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Abstract

Soybean [Glycine max (L.) Merr.] was domesticated from wild soybean (G. soja Sieb. and

Zucc.) and has been further improved as a dual-use seed crop to provide highly valuable oil

and protein for food, feed, and industrial applications. However, the underlying genetic and

molecular basis remains less understood. Having combined high-confidence bi-parental

linkage mapping with high-resolution association analysis based on 631 whole sequenced

genomes, we mapped major soybean protein and oil QTLs on chromosome15 to a sugar

transporter gene (GmSWEET39). A two-nucleotide CC deletion truncating C-terminus of

GmSWEET39 was strongly associated with high seed oil and low seed protein, suggesting

its pleiotropic effect on protein and oil content. GmSWEET39 was predominantly expressed

in parenchyma and integument of the seed coat, and likely regulates oil and protein accumu-

lation by affecting sugar delivery from maternal seed coat to the filial embryo. We demon-

strated that GmSWEET39 has a dual function for both oil and protein improvement and

undergoes two different paths of artificial selection. A CC deletion (CC-) haplotype H1 has

been intensively selected during domestication and extensively used in soybean improve-

ment worldwide. H1 is fixed in North American soybean cultivars. The protein-favored (CC

+) haplotype H3 still undergoes ongoing selection, reflecting its sustainable role for soybean

protein improvement. The comprehensive knowledge on the molecular basis underlying the

major QTL and GmSWEET39 haplotypes associated with soybean improvement would be

valuable to design new strategies for soybean seed quality improvement using molecular

breeding and biotechnological approaches.

Author summary

We map highly effective protein and oil QTLs to a seed coat-preferentially expressed

sugar transporter (GmSWEET39) gene by a combination of association analysis based on
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631 whole-genome sequencing data and a bi-parental linkage mapping, proving that

GmSWEET39 has pleiotropic associations with two of the most important soybean traits,

seed protein and oil. A 2-bp (CC) deletion in GmSWEET39 is associated with higher seed

oil and lower seed protein, and has been extensively selected and used worldwide, likely

for higher oil. The intensive use or fixation of the CC deletion in soybean breeding result

in low protein in current soybean cultivars, which is a big problem facing the current soy-

bean industry. The knowledge about the genetic basis and identification of two major hap-

lotypes for high protein and high oil should be highly significant to address the issue

related to low protein in the current soybean industry and meet dramatically increasing

need for plant-based protein in the food industry. Our successful integrative and "big-

data-driven” approach, which uses the huge amount of genome and transcriptome

sequencing and phenotypic data available in the community, should provide an effective

case study for post-genomic data-driven research.

Introduction

Cultivated soybean [Glycine max (L.) Merr.] is an important seed crop grown worldwide. It

was domesticated from wild soybean (G. soja Sieb. and Zucc.) in East Asia approximately

6,000–9,000 years ago and has been further improved through breeding as a major oilseed

crop to provide a source of both valuable vegetable oil and protein for uses in food, feed, and

industrial applications [1]. Unlike in Asia where farmers grew locally adapted landraces and

selections of them for thousands of years, soybean has a short history in North America, and it

was introduced to North America in 1765. Soybean had been mostly grown as a forage crop in

North America for the next 155 years until the importance of soybeans as a valuable source of

protein and oil was realized at the beginning of the 20th century. Starting from the 1920s, soy-

bean has been grown as a seed/grain crop mainly for seed protein and oil. Soybean yield (bush-

els per acre) nearly doubled since 1987 [2], making soybean one of the sustainable crops to

meet the rapid demand for plant-based protein and oil for a continuously increasing world

population [3]. However, it was often observed that protein content in seeds is quantitatively

inherited and negatively correlated with seed oil content and yield [4–6], making it challenging

to increase soybean protein content while maintaining the desired seed oil level and seed yield.

In the past decades, over 300 quantitative trait loci (QTLs) controlling soybean seed oil and

protein content have been identified using accessions with the different genetic background

[7], suggesting that soybean oil and protein content are subject to a highly diverse and complex

genetic control. Although great efforts have been dedicated to utilizing diverse genetic

resources to develop cultivars containing both improved protein and oil traits or improve one

trait without a negative impact on the other trait, progress has been limited. In contrast, it was

observed that US commercial cultivars released over the past several decades contain decreased

seed protein content (http://unitedsoybean.org/), which is likely an unintended consequence

of a strong selection for high oil. To effectively exploit the soybean diversity to improve the

seed traits with no or little negative impact on the others, it is crucial to identify the causative

genes/alleles for major QTLs and illustrate the molecular basis underlying their associated trait

interaction and genetic diversity in soybean domestication and breeding.

In the present study, having applied a combination of high confidence bi-parental linkage

mapping using a population of recombinant inbred lines (RIL) and high-resolution association

analysis using 631 diverse whole genome sequences, we mapped a major protein and oil con-

tent QTL on chr15 to a sugar transporter gene and demonstrated that the sugar transporter
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gene was preferentially expressed in seed coat tissues. We further revealed that a 2-bp (CC)-

deletion in the gene was associated with the variation of seed oil and protein content. The CC

deletion was selected during soybean domestication and improvement. Haplotype analyses

showed that a CC deletion-carrying haplotype is widely present in cultivated soybeans grown

worldwide and has been fixed in US modern soybean breeding, highlighting the significance

of the high-oil CC-deletion haplotype in soybean improvement. The CC-deletion allele also

contributes to low protein in modern soybean cultivars, a big problem facing the current soy-

bean industry. Our result will greatly advance our understanding of these complex seed quality

traits and benefit seed improvement in soybean.

