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ABSTRACT
Emus (Dromaius novaehollandiae) are exclusively terrestrial, bipedal and cursorial
ratites with some similar biomechanical characteristics to humans. Their growth
rates are impressive, as their body mass increases eighty-fold from hatching to
adulthood whilst maintaining the same mode of locomotion throughout life. These
ontogenetic characteristics stimulate biomechanical questions about the strategies
that allow emus to cope with their rapid growth and locomotion, which can be
partly addressed via scaling (allometric) analysis of morphology. In this study we
have collected pelvic limb anatomical data (muscle architecture, tendon length,
tendon mass and bone lengths) and calculated muscle physiological cross sectional
area (PCSA) and average tendon cross sectional area from emus across three on-
togenetic stages (n = 17, body masses from 3.6 to 42 kg). The data were analysed
by reduced major axis regression to determine how these biomechanically relevant
aspects of morphology scaled with body mass. Muscle mass and PCSA showed a
marked trend towards positive allometry (26 and 27 out of 34 muscles respectively)
and fascicle length showed a more mixed scaling pattern. The long tendons of the
main digital flexors scaled with positive allometry for all characteristics whilst other
tendons demonstrated a less clear scaling pattern. Finally, the two longer bones of the
limb (tibiotarsus and tarsometatarsus) also exhibited positive allometry for length,
and two others (femur and first phalanx of digit III) had trends towards isometry.
These results indicate that emus experience a relative increase in their muscle force-
generating capacities, as well as potentially increasing the force-sustaining capacities
of their tendons, as they grow. Furthermore, we have clarified anatomical descrip-
tions and provided illustrations of the pelvic limb muscle–tendon units in emus.

Subjects Bioengineering, Developmental Biology, Evolutionary Studies, Paleontology,
Anatomy and Physiology
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INTRODUCTION
Scaling studies (relating animal body mass to other biological parameters) have broadly

elucidated locomotor adaptations across a wide range of body sizes. These studies have

also described important size-related biomechanical (Alexander et al., 1979; Bertram

& Biewener, 1990; Biewener, 1982; Gatesy & Biewener, 1991; LaBarbera, 1989; Maloiy

et al., 1979; McMahon, 1975) and metabolic (Gillooly et al., 2001; Hemmingsen, 1960;

Hokkanen, 1986; Kleiber, 1932; Schmidt-Nielsen, 1984; Taylor et al., 1981) constraints

across species. Intraspecific scaling studies are less common (Allen et al., 2010; Allen et

al., 2014; Carrier & Leon, 1990; Carrier, 1983; Dial & Jackson, 2011; Main & Biewener, 2007;

Miller et al., 2008; Picasso, 2012; Smith & Wilson, 2013; Young, 2009; Picasso, 2014). These

ontogenetic approaches yield valuable insights into musculoskeletal adaptations to growth

and potentially to identify size-related constraints on mechanical function within a species.

Furthermore, studies of species where the mode of locomotion and basic anatomy remains

similar during development contribute to the understanding of strategies and trade-offs

that occur during growth. Such information can, for example, be used to comprehend

developmental abnormalities and study intervention strategies to manage them.

Ratites are large flightless birds with cursorial morphology (e.g., Smith, Jespers &

Wilson, 2010; Smith & Wilson, 2013) that makes them attractive subjects for studies of

terrestrial locomotion and bipedalism (Abourachid, 2000). Certain characteristics make

emus (Dromaius novaehollandiae) particularly useful: they have some anatomical and

functional similarities to other bipedal animals, including purportedly humans (Goetz

et al., 2008). Compared to ostriches, they are generally easier to handle and train in

experimental settings due to their smaller size and calmer temperament. Finally, their

growth rate is impressive, as they multiply their body weight ∼80 times in the first

18 months of life (Minnaar & Minnaar, 1997) whilst maintaining the same cursorial

mode of locomotion. Despite this interest, there are still some discrepancies in published

anatomical descriptions and depictions of the pelvic limb musculature of emus (Haughton,

1867; Patak & Baldwin, 1998; Vanden Berge & Zweers, 1993), and clear visual anatomical

aids are lacking in the literature.

Some of the biomechanical changes in the hindlimb occurring during the growth in

emus have been described. Main & Biewener (2007) measured the skeletal strain patterns

on the surfaces of the femur and the tibiotarsus (TBT) in running emus, demonstrating a

significant increase in the magnitude of cranial and caudal femoral and caudal tibiotarsal

strains during ontogeny, despite the enlargement and strengthening of those bones via

positive allometric scaling of the second moment of area. Muscles have been shown to

influence the strain patterns of bones (Yoshikawa et al., 1994), and although other factors

are likely to be involved in the changes in peak bone strains reported across ontogeny

(Main & Biewener, 2007), allometric scaling of the musculature could also play a role in

these differences in bone tissue loading. The strains induced by muscle contraction will

be proportional to the muscle forces acting on the bone; therefore by estimating muscle

forces (e.g., maximal force capacity based upon anatomy), associations between these two

findings would be possible.

