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Quantum interference effects 
in multi‑channel correlated 
tunneling structures
N. S. Maslova1,7, V. N. Mantsevich2,7*, V. N. Luchkin3,7, V. V. Palyulin4,7, P. I. Arseyev5,7 & 
I. M. Sokolov6,7

In multi-channel tunneling systems quantum interference effects modify tunneling conductance 
spectra due to Fano effect. We investigated the impact of Hubbard type Coulomb interaction on 
tunneling conductance spectra for the system formed by several interacting impurity atoms or 
quantum dots localised between the contact leads. It was shown that the Fano shape of tunneling 
conductance spectra strongly changes in the presence of on-site Coulomb interaction between 
localised electrons in the intermediate system. The main effect which determines the shape of 
the tunneling peaks could be not Fano interference but mostly nonequilibrium dependence of the 
occupation numbers on bias voltage.

Impurity atoms and quantum dots strongly affect the semiconductor electron transport and, thus, became prom-
ising candidates for both the implementation in semiconductor nanoelectronic devices1–4 and for the quantum 
transport phenomena investigation5–11. The individual atoms and quantum dots are convenient building blocks 
for nanoelectronics due to their stable well-defined electronic structure. Their integration in the semiconductor 
medium opens an opportunity for the final step in miniaturisation of electronics allowing fabrication of unique 
single-atom single-electron tunneling devices. The latter range from prototypes of quantum logic gates12 to 
quantum bits13–15 or charge pumps and turnstiles16–19. Moreover, the electrical properties of disordered nano-
material systems allow to perform and advance reconfigurable computing. In Ref.20 a network of interconnected 
metal nanoparticles was shown to operate as interacting nonlinear single-electron transistors. It was found that 
the network can be adjusted in situ into any of the two-input Boolean logic gates. The proposed system meets 
the criteria for the physical realisation of (cellular) neural networks: universality (arbitrary Boolean functions), 
compactness, robustness and evolvability.

The impurity atoms and quantum dots being intermediate semiconductor nanoscale systems substantially 
modify the local electronic structure and consequently define the electron transport characteristics which can be 
studied using tunneling contacts21–23. Typically, experimental and theoretical investigations of multi-channel elec-
tron transport in these systems reveal Fano-type line shape in local tunneling conductance24–27. This Fano-type 
line shape appears due to the interference between the resonant transport through a quantum dot and a direct 
channel. Experimental investigations of both electronic structure and transport properties of impurity clusters or 
quantum dots systems can be carried out with the help of STM/STS technique21, while the conventional theoreti-
cal analysis uses methods such as Green’s functions formalism28, renormalisation group approach29, slave-boson 
mean-field theory30 or equations of motion31. Comparison of experimental results with theoretical calculations 
provides information whether electron transport occurs coherently or incoherently and gives an opportunity 
to determine the impurity type. The main effects are caused by local changes of the initial density of states due 
to interactions between nonequilibrium particles in the contact area. The Coulomb interaction of conduction 
electrons with nonequilibrium localised charges can result in nontrivial behaviour of tunneling characteristics. It 
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is also important to note that the presence of Coulomb repulsion is a key factor influencing the energy spectrum 
and transport properties of intermediate systems formed by interacting impurity atoms or quantum dots32,33.

Since individual atoms or quantum dots-based electronic circuits are under active investigation, the under-
standing of both the role of interparticle interaction and quantum interference in such systems and the analysis 
of their influence on the electron transport properties is a necessary step on the way to the creation of single atom 
nanoelectronic devices. In the single electron regime such structures are proposed to be utilised as spin qubits34,35. 
In addition, such systems can be used as an effective spin filters31,36. The more complex double-dot structures 
are studied intensively as they are very promising for quantum interferometry and quantum computing37,38. In 
the systems formed by two or more quantum dots with Coulomb correlations the role of quantum interference 
effects still remains to be explored.