Results

Linkage analyses identified a major QTL region controlling both seed oil

and protein content

A population of 300 RILs was used for linkage analyses. The two parental lines exhibited signif-

icant differences in seed oil and protein content, with Williams82 (G. max) seeds containing

39.33% protein and 20.47% oil content, and PI479752 (G. soja) containing 43.99% protein and

9.82% oil content (S1A Fig). RILs varied widely in seed oil (9.82–20.47%) and protein (37.64–

47.99%), and protein and oil content were negatively correlated in the RILs (r = -0.76) (Fig

1A). Broad-sense heritability (H2) of oil and protein in the RILs across two-year tests were 0.87

and 0.82, respectively, indicating that both traits were mainly controlled genetically which

allows a substantial genetic improvement of oil and protein content.

Composite interval mapping with the SoySNP50K genotyping data identified two major

QTLs on chr15 and chr20 (S1C Fig). We focused on the QTL on chr15 in this study. Two over-

lapping QTLs, qSeedOil_15 and qSeedPro_15, for oil (LOD = 12.95) and protein

(LOD = 10.84) were identified respectively (Fig 1B). qSeedOil_15 was flanked by two markers

Gm15_2391075_G_A and Gm15_6028005_A_G (8.94–29.10 cM), while qSeedPro_15 was

flanked by Gm15_1989918_T_G and Gm15_5829758_G_T (7.18–28.21 cM). Both QTLs phys-

ically spanned approximately 4 Mb (physical interval, chr15: 2.0–6.0 Mb) and 92.0% of the two

QTL intervals overlapped. This region coincided with previously-published major QTLs for

seed oil or protein content in soybean [4, 8–11], indicating that this region contained a major

QTL gene(s) contributing significantly to the large variation in both protein and oil content.

A sugar transporter gene highly associated with the seed protein and oil

QTL

To uncover the gene(s) underlying qSeedOil_15 and qSeedPro_15, we carried out association

analyses of the two traits with DNA variants within the 4 Mb QTL region using a panel of 631

diverse wild and cultivated soybean accessions collected worldwide. Accessions in this panel

had a wide variation in seed protein (32.5–52.3%) and oil content (10.1–23.5%). Overall, the

two traits were significantly negatively correlated (r = -0.62) (S1B Fig). We analyzed the whole

genome sequences of the 631 accessions and identified a total of 96,813 DNA variants includ-

ing 79,725 single nucleotide polymorphisms (SNPs) and 17,088 insertions and deletions

(indels) in this 4-Mb region. These DNA variants in the region were tested for their associa-

tions with oil and protein. The association analysis revealed that three most significant indels

(DT15_3875621, DT15_3875101, DA15_3874703) for oil content located in a cluster of DNA

variants spanning a 34-kb region that was highly significant (p< 1e-5) for seed oil in this

panel (Fig 1C). The three most significant indels were also highly significant for protein con-

tent (S2 Table). This finding was consistent with the observation that the two QTLs were
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Fig 1. Identification of the major QTL on chromosome 15 and its underlying candidate gene. (A) Seed oil and protein

from RILs exhibited a negative correlation. (B) Linkage mapping using RILs identified two overlapping QTLs on Chr15 for

oil and protein, respectively. (C) Regional association analysis identified a cluster of variants significantly associated with oil

and protein content. The red solid dot represents a significant association (DT15_3875101). (D) Six gene models and the LD

pattern within the significant 34-kb region. (E) IGV view of variant patterns between high protein and low protein soybean

genotypes. The two variants occurring in the non-coding region were indicated with arrows in black. Variant patterns at the

three sites were shown as TATC/---- (alternative/reference), --/CC, and --/TA. (F) The CC deletion (- -) at DT15_3875101

is highly correlated with high-oil, and low-protein content. CC presence is indicated by CC. � and ��� indicate the

significance at p< 0.05 and p< 0.001, respectively.

https://doi.org/10.1371/journal.pgen.1009114.g001
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highly overlapped in the linkage mapping analysis described above (Fig 1B), strongly suggest-

ing that seed oil and protein might be controlled by the same locus.

The three most significant variants were all located within the genomic region of Gly-
ma.15G049200. The indel DT15_3875101 (--/CC, reference/alternative allele) located in the

coding region (exon 6), while the other two, DT15_3875621 (TATC/----) and DA15_3874703

(--/TA), located in the 4th intron and the 3’ untranslated region (UTR) respectively. The CC

indel was polymorphic in two parents of the RIL population. The high-oil and low-protein

parent (Williams82) contained the CC deletion (CC-) that was not present in the low-oil and

high-protein parent (PI479752). The CC deletion in the coding sequence (CDS) of Gly-
ma.15G049200 caused a frameshift (see below). We examined Glyma.15G049200 genomic

sequences of 631 accessions in the association panel and identified two G. max accessions con-

taining the gene sequence identical to Williams82-type allele except for the CC deletion. The

two accessions contained significantly lower oil content and higher protein in seeds than

accessions carrying the Williams82-type allele (p< 0.05, see haplotype analysis section, H1 vs