Lamas et al. (2014), PeerJ, DOI 10.7717/peerj.716 2/29

https://peerj.com
http://dx.doi.org/10.7717/peerj.716


In order to build on already available biomechanical data for emus (Goetz et al., 2008;

Main & Biewener, 2007), we aim here to quantify the ontogenetic scaling patterns of four

pelvic limb bones, pelvic limb muscles and their tendons and in the process describe and

compare the functional and descriptive anatomy of the pelvic limb musculature of emus.

We use regression analysis to determine the relationship of muscle architectural properties

with body mass in an ontogenetic series of emus, and then examine the implications

of these findings for the locomotor ontogeny of emus, other ratites, as well as extinct

theropod dinosaurs.

MATERIALS AND METHODS
Animal subjects and care: UK group
We dissected 17 emus for this study, obtained from our ongoing research examining emu

ontogenetic biomechanics (conducted with ethical approval under a UK Home Office

license). The emus were divided in three groups of animals according to their age: Group

1: Five individuals at 4–6 weeks old; Group 2: Six 24–28 weeks (6 months) old individuals;

and Group 3: Six 64–68 weeks (16 months) old individuals. All birds had been used as

experimental animals and kept in a small pen (7 × 7 m) for the first six weeks of life, after

which they were moved to an outdoor larger enclosure with grass footing (40 m× 15 m)

until they were six months old; after this they were moved to a large (1.6 hectares) grass

field (maximal animal density at one time was 8 birds/ha). The birds were all born in

three consecutive yearly breeding seasons. Only the birds in Group 3 were from the same

breeding season but not necessarily the same progenitors; birds from the other two Groups

were from two different seasons.

All animals were hatched at a commercial breeding farm in the UK and raised from four

weeks of age at the Royal Veterinary College. They were fed a commercial ostrich pelleted

diet supplemented with grass, and from six weeks of age were kept with free access to

commercial food and grass. At 24 weeks, their diet changed from an ostrich grower diet to

adult ostrich pelleted food (Dodson and Horrel Ltd., Kettering, Northamptonshire, UK).

There were no restrictions or enforcements on the animals’ regular exercise regime, and all

animals were allowed the same area and conditions to exercise during their development.

All animals were euthanized after other experimental procedures were completed, by lethal

intravenous injection of a barbiturate following induction of deep terminal general anaes-

thesia by intramuscular injection of ketamine and xylazine. Carcasses were kept frozen in a

−20 ◦C freezer for up to 2 years before dissection. Thawing was allowed at variable ambient

temperatures and for variable amounts of time depending on the size of the animal, and

dissection started no longer than 4 days after removal from the freezer. All dissections were

performed within a six week period and led by the same individual (L.P.L.).

USA group of emus
Unpublished raw data of muscle masses from a different group of 29 emus (0.74–51.7 kg

body mass) used for similar purposes as those described for the UK group were also

included in this study. This group was bred and reared in the USA (Concord Field Station,
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Harvard University) under the care of another investigator (R.P.M.) who led all dissections

for this group. The size and age composition for this group was more heterogeneous, and

only body masses and muscle masses were available for analysis. Because the purpose of the

dissections in the group was not a systematic ontogenetic musculoskeletal scaling study, the

number of muscles dissected per animal varied.

Bone measurements
Maximal interarticular lengths of the femur, tibiotarsus (TBT), tarsometatarsus (TMT)

and first phalanx of the middle (third) digit were measured using an ordinary flexible

measuring tape (±1 mm) once they were cleared of all soft tissues.

Myology and muscle architecture
We identified muscles of emus using four separate literature sources (Haughton, 1867;

Patak & Baldwin, 1998; Smith et al., 2007; Vanden Berge & Zweers, 1993); when our

observations differed from these, we described the anatomical landmarks and attachments

in detail according to our observations. General main actions of the muscle were defined

based on these publications and confirmed by identifying the muscle attachments and

paths and then mimicking the muscle action by applying tension on the muscle during dis-

section. We used additional reference to a biomechanical model of an ostrich (Hutchinson

et al., 2014) to refine the three-dimensional actions of the hip muscles, as those actions are

difficult to accurately ascertain from visual inspection and manipulation. Table 1 shows

our simplified description of the anatomy, abbreviations used throughout this study, and

inferred muscle actions. Figures 1–3 show schematic anatomical representations of the

muscle anatomy.

To avoid freeze drying of the carcasses, we ensured all animals were frozen soon after

euthanasia and kept in sealed bags, and were not thawed and refrozen before dissection.

The carcasses showed minimal autolysis and therefore an easier and better dissection

during which muscle actions could be approximated without damaging their structure and

attachments.

Dissection of the right pelvic limb muscles was performed in all specimens apart from

the first two subjects in the 4–6 week old group, in which the muscles of the left limb were

dissected first to standardise the technique. Measurements taken from the muscles of the

left limb were not used (avoiding duplication of information), with the exception of when

there were unidentified/damaged muscles from the right limb of the same specimen, in

order to create a complete set of muscles for each specimen.

