mainly distributed in Spe between the benzene
ring and the benzene ring of TCNB, see Figure 3d. This is due to the π–π interaction
between the two benzene rings. Because the four cyano groups on TCNB have a strong
ability to attract electrons. Therefore, S7 is a charge transfer transition within the crystal
molecule. This strong charge transfer comes from the short distance D–π–A interaction after
supramolecular self-assembly [30], which leads to electron delocalization in the molecule.

The above analysis of the electronic transition characteristics of the excited state of the
large oscillator intensity concentratedly reflects the strong pi–pi* excitation (S2, S7) between
the monomer molecules Spe and TCNB, hydrogen bond interaction (S14), weak pi–pi*
excitation between two benzene rings on monomer Spe and the strong pi–pi* excitation
across spaces (S34) in the STC crystal after supramolecular self-assembly. To quantitatively
analyze the electronic excitation characteristics of the characteristic excited states of these
interactions, it is necessary to perform wavefunction analysis on these excited states to
obtain their transition index, see Table 2. First, we examined the H index of S14, which is
defined as:

H index = (|σele|+ |σhole|)/2 (3)
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where H index represents the average distribution breadth of holes and electrons. Compared
with other excited states, S14 mainly reflects the hydrogen bond interaction characteristics
of Spe and TCNB, the electrostatic interaction makes the benzene ring on the Spe lose
electrons and appear as holes. The -CN substituent adjacent to Spe on TCNB obtains
electrons through electrostatic attraction, and the overall performance is an increase in
electron density. Therefore, S14 has the largest spatial distribution breadth (H index = 9.937).
Because S14 has a small electron–hole isosurface, the charge transfer characteristics are
not obvious visually. At this time, the electron and hole distribution trend can be visually
displayed by the smoothing of electrons and holes. According to the definition of Tangui
Le Bahers [31], the centroid of positive and negative charges (C+(r) &C−(r)) is:

C+(r) = A+e
(
− (x−x+)

2

2σ2
+x
− (y−y+)

2

2σ2
+y
− (z−z+)

2

2σ2
+z

)
C−(r) = A−e

(
− (x−x−)

2

2σ2
−x
− (y−y−)

2

2σ2
−y
− (z−z−)

2

2σ2
−z

) (4)

Table 2. The transition index of the main OPA excited states.

Excited States H(Å) D (Å) t (Å) Sm E (eV) HDI EDI

S0→S2 2.971 3.204 0.260 0.05116 3.431 7.36 8.47
S0→S7 3.883 2.545 0.260 0.06812 3.393 6.85 6.40
S0→S10 6.881 3.846 −3.535 0.56443 2.701 5.47 4.23
S0→S14 9.937 3.846 −5.391 0.30617 2.000 4.86 3.73
S0→S34 4.732 10.150 6.503 0.09034 1.566 6.52 7.06

This method can be used to define the centroids of electrons and holes (Chole & Cele):

Cele(r) = Aeleexp
(
− (x−Xele)

2

2σ2
ele,x

− (y−Yele)
2

2σ2
ele,y

− (z−Zele)
2

2σ2
ele,z

)
Chole(r) = Aholeexp

(
− (x−Xhole)

2

2σ2
hole,x

− (y−Yhole)
2

2σ2
hole,y

− (z−Zhole)
2

2σ2
hole,z

) (5)

where A is the normalization coefficient, x, y, z are the three Cartesian components of the
coordinate vector r, and σ is the root mean square deviation (RMSD) of the distribution
of holes or electrons in the directions of these three components. It reflects the breadth of
distribution, and the isosurface value is set to 0.0005, which will be displayed as an ellipse
after graphical, see the lower part of Figure 3b,d,f,h,j. It can be seen that the positive and
negative values of Chole and Cele of S14 have partially overlapped. The D index represents
the distance of charge transfer and is defined as:

Dx = |Xele − Xhole| Dy = |Yele −Yhole| Dz = |Zele − Zhole|
Dindex =

√
(Dx)

2 + (Dy)
2 + (Dz)