H2, Fig 4A and 4B), confirming that the CC indel rather than the other two non-CDS DNA

variants was causative of oil and protein variation. We also examined the parental lines

(PI468916, PI407788A, PI483460B and Williams82) of bi-parental linkage mapping popula-

tions whose protein and oil QTLs were mapped to the genomic regions overlapped with qSee-
dOil_15 and qSeedPro_15 [8, 10, 12]. Sequence alignments revealed that DT15_3875101 in

exon 6 was the only variant in Glyma.15G049200 among these accessions fully associated with

oil and protein content (Fig 1E). Notably, seeds of these accessions with the CC presence (CC

+) in Glyma.15G049200 contained 9.5% less oil (p<0.001) and 4.6% more protein (p<0.05)

than those with the CC deletion (CC-) (Fig 1F). Thus, the CC InDel, not the other two DNA

variants, is the causative allele for variation of oil and protein content. In addition, Gly-
ma.15G049200 was the only one of the six genes within the linkage disequilibrium block show-

ing predominant expression in developing seeds (Fig 1D, S2A and S2B Fig), implying that the

role of Glyma.15G049200 was specific to seed filling. Glyma.15G049200 encoded an ortholog

of the Arabidopsis AtSWEET15 sugar transporter (AT5G13170) that also plays a role in lipid

accumulation in seeds [13]. Thus, all evidence suggests that Glyma.15G049200 underlies the

QTL on chr15 controlling both protein and oil content and InDel DT15_3875101 in Gly-
ma.15G049200 is the causative allele for protein and oil content variation.

The CC deletion causes the truncated GmSWEET39
Glyma.15G049200 was previously assigned as GmSWEET39 in a SWEET (Sugars Will Eventu-

ally be Exported Transporters) gene family analysis [14]. The CC indel (DT15_3875101)

occurred in the coding region and caused a reading frameshift starting from the 730th nucleo-

tide of GmSWEET39. The frameshift resulted in a premature stop codon and six amino acid

changes at the C-terminus of GmSWEET39 in Williams82 (Fig 2A and 2B). Thus, the CC

deletion truncated 19 amino acids from the C-terminus of GmSWEET39 in Williams82 com-

pared with the intact GmSWEET39 in PI479752 (Fig 2C). Like its orthologous AtSWEET15
gene [15, 16], intact GmSWEET39 encoded a sugar transporter protein with seven predicted

transmembrane (TM) domains and a cytoplasmic C-terminal tail (Fig 2D). Lack of the 19 C-

terminal amino acids and the C-terminal amino acid changes in Williams82-type

GmSWEET39 caused no obvious change in the predicted 3-D protein structure of the seventh

TM domain compared to GmSWEET39 in PI479752 (Fig 2E). However, the reading frame-

shift changed three amino acids in the cytoplasmic C-terminal tail that appeared to be highly

conserved in legumes (Fig 2F). Sequence alignment showed conservation between

GmSWEET39 and two AtSWEETs (AtSWEET13, AtSWEET15) in four key amino acids that
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were specific to disaccharide transport [15], suggesting the potential role of GmSWEET39 in

transporting disaccharides (Fig 2G). It remains to be determined how the amino acid sequence

change and loss of the 19 amino acids affect the activity of GmSWEET39 and impact oil and

protein accumulation in seeds.

GmSWEET39 encodes a sugar transporter preferentially expressed in

developing seed coat

We examined expression patterns of GmSWEET39 (CC-) in soybean major organs and differ-

ent seed compartments of Williams 82 at different seed development stages using the Gold-

berg-Harada Soybean RNA-Seq Dataset (http://seedgenenetwork.net/soybean). Interestingly,

GmSWEET39 was predominantly expressed in the floral bud and developing seeds (Fig 2H).

Briefly, the accumulation of GmSWEET39 transcripts in seeds was detected as early as the

globular stage and reached the highest level at the early maturation stage over the course of

seed development. The transcript abundance significantly decreased after seeds reached the

early maturation stage and it was undetectable in the late maturation and dry seed stages.

Fig 2. Sequence and expression analysis of GmSWEET39 alleles. (A) A schematic diagram shows the sequence variation that occurs in the 6th exon between the

two parental lines of the RIL population, Willams82 and PI479752. (B) The CC deletion in Williams82 causes a reading frameshift and a truncated protein at the

C-terminus. (C) GmSWEET39 is 19 amino acid shorter in Williams82 than it in PI479752. (D) Predicted transmembrane domains in GmSWEET39. The

sequence differences as shown in (B) and (C) were highlighted with the gray dotted rectangle. (E) Comparison of the 3D protein structure between Willams82 and

PI479752 GmSWEET39 proteins. The difference in the structure at the C-terminal tails is highlighted with rectangles in blue and red. (F) Sequence alignment

between the C-terminal peptides of the SWEET homologs from different species including legumes. The putatively conserved region was highlighted with the

rectangle in red. (G) GmSWEET39 is conserved at the amino acids essential for disaccharide transport. (H) A bar plot showing the expression pattern of

GmSWEET39 in different soybean tissues and the whole seeds at different maturation stages. (I) Relative expression of GmSWEET39 in different subregions of

developing seeds of soybean cultivar Williams 82 (CC deletion) at globular, heart, and cotyledon stages. (J) Relative expression pattern of CC-deleted