After identification of each muscle, we performed complete dissection and removal of

it by transection at its origin and insertion(s). Next, the muscle was laid flat on a table

and we took four muscle architectural measurements in a standard protocol: muscle mass

(Mm), fascicle length (Lf ), muscle belly length and pennation angle (θ). Muscle mass was

measured on an electronic scale (±0.01 g) after removal of tendons, fat and aponeuroses.

Fascicle length was measured from at least five random sites within the muscle belly using

digital callipers (±0.1 mm). Muscle belly length was measured as the length (±1mm) from

the origin of the most proximal muscle fascicles to the insertion of the most distal fascicles
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Figure 1 Schematic anatomical representation of Emu pelvic limb anatomy. Schematic anatomical
representation of the most superficial layer of muscles, in lateral view, of the pelvic limb of an adult
emu.

into the distal tendon or aponeurosis. The pennation angle was measured at least five times

using a goniometer (±5◦) with the mean of the latter measurements taken as the pennation

angle for the muscle. The repeated measurements were taken from multiple cuts into the

muscle to expose different anatomical orientations of the fascicles with the same muscle.

This methodology minimises the differences that may be seen across an individual muscle
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Figure 2 Schematic anatomical representation of Emu pelvic limb anatomy. Schematic anatomical
representation of the intermediate layer of muscles, from a lateral view, of the pelvic limb of an adult
emu.

and ensures mean values used for further calculations are representative of the overall

architecture of the muscle. We calculated total limb muscle mass by adding the individual

masses of the muscle bellies. Our approach was straightforward for most muscles, apart

from three smaller muscles of the limb: IFI, ISF and FPPDII (Table 1), where minor dissec-

tion mistakes might have impaired estimates of their masses and architectural properties.

Muscle volume was calculated by dividing muscle mass by estimated muscle density of

vertebrates (1.06 g cm−3; Brown et al., 2003; Hutchinson et al., 2014; Mendez & Keys, 1960).

From these data we calculated physiological cross-sectional area (PCSA) for each muscle
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Figure 3 Schematic anatomical representation of Emu pelvic limb anatomy. Schematic anatomical
representation of the deeper layer of muscles, from a lateral view, of the pelvic limb of an adult emu.

via the standard formula (Powell et al., 1984; Sacks & Roy, 1982):

PCSA =


Vmusc

Lfasc


cosθ. (1)

When a tendon was present it was dissected down to its insertion onto the bone together

with the muscle. The tendon was then transected at the musculotendinous junction when
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a clear separation became apparent and stretched on a flat surface. We then measured

lengths with a standard ruler or flexible measuring tape (±1 mm), and tendon mass was

also measured using the same instrumentation as for the muscles.

Tendon cross-sectional area (TCSA) was calculated using tendon length (Lten); from

muscle origin to bony insertion; and tendon mass (Mten) as follows:

TCSA =
Mten

1120 Lten
(2)

where 1,120 kg m−3 is assumed as the density of tendon (Hutchinson et al., 2014; Ker, 1981).

Statistical analysis
Ontogenetic scaling relationships of (non-normalized) muscle properties were analysed

using reduced major axis (“Model II”) regression for log10 of each property vs log10

body mass using custom-designed R software code (R Development Core Team, 2010).

A Shapiro–Wilk test was performed to assess normality of distribution of the residuals,

and the p value for significance was set to <0.05. The inclusion criteria for data presented

were: Datasets first had to have a p value <0.05 in the above described Shapiro–Wilk test.

If this p was >0.05, the data were then tested for the presence of outliers (which were set

at ±2 standard deviations [SD] from the mean) and outliers removed. The RMA linear

regression was performed again using this dataset; and again, data were only presented

if the p value for distribution of residuals was <0.05. Once the datasets were defined, R2

correlation values and upper and lower bounds of the 95% confidence interval (CI) were

calculated to assess the spread of data points around each regression line.

We used body mass (BM) as our independent variable and the target architectural

parameter as our dependant variable. Overall, we followed a similar approach as that

described by Allen et al. (2010) and Allen et al. (2014).

Briefly, for two objects to be considered geometrically similar (and thus for an isometric

scaling pattern to be inferred), areas should scale to the square product of lengths and

volumes to the cube of lengths. Because mass is a volumetric property, the dependant

variable is considered to scale isometrically if the mass of the structure scales with BM1,

areal properties (PCSA, TCSA) scale to BM0.67 and lengths scale to BM0.33, whereas angles

and other non-dimensional variables should scale as BM0. In order to obtain relative values

to compare results from individuals of different size, muscle mass, PCSA and Flength were

normalized to body mass (BM) by dividing each value by the subject’s BM, BM0.67 and

BM0.33 respectively.

RESULTS
We obtained 6,524 measurements of seven different muscle–tendon architectural

parameters from 34 pelvic limb muscles and four pelvic limb bones in 17 emus from

3.6 to 42 kg of body mass. We found strong evidence for positive allometric scaling for

many of these architectural parameters, as described below. To aid interpretation of our

results, we have divided the muscles of the limb into proximal (those acting mostly on the
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Table 2 Regression analysis results for the lengths of the four limb bones. The lower 95% boundary
(>0.33) demonstrates positive allometry of the tibiotarsus and the tarsometatarsus but results are closer
to isometry for the femur and first phalanx of digit III.