2 (6)

where Xhole refers to the X coordinate of the hole’s centroids, which is obtained by multi-
plying the ρhole function by the x coordinate variable and integrating in the whole space.
The main part of the distribution becomes farther with the increase in D index. The D index
of S34 reaches 10.150 Å. As shown in Figure 3j, the electron–hole pair density shows that
the electron–hole isosurface is mainly distributed between the two Spes in the right half
of the STC. At this time, it can be clearly seen that Chole and Cele have the characteristics
of cross-space distribution. This cross-space charge transfer distribution greatly weakens
the attraction between electrons and holes, so S34 has the smallest coulomb attraction
energy (1.566 eV). In fact, this charge transfer can also be characterized by the degree of
hole–electron separation (t index). The t index is defined as:

t index = D index− HCT (7)
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where HCT = |H · uCT | represents the average extent of holes and electrons in the CT
direction. It can be seen that the t index of S14 reaches 6.503 Å, which is much larger than
other excited states, indicating that the electron holes are highly separated. Contrary to
the t index, the electron excitation characteristics can also be investigated by the degree
of electron–hole overlap (Sm). First, get the Sm(r) function by taking the minimum of
holes-electrons.

Sm(r) = min[ρhole(r), ρele(r)] (8)

Secondly, integrate the whole space of Sm(r) to get the Sm index:

Sm index =
∫

Sm(r)dr =
∫

min[ρhole(r), ρele(r)]dr (9)

The value range of Sm index is [0, 1]. The larger the value, the higher the degree of
electron–hole overlap. It can be seen that the Sm index of S2 and S7 are only 0.05116 and
0.06812, which further verifies that the electron–hole isosurfaces in the electron hole density
diagram having almost no overlap. This shows that S2 and S7 are excited states of charge
transfer caused by the strong pi–pi* excitation between the benzene ring of Spe and TCNB.
The electronic transitions of these two excited states and S34 both reflect the characteristics
of charge transfer. The difference is that is that the t index of S2 and S7 is much smaller than
that of S34. From the Chole and Cele distributions of the two excited states, it can be clearly
seen that the centroid distance of the hole-electron in S34 is much larger than that of S2
and S7, see Figure 3b,d,j. The Sm index of S10 reaches 0.56443, indicating that half of the
hole-electron are overlapped, and the negative values of Chole and Cele completely wrap
the positive values. At the same time, the t index is negative, which further shows that the
hole–electron pairs are not completely separated. This is in good agreement with the feature
that S10 is a local excitation between the two benzene rings inside the Spe monomer, see
Figure 3f. The above transition index shows quantitatively the excitation characteristics of
electronic transition from many aspects. To investigate the delocalization characteristics of
the hole –electron pairs, the hole delocalization index (HDI) and the electron delocalization
index (EDI) are defined:

HDI = 100×
√∫

[ρhole(r)]2dr

EDI = 100×
√∫

[ρele(r)]2dr
(10)

the smaller the values of EDI and HDI, the higher the degree of hole/electron delocalization,
which means the greater uniformity of the distribution. The HDI and EDI indexes of the
charge transfer excited states S2, S7, and S34 are much larger than those of the LE excited
state indicating that the degree of delocalization of these electron holes is relatively small,
and they are confined to the acceptor and donor, respectively. It reflects the characteristics
of supramolecular self-assembly leading to supramolecular polarization, which makes the
strong cross-space charge transfer between the organic conjugated monomers in the STC.