GmSWEET39 in the sub-regions in developing seeds of Williams 82 at the early maturation stage. (K) Cartoon depicting the expression patterns of GmSWEET39
in different tissues/compartments of globular, heart, cotyledon, and early maturation seeds of Williams 82 (CC deletion). Abbreviation: AB—Abaxial; AD—

Adaxial; AL—Aleurone; AX—Axis; Cot—Cotyledon; EP—Embryo Proper; EPD—Epidermis; ENT—Endothelium; ES—Endosperm; FBUD—Floral Bud; HG—

Hourglass; HI—Hilum; II—Inner Integument; OI—Outer Integument; PA—Palisade; PL—Plumule; PY—Parenchyma; RM—Root Meristem; S—Suspensor; SC

—Seed Coat; SM—Shoot Meristem; VS—Vascular Bundle. The seed images were acquired from http://seedgenenetwork.net/sequence.

https://doi.org/10.1371/journal.pgen.1009114.g002
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Before the early maturation stage, transcripts of GmSWEET39 began to accumulate in some

subregions of the seed coat such as the inner/outer integuments during the heart and cotyledon

stages (Fig 2J). At the early maturation stage (Fig 2I), transcripts of GmSWEET39 showed a sig-

nificant accumulation in subregions of the cotyledon (abaxial epidermis) and seed coat (paren-

chyma). Notably, the transcript abundance in the parenchyma of the seed coat at the early

maturation stage was approximately 60–400 times higher than in the abaxial epidermis and

outer integument at the cotyledon stage. Expression patterns of GmSWEET39 in the aforemen-

tioned compartments of developing seeds were illustrated in Fig 2K. These results suggest the

special role of GmSWEET39 during seed development, especially in the parenchyma of the seed

coat. In plants, parenchyma is the innermost part of the seed coat with direct contact with the

endosperm [17]. This layer is crucial in assimilate unloading from the maternal seed coat and in

the initiation of the storage phase in legumes [18]. Given that GmSWEET39 encoded a sugar

transporter that is specifically expressed in seed coat subregions during seed development, it is

reasonable to presume that GmSWEET39 plays an important role in facilitating sugar transfer

in the seed coat to allocate photosynthetic sucrose into the embryo and that the increased

sucrose accumulation enhances the subsequent sucrose-derived fatty acid biosynthesis [19, 20].

GmSWEET39 has been selected over soybean domestication and

improvement for oil and protein improvement

We examined the indexes of selection in the 1-Mb genomic region harboring GmSWEET39
using the fixation index (Fst), diversity (π) and Tajima’s D. The results from these indexes all

indicated that GmSWEET39 located in an approximately 40-kb genomic region that under-

went a selective sweep (Fig 3A), suggesting that GmSWEET39 underwent selection during soy-

bean domestication.

Fig 3. Genetic diversity and allele analysis of GmSWEET39. (A) Genetic diversity (π), Tajima’s D, and fixation index (Fst) among the three groups

across the 1-Mb genomic region harboring GmSWEET39. The horizontal dotted line indicates the genome-wide threshold as described by Wang et al

[50]. A red dashed line indicates the physical position of GmSWEET39. (B) Genotype frequency distribution of CC presence (CC) and absence (- -) in

GmSWEET39 in wild, landrace, and improved cultivar. Allelic analysis of CC presence (CC) and absence (- -) in GmSWEET39 on oil (C) and protein

content (D). ��� indicates the statistical significance at p< 0.001. ns: not significant.

https://doi.org/10.1371/journal.pgen.1009114.g003
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We split the panel of accessions into wild soybean (G. soja), landrace, and improved cultivar

based on available germplasm type assignment and examined the allelic frequency of the CC

deletion. We detected three CC- G. soja accessions. The allelic frequency of the CC deletion

increased over the course of soybean domestication and improvement with 2.59% (3 of 114) in

wild soybean, 76.15% (99 of 130) in landrace and 85.39% (76 of 89) in improved cultivar (Fig

3B). We also observed increases in oil content in CC- accessions over the courses of soybean

domestication (G. soja to landrace) and improvement (landrace to cultivar) (Fig 3C). In CC-

accessions, oil content significantly increased by 4.72% (p< 0.001) from G. soja to landrace

and 1.35% (p< 0.001) from landrace to cultivars. However, oil in CC+ accessions was

decreased by 0.5% during the transition from landrace to cultivars. The increasing trend of oil

content in CC- accessions was consistent with that of CC- allele frequency over the transitions

in G. soja-landrace-cultivar (Fig 3C), suggesting that the CC- allele rather than CC+ allele was

selected and used for high oil during both domestication and improvement processes.

In consistence with observed negative relationship of oil and protein content, protein con-

tent reduced in CC- accessions during the domestication and improvement (Fig 3D). Protein

content was decreased in CC+ accessions from G. soja to landrace. On the contrary, protein

content was significantly increased by 4.38% (p< 0.001) in CC+ accessions during the transi-

tion from landrace to cultivar. This finding with protein changes suggested that CC+ allele of

GmSWEET39 might be selected and used for developing high protein cultivars during the

improvement process. These observations implied that soybean might experience two paths

for soybean oil and protein improvement using the two distinct alleles of GmSWEET39: CC-

has been selected/used for oil improvement the over the courses of soybean domestication and

improvement while CC+ allele has been selected/used for developing high protein cultivars

during the improvement of G. max accessions.