In the present paper we will concentrate on the crossover between the symmetry blockade regime and the 
regime when Fano effect arises for different ratio of tunneling coupling between the dots and the contact leads 
and on modification of multiple Fano resonances in the presence of Coulomb correlations. The Coulomb cor-
relations between localised electrons are considered exactly without the use of the mean-field or non-crossing 
approximations. General expression describing tunneling conductance of the arbitrary multi-channel inter-
mediate system was obtained and applied for the analysis of the electron transport properties for different 
spatial configurations of the impurity atoms. We avoid considering Kondo regime39–41 and Aharonov–Bohm 
oscillations28,42–44 since they were previously extensively studied. The effects were already scrutinised for a variety 
of geometries containing quantum dots such as side-coupled quantum dots29,30,45, the cases when a quantum dot 
is localised in each of the tunneling channels46–48, a chain of quantum dots localised in one of the channels32,49 
and a double-dot geometry50–52.

The paper is organised as follows. The model Hamiltonian and the general expression for tunneling conduc-
tivity are described in “General case”. The electron transport occurring through two parallel channels each with 
impurity atoms is considered in “Two parallel tunneling channels: each channel with impurity atom”. The analysis 
of tunneling conductance peculiarities in the case when one of the channels for electron transports includes a 
chain of impurities and another one is a direct channel is given in “Direct channel and channel with a chain of 
impurities”. The role of Coulomb interaction is discussed in “The role of Coulomb interaction”. Conclusions are 
given in “Conclusion”.

Tunneling through intermediate system
General case.  Here we consider quantum transport through intermediate system formed by interacting 
impurity atoms or quantum dots localised between the tunneling contact leads (see Fig. 1a). The intermediate 
system is formed by the two clusters of impurity atoms (quantum dots) interacting with each other and with only 
one of the tunneling contact leads.

The Hamiltonian of the system consists of three parts, the intermediate system contribution Ĥ0 , the tunneling 
processes between the intermediate system and the tunneling contact leads Ĥtun as well as electron states in 
the reservoir Ĥres (hereinafter we assume that � = 1 and e = 1 ). The intermediate system Hamiltonian without 
Coulomb interaction reads

where âσi(j) is the electron annihilation operator for the single occupied localised state (site) with energy εi(j) and 
spin σ in each cluster and tij is the tunneling transfer amplitude between sites i and j corresponding to different 
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σ†
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Figure 1.   (Color online) Scheme of the tunneling contact with intermediate system formed by two clusters of 
impurity atoms (quantum dots). (a) General case of arbitrary intermediate system; (b) Intermediate chain-like 
structure.
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clusters. Sites i are directly coupled to the states in the lead L and sites j are connected with the states in the lead 
R. Hoppings between the impurities in each cluster are described by the tunneling transfer amplitudes tii′ and tjj′.

Tunneling Hamiltonian Ĥtun has the following form:

where ĉσk(p) is the electron annihilation operator for the electrons in the leads with energies εk(p) , spin σ and quan-
tum number k(p). tLi(Rj) is the tunneling transfer amplitude between the localised state and the tunneling contact 
leads. Furthermore, we assume that the tunneling transfer amplitudes tLi(Rj) have a negligibly weak dependence 
on k(p). Hence, the density of states in the leads is constant and the tunneling relaxation rates are constant as 
well. We treat the rates as parameters. Electron states in the leads of the tunneling contact are described by the 
Hamiltonian Ĥres,

Here the voltage eV applied to the contact is written explicitly as a shift of the chemical potential of one of 
the leads. Further in this section we will omit index σ as it becomes important only in the presence of Coulomb 
interaction. Using Keldysh Green’s functions formalism53 one can get the following expression for the tunneling 
current flowing through the intermediate system formed by coupled impurity atoms or quantum dots,

where the lesser Green’s function G<
ik = i�a†i ck� and nk is the occupation number in the lead of tunneling contact. 

Taking into account relations between the lesser Green’s function G<
ik and the Green’s functions of intermedi-

ate system one can obtain the following expression for the tunneling current flowing through the intermediate 
system40,54:

where n0L(ω) is the equilibrium Fermi distribution for electrons in the tunneling contact lead L and νL(R) is the 
density of states in the leads of the tunneling contact. Tunneling contact leads are considered to be ideal wide 
band metals, so density of states is proportional to the inverse band width and considered to change slightly with 
energy, thus it can be considered to be a constant in all the calculations. Retarded (advanced) Green’s function 
corresponding to the intermediate system sites GR(A)

ii′ (ω) and lesser Green’s function G<
ii′(ω) satisfy the following 

Dyson equations,

where unperturbed sites’ Green’s functions G0R(A)
ii (ω) include all the electron transitions which can occur in the 

intermediate system. Lesser and retarded (advanced) self-energies read

The following relations for Green’s functions and self-energies are valid in the stationary case