Based on the transition density matrix and the electron–hole pair density analysis
of S2 and S7, it can be said that this strong D–π–A interaction is the main factor leading
to the increase in the degree of electron delocalization in the crystal system. S10 is the
local excitation in the crystal molecule. TDM and the electron–hole pair density show
that the electron–hole isosurfaces overlap and are evenly distributed on the entire Spe, see
Figure 3e,f. This may be due to the interaction between the benzene ring and the pyridine
on the Spe. The effect leads to weak electronic transitions. S14 is also an excited state for
charge transfer. TDM shows that a small part of the electron transitions occurs inside the
molecule, see Figure 3g. The electron–hole pair density indicates that there are still tiny
traces on the Spe where the hole density is concentrated and the methyl chain connecting
the pyridine and benzene rings. The electron density and this excitation intensity are
much smaller than S7, see Figure 3h. This is because this charge transfer is caused by
hydrogen bonds (CH···N). S34 ( the 34th excited state) belongs to local excitation, and the
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distribution of the electron–hole isosurface on the STC is tiny, indicating that the degree of
electronic transition is small, see Figure 3i. The TDM and the electron–hole pair density of
Spe in S1 and S4 show that the electronic transition of Spe under the near-ultraviolet light
excitation belongs to local excitation, see Figure S3a–d. The TDM and the electron–hole
pair density of TCNB in S1 and S2 show that the electronic transition of TCNB under near-
ultraviolet light excitation belongs to local excitation, see Figure S3e–g,h. As mentioned
above, in the TDM and the electron–hole pair density analysis of the one-photon transition
of crystal STC, we concluded that the two monomers only exhibit local excitation under the
light excitation in the 340–400 nm wavelength range. However, the new crystal obtained
after the self-assembly of the two monomers demonstrates strong charge transfer. The
optical excitation characteristics of STC are significantly enhanced compared with the two
monomers. Electronic transition is the main contributor to the strong charge transfer-excited
states due to the strong interaction between Spe and TCNB molecules.
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3.4. Transition Characteristics of TPA

To deeply analyze the nonlinear optical properties of the crystal in which TCNB
obtains a strong charge transfer TPA excited state by mixing and stacking, we further
investigated the absorption characteristics of STC and found that STC has a large TPA
cross-section. In daily life, organic conjugated chromophores based on TPA cross-sections
are widely used in three-dimensional fluorescence imaging, optical data storage, optical
limiting, and photolithography micromachining. Therefore, it is of great significance to
study the causes of large TPA cross-sections in molecular systems.

We use TDM and the electron–hole pair density to analyze the intermediate state of
the two-photon transition’s excitation characteristics. This is because TDM is a useful tool
for analyzing the charge transfer between molecules. Simultaneously, compared with the
orbital analysis, the contribution of the electron–hole pairs to TPA excited states can better
reflect the charge transfer from the ground state to the intermediate state and then to the
final state, thus more clearly showing the local and overall excitation characteristics. Both
S1 and S2 are excited by strong charge transfer, see Figure 4. Consistent with previous
studies, S2 is both an OPA excited state and a TPA excited state. The position of the
charge transfer is shifted from the upper left to the lower right corner. This is due to the
quantum repulsion effect. The energy levels are split to produce different energy levels.
The electronic transition still comes from the strong D–π–A interaction, while the difference
in TDM is due to the atomic number. S1 and S2 are essentially the same charge transfer
excitation mode. The TPA peaks of STC ranging from 700 to 730 nm include two transitions
from the ground state to excited states S7 and S8. The contribution of the two-photon
transition in the 715–735 nm range is provided by multiple excited states.
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Figure 4. TDM and electron–hole pair density of STC in two-photon transition at 748 nm (a,b) and
740 nm (c,d).