We further examined oil and protein content difference between CC- and CC+ accessions

within each germplasm group. Oil was averagely higher in CC- than CC+ accessions within

wild (2.8% increase), landrace (2.94% increase, p< 0.001), and cultivar (4.80% increase,

p< 0.001) (Fig 3C). Accordingly, protein content in CC- accessions was lower than CC

+ accessions within each of the three groups (2.70% decrease in wild, 1.15% decrease in land-

race) with the greatest difference seen in cultivars (6.53% decrease, p< 0.001) (Fig 3D). These

results were supportive of the pleiotropic roles of GmSWEET39 on oil and protein. Notably,

more dramatic differences for both oil and protein content between CC- and CC+ accessions

in cultivars than landrace were observed. This could be the result of differentially integrating

oil-favor alleles and protein-favor alleles of other QTLs in CC- and CC+ accessions during soy-

bean improvement for high oil and high protein cultivars, which augment the difference of

CC- and CC- cultivars in protein and oil.

Discriminatory uses of the two major haplotypes in oil and protein

improvement

We performed a haplotype analysis for the accessions used in the association panel by examin-

ing the sequence diversity of the transcribed genic region of GmSWEET39 and the 1.0 kb

region upstream of the start codon (ATG). Based on patterns of the fragment variants, we

identified 19 haplotypes with each detected in at least two accessions (Fig 4A, S3 Table).

H1-H4 haplotypes were uniquely present in G. max, while H5-19 haplotypes were restricted to

G. soja. CC- was specifically present in H1 haplotype and its accessions accounted for 70.7%

(335 accessions) of 474 examined accessions, representing the biggest haplotype group. The

rest haplotypes had less than 2.4% haplotype frequency except for H3 with 15.4% (73 of 474

accessions). Consistent with our earlier finding, H1-accessions contained 2.5% higher oil
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Fig 4. Analyses of haplotype distribution worldwide and the use frequency of H1 in US soybean breeding. (A) A schematic diagram

shows the distribution of all DNA variants identified in GmSWEET39 and its putative 1,000-bp promoter region. 19 haplotypes (H) were
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content (p< 0.001) and 2.2% lower protein content (p< 0.001) than those in accessions carrying

H2-H4, and much higher oil content (8.25%, p< 0.001) and lower protein (4.14%, p< 0.001)

than all testing G. soja accessions (H5-H19) (Fig 4B). H1 and H2 haplotypes differed only at the

CC indel while H1 contained 3.1% higher in oil (p< 0.05) and 3.4% lower protein content than

in H2 haplotypes, further verifying that CC deletion is the major cause of the observed differences

in both traits. In contrast, H3 accessions with 2.5% lower oil content (p< 0.001) contained 2.2%

higher seed protein (p< 0.001) than H1. H1 and H3, collectively representing 98.8% of G. max
accessions in the association panel, were two major haplotypes of GmSWEET39 that contributed

to the phenotypic variations in oil and protein in G. max. However, none of the DNA variants

such as CC indel or haplotype variation of GmSWEET39 accounts for the dramatic differences in

protein and oil between G. soja and G. max. This finding was consistent to the above allelic analy-

sis, suggesting that additional QTLs such as QTL on chr20 might contribute to the observed dif-

ferences in protein and oil content between G. soja and G. max accessions.

We also mapped all haplotypes to their geographic origins aimed to understand the use of

haplotypes in soybean improvement (Fig 4C). Overall, haplotypes (H5-H19) from wild soy-

bean (G. soja) were restricted to East Asia where wild soybeans originated [21]. In contrast,

haplotypes (H1-H4) from cultivated soybean (G. max) had a wider geographic distribution

worldwide (Fig 4C). Of the four G. max haplotypes, H1-carrying accessions with high oil (Fig

3B) were widely distributed with 75.52% of all accessions (253) found in Asia followed by

16.42% (55) in North America (Fig 4D). It is important to note that the H1 haplotype was

nearly fixed in the United States as 95.92% (47 of 49) of US-bred cultivars in this study carried

the H1 allele. To further confirm, we examined CC- allele in 75 historically important landrace

and milestone cultivars representing North American soybean breeding history from 1907 to

2002. These cultivars belonged to a wide range of maturity groups (MG) from MG 0 to MG

VIII [22]. The CC- allele of GmSWEET39 was present in all of the 75 historical cultivars

including the 22 founder cultivars, which have been used in breeding soybean cultivars at vary-

ing frequencies (1–44) during the 95 years of North American soybean breeding (Fig 4E, S4

Table). These results strongly indicated that the CC- allele of GmSWEET39 was a preferable

allele that has been maintained in modern breeding programs and has been extensively used

for soybean improvement worldwide, likely for oil improvement. In contrast, the accessions

carrying H3, which contained medium levels of seed oil (16.3%) and protein (45.4%), were

mainly from Asia (Fig 4B–4D). H3 contained the accessions that have been used for breeding

high protein varieties, such as PI407788A from South Korea [23] and Enrei from Japan [24].