Bone Scaling exponent Lower 95% CI Upper 95% CI R2

Femur 0.38 0.34 0.42 0.96

Tibiotarsus 0.41 0.38 0.45 0.97

Tarsometatarsus 0.44 0.39 0.49 0.96

First phalanx (Dig III) 0.39 0.33 0.46 0.91

hip and knee joints) and distal (those acting on the ankle, foot and digits) groups and have

used this division to compare trends between the two regions.

Bone lengths
The lengths of the four bones scaled with moderate positive allometry (expected slope

representing isometry would be 0.33). The femur had the least marked allometric

exponent (0.38), whilst the tarsometatarsus had the greatest (0.44), the tibiotarsus had

a slope value of 0.41 and for the 1st phalanx of the second digit (P1) the value was 0.39 (for

full results see Table 2).

Myology, architectural characteristics of muscles and functional
interpretation
We classified a total of 34 muscles in Table 1. As noted by Regnault, Pitsillides & Hutchinson

(2014), there is no patellar ossification in the knee joint of emus, unlike ostriches and

some other palaeognaths as well as most extant birds. Although muscle origins, insertions

and paths were generally found to agree with previous publications (Haughton, 1867;

Patak & Baldwin, 1998; Vanden Berge & Zweers, 1993) and hence detailed re-description

is unnecessary, there were a few muscles for which we have found some differences worth

noting, or for which we needed to use methodological simplifications:

M. iliotibialis lateralis pars postacetabularis (IL): The distal fusion and similar actions

of both parts of the IL muscle (Fig. 1) meant that, in order to avoid dissection errors when

finding the division between the cranial and caudal parts of the muscle, we measured and

presented them together.

M. iliotrochantericus cranialis (ITCR): Although this was a clear, separate muscle in

most specimens (Fig. 2), it was found to be fused with the ITM in two specimens of body

mass ∼20 kg, which is a common finding in birds (Gangl et al., 2004).

M. ischiofemoralis (ISF): This small muscle is difficult to detect and dissect, which is

likely to have affected the accuracy of the data obtained from it (leading to lower R2 values

and wider 95% CI ranges). Its action is likely to involve fine motor control, proprioception

and stabilisation of the hip joint, given its very small size. Some studies have considered

this muscle to be absent (or fused with other muscles; e.g., CFP) in emus (Haughton,

1867; Patak & Baldwin, 1998), which would be unusual for any birds. The origin and

insertion of the muscle that we label the ISF (Fig. 3) is best interpreted as a reduced—but

still present—muscle, similar to that in ostriches (Gangl et al., 2004; Zinoviev, 2006).
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M. caudofemoralis pars pelvica (CFP): We consider, contrary to other reports

(Haughton, 1867; Patak & Baldwin, 1998), that this muscle is present in emus (Fig. 2).

Prior studies classified this muscle as the “iliofemoralis” but we agree with the Nomina

Anatomica Avium (Vanden Berge & Zweers, 1993) and other reports (Gangl et al., 2004;

Hutchinson, 2004a; Hutchinson et al., 2014; Zinoviev, 2006) that it is present in ratites,

related to a reduced portion of the large caudofemoralis muscle that is ancestrally

present in tailed reptiles (Gatesy, 1999). There is no evidence of a caudalis part to the

M. caudofemoralis in emus, unlike in ostriches (Gangl et al., 2004) and some other ratites,

so this sub-division of the CFP is either fused to the CFP or lost.

M. ambiens (AMB): We found this muscle to have two insertions, previously

unnoticed: a tendinous one onto the tibia and a fleshy one onto the distal femur. Unusual

modifications of this muscle seem common in ratite birds (Hutchinson et al., 2014).

M. popliteus: This is a short, deeply positioned, fleshy muscle with multiple fibrous

planes within it, originating on the caudolateral, proximal aspect of the tibiotarsus and

inserting onto the medial side of the proximal fibula (Fig. 3). It is likely a stabiliser

or pronator/supinator of the fibula, as in ostriches (Fuss, 1996), and may act as a

proprioceptive or ligament-like structure.

Normalized data for individual muscles
To allow relative comparisons between muscle measurements, we normalized data from

only the 16 month old (Group 3, adult birds) emus. Data are only presented for adult emus

so as not to influence the relative proportions due to ontogenetic allometry. The entire

ontogenetic data set was analysed similarly with negligible differences found, indicating

that the relative patterns seen between muscles for adults are present in very young birds

as well. Data for muscle mass, fascicle length and PCSA are presented in Fig. 4. The largest

relative muscles with regards to mass were three proximal (ILPO, ILFB and IC) and three

distal muscles (GM, FL and GL). This order changes when muscles are ranked according

to PCSA because parallel-fibred muscles tend to drop down the list, with the large ILPO

being the only parallel-fibred muscle seen in the top 10 of a list that is otherwise dominated

by distal muscles (FL, GM, GL and FPDIII). On the other hand, when fascicle length is

compared, the three parts of the gastrocnemius (GIM, GM and GL) are the only distal

muscles listed amongst the 10 muscles with the longest fascicles. The four muscles with the

longest fascicles are the FCLP, IC, ILFB and ILPO.