We also investigated the maximum oscillator strength in S7. The first transition of S7,
S0→S5, can be represented by Figure 5a,b. According to the transition density matrix, this
transition may belong to charge transfer excitation. Combined with the map, the green
sound isosurface represents the place where the electron density decreases, expressed
by holes; the red isosurface represents the place where the electron density increases,
expressed by electrons. The distribution of the isosurface proves that the Spe at the upper
right of the STC intermolecular charge transfer excitation occurred between Spe and TCNB
(Spe-TCNB unit). The whole TCNB was covered with holes due to the loss of electrons,
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and the increased electrons were distributed on the benzene ring of Spe. The transition of
S5→S7 can be shown in Figure 5c,d. The transition density shows that the range of charge
transfer is further expanded, and electron–hole diffuse to the left from one Spe-TCNB unit
to another Spe-TCNB unit. Compared with S7, the two-photon excitation characteristics in
the 700–710 nm range are contributed by S8 alone. The transition from the ground state to
S7 has been explained in the one-photon absorption section, see Figure 6a,b. We mainly
analyzed the transition of S7–S8. The density matrix shows that this is a charge transfer
excitation, see Figure 6c, and the electron–hole distribution proves that STC has a good
absorption of light at this frequency, see Figure 6d.
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STC’s strong absorption peak is between 550–600 nm, including one main peak (S15)
and two secondary peaks (contributed by S25 and S34). The two-photon transition of S15
consists of two channels, that is, two intermediate states. First, we analyzed the two-photon
transition with S9 as the intermediate state. The first transition is the transition from the
ground state to S9. The TDM shows that the transition may have a local effect. Local
excitation characteristics combined with the isosurface of the electron–hole pair density, the
Spe at the upper left of the STC section shows the electron region, see Figure 7a, and the
corresponding TCNB shows holes region, see Figure 7b. The S9→S15 constitutes the second
transition of S15. From the perspective of TDM, this is a strong charge transfer excitation,
see Figure 7c. The electron–hole pair density shows that the isosurface of the electron
region and the distribution of hole isosurface is in the first diffusion to Spe and TCNB at
the bottom right, based on step transition, see Figure 7d. This is because the first step of
local excitation is the process of charge accumulation, and this charge accumulation is the
condition for the second step of charge transfer. S14 is another intermediate state of S15, in
which the transition from the ground state to S14 (refer to the excitation properties of S14)
is a strong charge transfer excitation, see Figure 7e,f. TDM shows that the local excitation
characteristics of the second transition are significant. This kind of charge transfer excitation
becomes local excitation because the charge transfer increases the state density of the orbital
occupied by the valence band, making the second step of electronic transition produce
local excitation. Using the same method to analyze the two-photon transition of the two
sub-peaks, the intermediate state of the first channel in S25 is S10, and the first transition
S0→S10 is local excitation, see Figure 8a. The electron region and the hole are located in
STC on the two Spes and the TCNB at the bottom right of the system, see Figure 8b. There is
also a small number of holes on the Spe in the middle, see Figure 8b. The second transition
S10→S25 is a strong charge transfer excitation, see Figure 8c. The middle part of the STC
unit has significant charge transfer characteristics, see Figure 8d. The intermediate state of
the second channel is S20. The first transition is the local excitation, see Figure 8e. There
are a small number of holes on the Spe in the middle, see Figure 8b. The second transition
S10→S25 is a strong charge transfer excitation, see Figure 8c. The middle part of the STC
unit has significant charge transfer characteristics, see Figure 8d. The intermediate state
of the second channel is S20. The first transition is the local excitation, see Figure 8e. The
overlap of the Spe electron region and the hole located in the middle of the STC periodic
unit to the right also proves this, see Figure 8f. The second step transitions into a strong
charge transfer excitation, see Figure 8g, and the electronic region diffuses to the monomer
Spe on the right in the middle of the STC. At the same time, electron delocalization occurred
between the Spe and TCNB below the monomer, see Figure 8h. The two TPA transition
channels of S25 are local excitation, and strong charge transfer excitation is composed
of two transition processes. The contribution of the two-photon transition of the second
peak comes from S34. The excitation characteristic of S34 is composed of two channels.
The intermediate state of the first channel is S26. The transition of S0→S26 belongs to
local excitation, see Figure 9a,b. The second step’s transition characteristic is dominated
by charge transfer excitation, see Figure 9c,d. Another intermediate state of S34 is S20.
Combining Figure 9e,f, we can know that the first transition belongs to local excitation. The
two-step transition belongs to the charge transfer excitation, see Figure 9g,h, so it can be
concluded that both S28 and S34 have two channels, and the excitation characteristics of the
two-step transition of each channel are local excitation to strong charge transfer excitation.
This is because the two-step transition in the two-photon transition will change the weaker
absorption coefficient of charge transfer excitation so that local excitation can enhance the
charge transfer excitation, and charge transfer may become the main absorption peak.
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Figure 7. The two-photon transition TDM and electron–hole pair density of STC at 591 nm, where
S9 is the intermediate state, the first transition is S0–S9 (a,b), the second step is S9–S15 (c,d); S14 is
the two-photon transition of the intermediate state, the first step is S0–S14 (e,f), the second step is
S14–S15 (g,h).
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Figure 8. The two-photon transition TDM and electron–hole pair density of STC at 573 nm, where
S10 is the intermediate state, the first transition is S0–S10 (a,b), the second step is S10–S25 (c,d); S20 is
the two-photon transition of the intermediate state, the first step is S0–S20 (e,f), the second step is
S20–S25 (g,h).
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Figure 9. The two-photon transition TDM and electron–hole pair density of STC at 557 nm, when S26
is the intermediate state, the first transition is S0–S26 (a,b), the second step is S26–S34 (c,d); when S26
is the intermediate state, the first step is S0–S20 (e,f), the second step is S20–S34 (g,h).