Discussion

Discovering a major protein and oil QTL gene and its underlying causative

alleles using an integrative approach

Soybean genetic studies mapped many important trait QTLs into large confident intervals gen-

erally spanning multi-Mb genomic regions in the past decades. It is still a challenge to identify

illustrated in the lower panel. The number of accessions carrying the corresponding haplotypes and the subspecies categorization was

indicated beside the panel (B) Phenotypic comparison (oil and protein) among the 19 haplotypes. �, ��, and ��� indicate the statistical

significance at p< 0.05, p< 0.01, and p< 0.001, respectively. (C) Geographic distribution of two major haplotypes (H1, H3) across the

world. (D) Pie charts show the percentage of the origin of the two haplotypes, H1 and H3, important for oil content and protein content,

respectively. The top pie chart in each haplotype shows the overall distribution by continent. The lower charts indicate detailed information

for Asia and North America. The percentage, amount of accessions, and origin per haplotype are indicated next to the color representation

in the legend. (E) Number of times that the 22 representative cultivars carrying the CC deletion used in breeding soybean cultivars. Y axis

indicates the number of times that the corresponding cultivar has been used for soybean breeding.

https://doi.org/10.1371/journal.pgen.1009114.g004
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causative QTL genes and DNA variants/alleles for complex traits within such large DNA

regions. The recent availability of genome and transcriptome sequencing data of many diverse

soybean accessions and tissues provide an opportunity to dissect those large QTL regions at a

single nucleotide and gene level to discover their causative QTL genes and alleles. In this study,

having fine-mapped a major protein and oil QTL to a 4-Mb region on chr15 using a bi-paren-

tal RIL linkage mapping based on SoySNP50K Chip genotyping data, we effectively pinpointed

its QTL causative gene and allele to a sugar transporter gene, GmSWEET39, and a 2-bp CC

deletion through an association analysis with almost all SNPs and Indels in the 4-Mb region of

631 diverse soybean accessions. The major protein and oil QTLs have been repeatedly mapped

to the genomic region on chr15 and extensively investigated [4, 8–10, 12, 25–27] in an attempt

to identify their causative genes and alleles because of their high effect on protein and oil con-

tent and significance in soybean agriculture since it was first identified in the 1990s [10]. Thus,

integration of high confident bi-parental genetic linkage mapping with the high-resolution

association analysis of the large panel of diverse wild and domesticated soybean accessions

should also offer an effective approach/platform to discover causative genes and alleles under-

lying other complex traits in soybean and enhance translation from phenotype- and marker-

based breeding into causative gene/allele based precision breeding.

Agronomic impacts of the pleiotropic GmSWEET39 on soybean seed

improvement

Previous genetic studies mapped both protein and oil QTLs to the 4.0 Mb region on chr15 [8–

10, 27], whereas, whether these traits were controlled by one gene was unknown. Here, we

revealed that the complex and highly correlated protein and oil traits were controlled by a sin-

gle gene GmSWEET39 with two major types of alleles carrying CC- and CC+ that were highly

associated with high oil and high protein, respectively. Differing from the two contemporary

studies locating GmSWEET39 using genetic sweep-inferred approach followed by functional

validation [28, 29], we identified GmSWEET39 and its causative allele (CC Indel) underlying

the long-pursued chr15 QTL using the classic genetics and high-resolution GWAS followed by

uncovering its dual role for oil and protein improvement. Uncovering the causative gene and

alleles for the long-pursued chr15 QTL and the dual functions of the GmSWEET39 alleles

allows us to associate it tightly with soybean decades’ breeding practices and highlight its

importance in increasing oil or protein during soybean domestication and improvement. Its

agricultural importance was evidenced by the fixation of CC- allele in the US cultivars during

the 90-year soybean breeding and its extensive uses in soybean improvement worldwide. Our

study demonstrated that the H1 and H3 account for almost all variation of GmSWEET39
(98.8%) in cultivated soybean and contribute to high oil and high protein respectively. It fits

the pleiotropic role of chr15 QTL on seed protein and oil content as revealed in our and previ-

ous studies [8–10, 27]. It is likely that different selection pressures on H1 (CC-) and H3 (CC+),

based on distinct needs for high oil, high protein soybean cultivars, consequently affected their

allelic frequencies in soybean population.

The allelic analysis revealed that GmSWEET39 experiences two different paths of selection,

CC- allele for high oil during domestication and improvement while CC+ allele for high pro-

tein during soybean improvement, which was rarely reported in previous studies. However,

artificial selection for CC- allele during domestication and improvement, in part, accounted

for the decreasing trend of protein content across the transition of wild-landrace-cultivar due

to its negative pleotropic effect on protein content (Fig 3B–3D). In turn, recruiting its counter-

part allele (CC+) would offer an opportunity to reverse the general decline of protein content

in CC- modern cultivars. For example, Brzostowski and Diers [23] introgressed a high-protein
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allele of chr15 QTL in PI407788A into two elite cultivars and showed that lines carrying chr15

QTL from PI407788A contained higher seed protein without significant yield drag compared

to the recurrent parents. The Japanese cultivar Enrei contains high seed protein and has been

used for breeding high-protein cultivars for soy food production to meet Japanese diet need

[24]. Our result show that PI407788A and Enrei carried H3 haplotype. Therefore, H3 haplo-

type is an important allele that still undergoes ongoing selection at the present-day breeding

for high protein content, which is in a great need of animal feed and plant-protein based diets

worldwide [3]. Biased presence of H3 haplotype in cultivated soybeans suggest the haplotype

likely offers additional beneficial traits to farmers than the other two haplotypes (H2, H4) if it

is not caused by a biased population selection. Identification of the soybean accessions con-

taining diverse GmSWEET39 haplotypes, knowledge on selection, and distribution of the

major haplotypes would allow breeders to effectively select and use appropriate haplotypes for

target-based seed improvement.