Limb muscle masses
Total mass values of the hindlimb musculature represented a mean of 13.4 ± 3% of BM,

with the proximal limb musculature (PLM) representing 61 ± 2% of limb muscle mass

and the distal limb muscles (DLM) accounting for the remaining 39 ± 2%. However, if

only values for the six largest birds (adults) are analysed, limb muscle mass accounts for

15 ± 1% of BM. The limb muscle mass is only 11 ± 3% of body mass in the five birds that

were 4–6 weeks old.
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Figure 4 Normalized data: 16 month old group only. Normalized relative muscle parameters for indi-
vidual muscles in emu pelvic limbs of the 16 month old birds only (Group 3; mean body mass 38.5 kg);
mean values (error bars showing ±1 S.D.) are shown. Abbreviations for muscles are in Table 1. The key
on the right side of the figure shows how muscle mass (Mm), physiological cross-sectional area (PCSA),
and fascicle length (Lf ) were normalized. Lf values were adjusted to be 1/10 of the actual results in order
to be of similar magnitude to the others. Muscles are organised from top to bottom in decreasing order
of muscle mass.

Scaling regression analysis
The slopes of the reduced major axis regression lines for muscle properties vs. body mass

are shown in Tables 3 and 4, with R2 and 95% CIs, as well as represented in Figs. 5A and

5B and 6. Ranges of the slope and amplitudes of the CIs referred to below are the upper

and lower bounds of the 95% CIs for the regression slopes. Scaling exponents and CIs

are presented in Table 3. Scaling exponents and lines representing isometry are plotted in

Figs. 5A and 5B (Mm, Lf and PCSA) and Fig. 7 (Mten, Lten and TCSA). In summary, there

was strong positive allometry of muscle mass and mild positive allometry or isometry of

fascicle length, leading to a marked positive allometry of PCSA.
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Figure 5 Ontogenetic scaling exponents of muscle properties. Ontogenetic scaling exponents and 95%
confidence intervals (shown as error bars around mean exponent) for muscle mass (red), PCSA (blue)
and fascicle length (green) for individual muscles in emu pelvic limbs. Abbreviations for muscles are in
Table 1. Dashed lines indicate the expected isometric scaling exponent for each parameter. Data are for
(A) proximal limb muscles and (B) distal limb muscles.
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Figure 6 Ontogenetic scaling exponents and 95% confidence intervals for masses of individual mus-
cles in emu pelvic limbs, from the USA group. Abbreviations for muscles are in Table 1. Dashed line
indicates the expected isometric scaling exponent (1.0), and the number above each parameter indicates
the number of muscles included in each regression analysis.

Scaling of limb muscle masses
We found limb muscle mass as well as the masses of proximal (PLM) and distal limb

muscles (DLM) to be tightly correlated with body mass across all three groups. The

regression slope of limb muscle mass vs. BM was 1.16 (1.05 < CI < 1.29, R2
= 0.96),

whilst PLM had a value of 1.14 (1.02 < CI < 1.27, R2
= 0.96) and DLM exhibited a slope of

1.20 (1.09 < CI< 1.32, R2
= 0.97).

Consistent with the trends for the hindlimb more broadly, the individual muscles also

generally showed positive ontogenetic allometry. Out of 34 muscles, 26 had slopes for Mm

vs. BM with their lower CI limit >1 (consistent with positive allometry), and only eight

(ITCr, ITM, IFI, ISF, FCLA, FMTL, AMB and FPPDII) had a lower CI boundary for the

regression slope lower than 1 (indicating potential negative allometry). Of the 26 muscles

showing positive allometry of Mm, we found strong positive allometry (regression slopes

with the lower boundary of the CI greater than 1.1) in 18/34.

Similarly, scaling patterns of the muscle masses for the USA group of emus (Fig. 6),

showed similar scaling patterns to the UK group, with only five muscles having a lower CI

boundary <1 (POP, ILPO, FPDIV, OBTII and FPDII) and the remaining having their CIs

entirely within positive allometry values.

Scaling of muscle fascicle length
In general, fascicle length (Lf ) was only moderately well correlated with body mass due

to substantial variation in the data (a combination of inevitable measurement errors,

sampling bias and true biological variation), as usual for muscle fascicle measurements

(e.g., Allen et al., 2010; Allen et al., 2014). The datasets for four muscles (ISF, PIFLM, FPDII

and FPPDII) had a p value >0.05, so these are not presented (Table 3). Of the remaining 30

muscles, only 16/30 had R2 values >0.5. Scaling of Lf vs. BM showed a trend towards pos-

itive allometry for 18/30 muscles (lower limit of the slope’s CI > 0.33), and for the remain-

ing 12 muscles a slope of 0.33 was included in the CIs, so isometry could not be ruled out.
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Figure 7 Ontogenetic scaling exponents of tendon properties. Ontogenetic scaling exponents and 95%
confidence intervals for tendon mass (red), average cross-sectional area (blue) and length (green) for 20
individual muscles in emu pelvic limbs. Abbreviations for muscles are in Table 1. Dashed lines indicate
the expected isometric scaling exponent for each parameter.