3.5. Cross Bridge/Space Charge Transfer Analysis

There are two forms of electronic transition in the system when local excitation or
charge transfer excitation occurs in the molecule: cross space charge transfer (CSCT) and
cross bridge charge transfer (CBCT). In analyzing the charge transfer in the excited states of
STC molecules, the mechanism needs to be considered from two perspectives. First, when
the molecule reaches the excited state, the charge transfer’s contribution is mainly from the
non-relaxed part, corresponding to the hole and electron distribution. The visualized result
is the electron–hole pair density. For this concept of charge transfer, the electronic excitation
can be calculated by the interfragment charge transfer (IFCT) method. The amount of
electron transfer between any fragments in the process, the direct charge transfer among
which can be regarded as cross space, and the charge transfer through π–A, A–π can be
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regarded as cross bridge. On the other hand, if there is a transition forbidden during the
electron transition, there is no spatial overlap between holes and electrons, even if the
degree of charge transfer is large, it will not be observed. This part of the charge transfer
does not contribute to light absorption and emission. It is necessary to calculate whether
the some of the electrons contributing to the absorption and emission of light in the charge
transfer transition are distributed in the space between D–A or on the bridge between D–A,
determined by the transition density and the hole. The distribution of electron overlap can
be used to examine the ratio of CBCT and CSCT.

CB/CSCT analysis needs to define bridging fragments, donor fragments, and acceptor
fragments, respectively. When calculating the CBCT and CSCT of the STC cycle unit,
the two Spe monomers in the center are used as the bridge, marked with black, and
the Spe monomer connecting the bridge is the donor fragment, drawn in blue, and the
TCNB monomer is the acceptor fragment, marked in red, see Figure 10. Table 3 shows the
CB/CS power calculated by STC using IFCT, transition density, and hole-electron overlap
distribution and their respective proportions in the charge transfer volume. From the point
of view of the charge transfer value, the total amount of IFCT (0.96738) is significantly more
than that due to transition density (0.29008) and hole-electron overlap (0.16522). This is
because IFCT analysis is based on the contribution of fragments to holes and electrons.
The calculation is the redistributed electrons between the donor fragment and the acceptor
fragments in the STC molecule due to light excitation, where transition density and hole-
electron overlap does not include the part where holes and electrons do not overlap in space.
The proportion of CSCT is much larger than that of CBCT, indicating that the contribution
of the charge transfer between D–π–A mainly comes from CSCT, which confirms that the
charge transfer between STC molecules is due to the closer Spe monomer and the stronger
molecule between TCNB interactions promote electron delocalization.
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Figure 10. Bridge fragment (black), donor fragment (blue), and acceptor fragment (red) of STC in
CB/CSCT.

Table 3. Analysis methods of CB/CSCT, the amount of charge transfer of CB/CSCT and their
respective proportions of total charge transfer.