It is known that oil and protein content are complex traits controlled by many genes [7].

Oil and protein content in soybean seeds could be the accumulative or epistatic effects of these

QTL genes [30]. Other than GmSWEET39, other major QTLs controlling oil and protein con-

tent such as cqPro-20 on chr20 (also identified in our study) and qOil_05 on chr5 [9, 12] may

also contribute to the total phenotypic variation. We observed that oil content increase in CC-

accessions over the course of soybean domestication and improvement, and protein increase

in CC+ accessions during soybean improvement. In addition, higher oil and protein differ-

ences were detected between CC+ and CC- accessions of modern cultivar than of wild soybean

and landrace. The increased and augmented difference likely attribute to continuous and dif-

ferential integration of additional protein and oil QTLs for higher oil and protein respectively

during soybean domestication and improvement. Uncovering related QTL genes and their

causative DNA variants will provide a more comprehensive insight into the complex genetic

basis underlying the oil and protein variation in soybean and enable us to develop effective

strategies for precisely improving oil, protein or both in soybean.

GmSWEET39 likely functions as a seed coat-specific sugar transporter for

seed development

It has been well demonstrated that SWEET proteins function in transporting sugar from

source tissues to sink tissues [13, 16, 31]. Developing seed is one of the major sink organs. In

seeds, cells have been differentiated into distinct tissues with diverse functions over seed devel-

opment. Seed coat including outer integument and parenchyma is located at the interface

between maternal seed tissues and the filial embryo, and it functions as the “transfer station”

to facilitate the movement of unloaded sugar from maternal tissues to the embryo and cotyle-

don [18, 32]. Evidence have demonstrated that this transporting process is mainly mediated by

tissue-specific SWEET proteins in the interface tissues and those proteins are essential for seed

filling. For example, in Arabidopsis, AtSWEET11, -12, -15 is located to the cell membrane of

the seed coat [13]. The sweet11;12;15 triple Arabidopsis mutant is defective in sugar delivery

from seed coat to developing embryo, which consequently results in reduced starch and oil

content and retarded embryo development [13]. Here, we demonstrated predominant expres-

sion of GmSWEET39 in outer integument and parenchyma of seed coat tissues at the early

maturation stage. The developmental expression of GmSWEET39 was coincident with the

stage when protein and lipid begin to accumulate in seeds [33]. It should also be noted that, at

the early maturation stage, GmSWEET39 exhibited decreasing gradients in expression in three

connected layers of tissues, from the parenchyma (seed coat) to abaxial epidermis (cotyledon)

and to aleurone (Fig 2J and 2K), which was coincident with the possible path of sugar flux
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from maternal seed coat to filial cotyledon [13, 34]. Interestingly, we observed that the trun-

cated GmSWEET39 (CC-) had a higher level of oil content, as evidenced by the H1 vs H2 com-

parison (Fig 4A and 4B) and supported by recent reports that overexpression of the truncated

GmSWEET39 increased oil in seeds [28, 29]. Previous studies have shown that replacing or

removing the C-terminal peptide of sugar transporters significantly increased the transport

activity by increasing the affinity for the substrates [35, 36]. GmSWEET39 has ability to trans-

port sugar [29], and our protein structural analysis predicted that C-terminal truncation

changed its cytoplasmic domain structure. It will be interesting to experimentally test if C ter-

minus truncated GmSWEET39 can facilitate the sugar transport across the membrane. In

addition, it was observed that expression of GmSWEET39 positively correlated with oil content

[28], suggesting that expression variation of GmSWEET39 potentially also contribute to oil dif-

ference in soybean population. Taken together, our study suggests that GmSWEET39 is a

highly-specialized protein in transporting sugar from the maternal seed coat to the filial cotyle-

don over course of seed development.

SWEET proteins are encoded by a large and ancient gene family in divergent plant species,

and associated with diverse plant physiological and developmental processes such as disease

infection, pollen growth and seed development [13, 31, 37, 38]. Patil et. al [14] showed that

soybean contains 52 GmSWEET genes that have been clustered into distinct subfamilies.

Diverse expression patterns have been observed for those soybean genes, suggesting that

GmSWEET gene family have been sub-functionalized with distinct expression patterns to

meet diverse needs of sugar transporting for plant growth and response to environmental sig-

nals [14]. Interestingly, GmSWEET39 and its orthologue AtSWEET15 were both predomi-

nantly expressed in seed coat tissues and functioned in regulating oil content [13, 28].

Arabidopsis and soybean have been diverged from each other for 90 million years [39]. The

conservation of their gene expression pattern and function suggested that both SWEET genes

preserved an ancient and important function in specifically transporting sugar from seed coat

to filial embryo and cotyledon to support seed development and storage reserve production.

Interestingly, GmSWEET15 was identified by its specific expression in the seed endosperm,

and silencing of it decreased 60–70% sucrose and resulted in severe seed abortion [31]. The

orthologous pair, GmSWEET39 and AtSWEET15, were clustered with GmSWEET15 and AtS-
WEET11 and 12 in the same subfamily [14]. This observation raises a possibility that plants

have evolved an ancient SWEET subfamily to specifically express in those interface tissues to

facilitate transporting sugar from maternal tissues to filial cotyledon to support seed develop-

ment and seed filling. It will be interesting to examine expression patterns and functions of the

other SWEET genes in the subfamily to validate the hypothesis.