Scaling of muscle PCSA
The lower boundary of the CIs of the scaling slope was greater than 0.67 (i.e., exhibiting

positive allometry) for 27 muscles and a value <0.67 (suggesting a potential negative

allometry of muscle PCSA in emus) was obtained for eight muscles (ITM, ITC, IFI, FMTL,

AMB, TC and FPPDII) (Table 3).

Scaling of tendon mass
We recorded tendon characteristics for 28 muscles (Table 4); the six muscles excluded did

not have a discrete tendon at either of their attachments (CFP, FCLA, FCLP, IC, PIFLM,

POP). We encountered difficulties in achieving a consistent method for tendon dissection

and measurement of muscles with thin (IFE, AMB), very short (ISF and IFI) or multiple

tendons (FMTM, FMTIM), which lead us to exclude data from these as well. The tendon

of the GIM was included with the GM tendon, and the FMTL tendon was not measured

because the muscle was transected at the proximal aspect of the large patellar tendon
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for studies of patellar tendon morphology by Regnault, Pitsillides & Hutchinson (2014).

Thus data are presented for the tendons of 20 muscles. The major gastrocnemius tendon

resulting from the fusion of the tendons of the three gastrocnemius muscles was dissected

by transecting the tendon of the GL at the site of fusion onto the common tendon;

therefore the GM remained with the extensive common portion of the tendon, which

distally was transected at its insertion onto the fibrous scutum at the level of the ankle joint.

The scaling slopes for tendon mass indicate positive allometry in 10 out of 20 tendons

(lower CI boundary >1) across emu ontogeny. The masses for the remaining ten tendons

scaled with isometry (lower CI < 1.0, upper CI > 1.2).

Scaling of tendon length
We measured Lten for the same 20 muscles for which we obtained tendon masses (Table 4),

from the end of the muscle belly to the insertion. Statistical analysis of one muscle (ITCr)

led to exclusion of this muscle because the p value was >0.05. For the other 19 tendons,

the general scaling trend was towards strong positive allometry, with 16 muscles having

the lower limit of the CI >0.33. In three muscles (FCM, GM, FL), the lower CI for tendon

length was <0.33, indicating isometry for length in these tendons. Given these patterns, we

infer a general trend for positive allometry of tendon length in growing emus.

Scaling of tendon cross-sectional area
Average TCSA was calculated for the same 20 tendons as above (Table 4). The dataset for

ILPO had a p value >0.05 and was excluded. Of the 19 remaining tendons, 10 showed a

lower CI limit of the slope consistent with positive allometry (>0.67). The remaining nine

tendons showed ontogenetic isometry for TCSA.

DISCUSSION
Emus, like other ratites and other precocial birds, must have locomotor independence

from hatching and develop into large, running adult birds within 16–18 months (Davies

& Bamford, 2002). Taking into consideration their initial development within the egg,

their ontogeny poses interesting questions about their locomotor development, related to

our study’s aims, such as: How do muscle structure and anatomy change to accommodate

precocial development in emus? What are the strategies that growing emus use to maintain

tissue mechanical safety factors during rapid development of cursorial morphology and

high-speed locomotor abilities? Our data suggest some answers to these questions, as

follows.

Scaling patterns across ontogeny
We found positive allometry of emu pelvic limb muscle masses, indicating that most

muscles get become significantly more powerful (in relative and absolute terms) as the

animals grow. However, the functional relevance of this observation is slightly mitigated by

a less marked positive allometry of PCSA (and therefore maximal muscle force), driven by

a trend for fascicle length that is closer to isometry (i.e., preserving geometric similarity).
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In the proximal part of the pelvic limb of emus, the developmental and functional

mechanics appear to rely on the arrangement of large and metabolically expensive muscles

(ILPO, ILFB, IC, FCLP and FMTL) to provide the wide range of motion of the knee joint

(and hip, during faster running) in combination with a relatively short femur that scales

close to isometry. This arrangement also leads to a proximal to distal gradient of muscle

mass, which has been previously reported for other birds (Paxton et al., 2010; Smith et al.,

2006) and has long been thought to favour energy-savings by keeping the distal end of the

limb light and its muscles dependent on springy tendons. The proximal-distal gradient

also concentrates large, power-generating muscles in the proximal limb (Alexander,

1974; Alexander, 1991) with large moment arms (Hutchinson et al., 2014; Smith et al., 2007)

and thus the ability to produce the considerable joint moments needed for high-speed

running (Hutchinson, 2004a; Hutchinson, 2004b).

The distal limb, on the other hand, is heavily dependent on the triad of M. gastrocne-

mius (GL, GIM and GM) along with: M. fibularis longus (FL); both ankle extensors; as

well as M. tibialis cranialis (TC); M. extensor digitorum longus (EDL); and both ankle

flexors. Combined, these muscles constitute 80% of the muscle mass and 60% of the

force-generating capacity (PCSA) of this portion of the limb. The unusual proportion of

body mass taken up by the ankle extensors has been noted before (Hutchinson, 2004a)

and is likely an ancestral characteristic of birds (e.g., Paxton et al., 2010) but is taken to an

extreme in large ratites (e.g., Smith et al., 2006).