Analytical Method IFCT Transition Density Hole-Electron Overlap

Through Space CT 0.96738 0.29008 0.16522
99.98% 98.50% 99.27%

Through Bond CT 0.00016 0.00440 0.00121
0.02% 1.49% 0.72%

Tot Charge Trans 0.96754 0.29448 0.16643

3.6. Analysis of the Molecular Dipole Moment

The molecular dipole moment plays an important role in analyzing the polarity of
local molecules. In the two-photon transition, the first transition is more likely to occur
than the second transition. Table 4 shows the main two-photon transition excited states
of STC and their transition dipole moments. The dipole moment of the first transition is
greater than the second transition. This is because an enormous dipole moment difference
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can promote charge transfer between molecules. In the spectral analysis of Section 3.2, the
OPA spectrum showed that in the range of 340–380 nm, STC produced a new absorption
peak relative to the two monomers. S7 mainly contributed to the absorption peak. TDM
and electron–hole pair density analysis shows that S7 is a strong charge transfer excited
state. The analysis of TDM and electron–hole pair density of two-photon transitions shows
that S7 has strong charge transfer performance. To further study the source of the strong
charge transfer characteristics of the eutectic STC in S7, we used the visualization method
to plot the overall dipole moment of the STC system, see the green arrow in Figure 11, and
the permanent dipole moment of each monomer, see the red arrow in Figure 11. The red
circle is the strong charge transfer site of S7. Taking the geometric center of the eutectic STC
as the origin, it can be observed that the overall dipole moment of the STC is greater than
zero, and the direction is from the outside to the inside. The fragment dipole moment of the
single Spe in the red coil points from the outside to the rear left through the paper, while
the TCNB’s direction of the dipole moment is from the inside to the right front. Remarkably,
the centrally symmetric monomers have opposite and larger dipole moments. This strong
intermolecular dipole induction induces the opposite dipole moments of the molecules
inside the crystal STC, that is, the permanent couple of S7 in the red coil polar moment,
so that the D − π − A system obtains a significant dipole moment difference. It can be
known from the TPA section formula, [15], that the cross-section of TPA increases with the
increase in dipole moment, which also explains the strong charge transfer characteristics of
S7.

Table 4. The main two-photon transition excited states of STC and their transition dipole moments.

TPA States Process Integral Value

S2
〈
φS0 |µ|φS1

〉
→
〈
φS1 |µ|φS2

〉
0.23→0.00022

S7
〈
φS0 |µ|φS5

〉
→
〈
φS5 |µ|φS7

〉
0.21→3.47

S8
〈
φS0 |µ|φS7

〉
→
〈
φS7 |µ|φS8

〉
1.08→14.25

S15
〈
φS0 |µ|φS14

〉
→
〈
φS14 |µ|φS15

〉
8.53→63.11〈

φS0 |µ|φS9

〉
→
〈
φS9 |µ|φS15

〉
1.31→0.63

S25
〈
φS0 |µ|φS14

〉
→
〈
φS14 |µ|φS25

〉
16.04→3.81〈

φS0 |µ|φS20

〉
→
〈
φS20 |µ|φS25

〉
4.79→2.56

S34
〈
φS0 |µ|φS26

〉
→
〈
φS26 |µ|φS34

〉
4.91→3.29〈

φS0 |µ|φS20

〉
→
〈
φS20 |µ|φS34

〉
4.79→0.50
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4. Conclusions

In this work, we used first principles to calculate and analyze the optical absorption
characteristics of a molecular crystal material STC with a stacked aggregate structure.
We discussed the relationship between one-photon and two-photon absorption properties,
intermolecular dipole moments and non-covalent interactions, and charge transfer mech-
anisms. Supramolecular self-assembly effectively shortens the distance between organic
conjugated monomers, so that abundant intermolecular interactions such as π–π and
hydrogen bonds are generated in the STC molecular crystal, which promotes the charge
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transfer between monomer molecules, thereby enhancing the degree of electron delocaliza-
tion between monomer molecules in the crystal. The charge transfer between molecules
in molecular crystals is mainly realized by CSCT, where D–π–A is the source of dipole
induction of monomer molecules in STC. This dipole induction produces an excellent
dipole moment difference in the middle part of the SPE-TCNB unit, which results in a
larger TPA cross-section in the STC, which further promotes the charge transfer between
molecules. The composition of different excited states in cross-space charge transfer and
cross-bridge charge transfer of molecular crystals is different, which will provide new ideas
for the purposeful design of large TPA cross-section chromophores and electron transport
materials.
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//www.mdpi.com/article/10.3390/nano12030535/s1, Figure S1: OPA and TPA spectra of STC (a,b),
monomer Spe (c,d) and monomer TCNB (e,f); Figure S2: Atomic numbers in STC co-crystals; Figure
S3: The monomer Spe’s TDM and electron-hole pairs density of S1 (a,b) and S4 (c,d); the monomer
TCNB’s TDM and electron-hole pairs density of S1 (e,f) and S2 (g,h).
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