Experimental procedures

Plant materials

A RIL population consisting of 300 lines and a natural population containing 631 diverse soy-

bean accessions were used in this study. This F2:5 RIL population was derived from a genetic

cross between soybean (G. max) cv. Williams82 and wild soybean PI479752 (G. soja). The

parental lines and RILs were planted at the USDA-ARS farms in Beltsville, Maryland, in 2012

and 2015, respectively, each year with two replications in a randomized block design. The

seeds per plant were bulk harvested and air-dried. Seed protein and oil content were quantified

using near-infrared reflectance (NIR) spectroscopy DA 7250 (Perten Instruments, Sweden) at

the USDA-ARS Soybean Genomics and Improvement Laboratory at Beltsville, Maryland. The

natural soybean population contained 510 G. max and 121 G. soja accessions that were

obtained from the U.S. National Plant Germplasm System (https://npgsweb.ars-grin.gov/).
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The phenotypic data including seed oil and protein content were retrieved and from GRIN

(https://www.ars-grin.gov/) and used for association study. No difference was observed for detect-

ing the two major oil and protein QTLs on chr15 and chr20 by comparing adjusted and non-

adjusted raw phenotypic data, which eliminated the concern of adverse effect of GRIN-sourced

seed phenotypic data (multiple field locations across multiple years) on association power [40].

The soybean accessions used in this study and related information were provided in S1 Table.

DNA extraction and genotyping

DNA extraction was conducted using the CTAB method with minor modifications [41]. The

DNA was extracted from fully expanded leaves collected from the RILs. Qualified DNA sam-

ples were used for genotyping using the SoySNP50K iSelect SNP BeadChip and the SNPs were

determined as previously described [42].

Generation of genome-wide DNA variants at single-nucleotide resolution

The DNA variants used for association analysis were from three sources including the re-

sequencing of G. soja soybean accessions, SoySNP50K BeadChip [42], and the archived

sequencing reads deposited at the public data repository NCBI SRA (https://www.ncbi.nlm.

nih.gov/sra). A total of 91 diverse G. soja, representing over 90% diversity of the wild soybean

collection in the US Soybean Collection, were re-sequenced using the Illumina NextSeq 500

sequencer. The sequencing reads from the G. soja collection and NCBI SRA were processed

and aligned to the soybean reference genome Wm82.a2.v1 that was downloaded from Phyto-

zome (https://phytozome.jgi.doe.gov) using BWA [43]. The UnifiedGenotyper of the GATKs

pipeline [44] was used for the variant (SNP and indel) calling as previously described [44]. The

qualified variants from the calling met the following criteria: read depth� 5 & quality� 50 &

� 2 SNPs in a 10-bp window allowed. Indel variants were converted to SNP-type variants

compatible with association analysis using TASSEL5 [45]. Read alignments were visualized

using the Integrative Genomics Viewer [46].

Linkage and association analysis

The linkage map was constructed as previously described [47]. QTLs were detected by the

composite interval mapping procedure of the Windows QTL Cartographer v2.5 [48] with 2.5

as the logarithm of odds ratio (LOD) threshold for detecting a QTL. Association analysis was

performed using the mixed model at TASSEL5, using the merged SNPs from three types of

DNA variant sources described above. Variants (SNPs and indels) with a minor frequency

of� 0.05 on chr15 in the population were used for association analysis. The first five principal

components and Kinship matrix calculated using TASSEL5 were included for analysis. We

empirically used P = 1e-5 as the threshold to determine significant associations. Student’s t-

test was carried out to determine the difference significance.

Tissue-specific expression analysis

Detailed tissue-specific expression patterns were retrieved from Goldberg-Harada Soybean RNA-

Seq data (http://seedgenenetwork.net/) derived from developing soybean seeds at different stages

and different soybean tissues which were dissected with Laser Capture Microdissection (LCM).

Genetic diversity analysis

All variant data at the GmSWEET39 locus were used for its genetic diversity analysis. Data

were split into two populations by G. max and G. soja. Genomic differentiation values
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including the fixation index (Fst), nucleotide diversity (π), and Tajima’s D for G. max and G.

soja were calculated for 10-kb windows with a 5-kb step using VCFtools [49]. Haplotype analy-

sis was conducted based on the pattern of variants in the region. Haplotypes must contain at

least 2 accessions with clear variants at each site. Pedigree data for the 75 milestone and land-

race cultivars were obtained from SoyBase (https://www.soybase.org/).

Supporting information

S1 Fig. Distribution of oil and protein content in RILs and the major QTLs. A Phenotypic

distribution of protein and oil. B Correlation between oil content and protein content. C Two

major QTLs on chr15 and chr 20 were identified using linkage mapping.

(TIF)

S2 Fig. Candidate genes within the LD block (A) and the expression patterns in different tis-

sues and maturing seeds at different developing stages (B).

(TIF)

S1 Table. Information about the soybean accessions used in association analysis.

(PDF)

S2 Table. The most significantly associated DNA variants for oil and protein.

(PDF)

S3 Table. Haplotypes of the accessions identified in this study.

(PDF)

S4 Table. Information of the 75 landrace and milestone lines used in this study.

(PDF)
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