Further distally, the long and slender tarsometatarsus bone lends itself well as a support

for the long tendons of the digital flexor muscles which in turn provide essential springs

used in support and propulsion of the limbs and body. The relatively small muscles

and long tendons of the digital flexors make them likely to operate mainly as energy

storage devices at faster speeds, as seen in other species like horses and smaller running

birds (Biewener, 1998; Daley & Biewener, 2011). The positive allometry of many tendon

properties in emus is in line with this increase in force-generating capacity seen during

ontogeny. As in most other birds, the tendons running along the tarsometatarsus are

almost exclusively on the cranial and caudal (dorsal/plantar) side. It would also be

interesting to know the effect on bone strains from this “bow and arrow” anatomical

arrangement between the tarsometatarsus and the dorsal/plantar tendons to see if it

influences the predominantly torsional loads experienced by the two proximal pelvic

limb bones (Main & Biewener, 2007).

For these spring-like tendons, a trade-off between muscle force and tendon elasticity

does not seem to occur in emus. This lack of a trade-off is indicated by the similar scaling

patterns of the cross-sectional areas of the digital flexor muscles and tendons, both of

which trend towards positive allometry across emu ontogeny. As seen in other species (Ker,

Alexander & Bennet, 1988), the relative increases in the cross-sectional areas of tendons

might maintain tendon safety factors (maximal stresses before failure vs. in vivo maximal

stress) as emus increase in size. However, tendons might also change their biomechanical

properties (Young’s modulus) with age, as seen in other species (Shadwick, 1990; Thorpe et

al., 2014), therefore influencing biomechanical interpretations of the data presented here.
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Without measuring tendon elastic modulus with age, it is difficult to interpret how tendon

stiffness and safety factor might change with age in emus.

To complement data from a prior study showing the scaling patterns of the cross-

sectional areas of the femur and tibiotarsus of emus to be close to isometry (Main &

Biewener, 2007), here we analysed the scaling patterns of the lengths of the three longest

limb bones and the first phalanx of the third toe. Our data indicate positive allometry of

the two longer bones, the tibiotarsus (lower CI limit = 0.37) and tarsometatarsus (lower

CI limit = 0.39), but a less marked positively allometric scaling trend for the femur (lower

limit of CI = 0.34) and for the first phalanx of digit III (lower CI limit = 0.33). These

results differ from those reported for another ratite, the greater rhea (Rhea americana), in

which only the tarsometarsus showed positive allometry (Picasso, 2012) but interestingly

are in line with general interspecific scaling exponents found for pelvic limb bone lengths

across different species of palaeognaths (Cubo & Casinos, 1996). Considering our results, if

similar cross-sectional geometry is assumed along the length of the bone shafts, this would

lead to an increase in strains (at least in bending, due to larger moments) at the mid-shaft

with increasing body mass. However, changes in cross-sectional areal geometry have been

shown to lead to slight positive allometry of the cross-sectional geometry of avian limb

bones across species (Doube et al., 2012) and ontogenetically (Main & Biewener, 2007). As

these geometrical changes might not suffice to explain the increases in strain magnitudes

seen during ontogeny, they leave unexplained the role of internal forces (soft tissues) on

bone mechanics and consequently their influence on bone morphology during growth.

Although there are very limited data on the ontogeny of skeletal muscle physiology,

experiments in mice and cats (Close, 1964; Close & Hoh, 1967) demonstrate that although

muscle force: velocity parameters change from newborns to adults, these changes appear

to occur in a relatively short period and therefore newborn muscle, after the first few

days of life, becomes similar to that of adults. However, mice and cats, like many other

mammals, are born with neuromotor immaturity (Muir, 2000), in contrast to emus. It is

therefore reasonable to speculate that, like other birds (Gaunt & Gans, 1990), emus are

unlikely to have appreciable changes in muscle physiology during growth. Thus changes in

functional (e.g., maximal force-generating capacity) and biomechanical parameters should

be detectable by anatomical studies such as ours.

Few studies have quantified the ontogenetic scaling patterns of limb musculature in

birds (Carrier & Leon, 1990; Dial & Carrier, 2012; Paxton et al., 2014; Picasso et al., 2012;

Picasso, 2014), but positive allometry predominates in the muscle masses involved in the

major adult mode of locomotion (flying vs. cursorial). In the Californian gull, the M.

gastrocnemius scaled isometrically but the M. pectoralis had strong positive allometry

with an inflection point when the fledglings started exercising their wings (Carrier &

Leon, 1990). Paxton et al. (2014) and Paxton et al. (2010) both recently reported the

ontogenetic scaling patterns of the musculature of a highly modified galliform, the broiler

chicken. These birds, unsurprisingly due to their selective breeding, were found to have

positive allometry of muscle masses of the main pelvic limb muscles but isometry of the

fascicle lengths (Paxton et al., 2014), a pattern that is nonetheless similar to our findings.
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Picasso et al. (2012) found quite similar scaling patterns across rhea ontogeny: an average

64-fold increase in pelvic limb muscle mass from 1 month of age to adulthood whilst only

a 34-fold increase in body mass. In a later study, where scaling exponents were calculated,

a more generalised positively allometric scaling was found in these South American ratites

compared to emus: with all muscle masses but two (where isometry was evident) scaling

with positive allometry (slopes ∼1.3). Total limb muscle mass of rheas scaled with an

exponent of 1.18 (Picasso, 2014), which is similar to our value of 1.16. Together, these data

suggest that positive allometry prevails across ontogeny for leg muscles in extant birds

with precocial development; potentially a homologous feature of their development that is

quite unlike the isometry prevailing in their closest extant relatives, Crocodylia (Allen et al.,

2010; Allen et al., 2014).

Dial & Carrier (2012) suggested that birds must optimise their energy consumption to

achieve their ultimate functional gait whilst channelling resources to their precocial gait

(Dial & Carrier, 2012) (running vs. swimming or flying). Ratites are unusual for birds in

that they solely have terrestrial gaits throughout their life and, in the case of emus, their

wings have atrophied to such an extent that they should not present much metabolic

competition to hindlimb development. Considering the approximately isometric overall

scaling of kinematic parameters (e.g., stride lengths, stride frequencies, duty factors) seen

in ratites (Main & Biewener, 2007; Smith, Jespers & Wilson, 2010), it is likely that this

increase in muscle masses will lead to a limb that is adapted for power production and

perhaps (considering our less allometric tendon results) elastic energy storage/return. The

former is also supported by metabolic studies which found a predominance of fast fibres

in the M. gastrocnemius of adult emus (Patak, 1993), although more studies of muscle

physiology in emus and other ratites would be valuable.

The need for locomotor independence and high performance in vulnerable, young,

precocial and cursorial birds might favour allometry of muscle architecture (Carrier, 1996).

If so, could adult muscle phenotypes be a reflection of the locomotor needs during early

development and therefore be overdesigned for their demands? Alternatively, negative

allometric scaling in the musculoskeletal system may occur as seen in goats (Main &

Biewener, 2004) and jackrabbits (Carrier, 1983). It is hard to draw an inference from our

data, because the overall positive allometry seen in the pelvic limb musculature could

indicate a necessity to grow faster and stronger to adulthood to compensate for a juvenile

disadvantage, or could reflect selective pressures on the locomotor ontogeny of emus

in which muscles congenitally primed for fast growth during adolescence could lead

to continued growth past an optimum in adulthood. Although direct measurements

of maximal performance of complex locomotor systems is problematic, a modelling

approach using the data presented here could be a valid approach to answer this question.

How well are farmed emus representative of the species overall?
Although emu farming is relatively common, its goal is to extract meat, oil and skin and

therefore these birds are not bred in captivity for their locomotor behaviour, nor do they

suffer strong predatory pressures on it. The diet of captive bred birds as well as their relative
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sedentary regime when compared to wild animals is likely to influence tissue development

and distribution. However, as farming of these birds is a recent activity and it is not a

highly specialised or intense process as with other domesticated species (Goonewardene et

al., 2003), it is unlikely that heritable traits of the emu musculoskeletal system have been

significantly altered. Therefore, we expect the muscle distribution and scaling patterns of

our emus to be similar to wild emus.

By presenting muscle mass data from two distinct groups of birds (UK and USA

groups), we established that these groups at least have similar scaling patterns, ruling

out any potential bias imposed by different breeding regimes. With regards to diet, it was

apparent that our birds were carrying a significant amount of subcutaneous and peritoneal

fat; likely encouraged by their ad libitum access to a commercial pelleted diet. The influence

of body fat on our scaling results is hard to test with the available data, but Hutchinson

et al. (2014) noted a possible reduction in relative muscle masses in wild vs. captive bred

ostriches, which could also apply to emus. Regardless, it is less certain that the scaling pat-

terns for muscle/tendon architecture observed here would differ in wild vs. captive emus.

CONCLUSIONS
We have provided a new dataset on the ontogenetic scaling of pelvic limb anatomy and

muscle architectural properties of a cursorial bird (the first complete architectural dataset

of its kind), and we have done this using a group of 17 emus across a tenfold increase

in body mass. A marked trend of positive allometry of muscle masses and PCSAs is

accompanied by less marked positive allometry of fascicle lengths. Tendons, especially

the long digital flexors, also demonstrate positive allometry of their lengths, as do the two

longer limb bones (tibiotarsus and tarsometatarsus). We have illuminated the ontogenetic

adaptation of the musculoskeletal system in an extreme example of size variation during

rapid growth. Our dissections refined the myology of the pelvic limb in emus (Table 1

and Figs. 1–3) and found some anatomical aspects that were previously misunderstood.

This is important as functional studies depending on inaccurate anatomical accounts of

the myology could obtain unrealistic results from biomechanical models using such data

(Goetz et al., 2008; Hutchinson et al., 2014). This work should be a valuable resource for

future functional, comparative and evolutionary studies of emus, other birds and extinct

related animals.
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