After substitution of Eqs. (6)–(8) into Eq. (5) the terms with self-energies �<
i1i2

(ω) in the lesser Keldysh Green’s 
functions G<

ii′(ω) exactly cancel the first term in the right hand side in Eq. (5) for the tunneling current due to 
the validity of the relation (8). Finally one can get the expression, which describes the electron transport between 
the tunneling contact leads through the arbitrary intermediate system formed by the system of impurity atoms 
or quantum dots. This expression is a generalisation of that obtained in55 for a single atomic chain:

The formula (9) in a correct way takes into account not only contributions from all possible trajectories of elec-
tron transport through the intermediate system but also from all interactions inside the intermediate system.
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Two parallel tunneling channels: each channel with impurity atom.  Now we can use the expres-
sion (9) to describe the electron transport through the intermediate system formed by the two interacting impu-
rity atoms each coupled to both tunneling contact leads in the absence of Coulomb interaction (see Fig.2a). The 
electron transport occurs through two parallel channels, each with an impurity atom. Transitions between the 
impurities are also present and are described by the tunneling transfer amplitude T12 . In the presence of the tun-
neling between the impurities retarded Green’s functions in Eq. (9) are:

where Ŵ1 = ŴL1 + ŴR1 and Ŵ2 = ŴL2 + ŴR2 and GA
ij (ω) = [GR

ij (ω)]
∗ and tunneling transfer rates 

ŴLi(Rj) = πνL(R)t
2
Li(Rj) with νL(R) being the density of states in the leads of the tunneling contact. Furthermore, all 

the expressions are given for the general case ε1  = ε2 , but numerical calculations for simplicity will be performed 
for the resonant case when single electron energy levels of both impurity atoms have the same value ε1 = ε2.

The most interesting regimes in the considered system occur in following two cases of coupling between 
the impurity atoms and the leads: 1. The “parallel” regime when tunneling between the leads through one of 
the impurity atoms strongly exceeds tunneling between the leads through the another one ( tL1, tR1 >> tL2, tR2 , 
see Fig. 2a). In this case electron transport occurs through two parallel channels but one of the tunneling 
channels dominates; 2. The “sequential” regime when the sequential tunneling channel is a dominating one 
( tL1, tR2 >> tL2, tR1 , see Fig. 2b). In this case electron transport occurs through a chain formed by two impurity 
atoms each of them mostly coupled to one of the leads. Calculation results for both tunneling regimes are shown 
in Figs. 3 and 4.

For both regimes in the case of symmetric tunneling contact when all tunneling amplitudes between the 
impurity atoms and the contact leads have the same values ( tL1 = tR1 = tL2 = tR2 ) only a single peak with 
a symmetric shape is present in the tunneling conductance corresponding to the symmetric state of the two 
impurities complex with the energy ε − T (see the black curves in Figs. 3a and 4a). Peak corresponding to the 
antisymmetric state with energy ε + T is damped due to the destructive interference. The presence of only 
one well pronounced peak in tunneling conductance is the direct manifestation of symmetry blockade which 
results in the destructive interference. If one of the tunneling channels prevails in electron transport through the 
impurity complex ( tL1, tR1 >> tL2, tR2 ), the single peak corresponding to the symmetric state begins to change 
its shape to the asymmetric one (see the red, the blue and the green curves in Fig. 3a). The asymmetry of the 
peak’s shape is the most pronounced when tunneling through one of the channels is nearly absent (see the green 
curve in Fig. 3a). Further it will be demonstrated that tunneling conductance behavior considerably changes in 
the presence of Coulomb interaction (see Fig. 3b). Most pronounced changes occur in the vicinity of the single 
electron energy levels or when applied bias is close to the energy of electron transitions between electronic states 
with n and n+ 1 electrons. In the regime when the sequential tunneling between   the impurity atoms becomes 
important ( tL1, tR2 >> tL2, tR1 , see Fig.  4a) the second peak corresponding to the antisymmetric state appears. 
The amplitude of the symmetric peak decreases and the amplitude of the antisymmetric peak increases with 
the growth of the asymmetry between the tunneling amplitudes (see the red, the blue and the green curves in 
Fig. 4a). When the tunneling amplitudes tL2, tR1 become negligibly small the amplitudes of two peaks become 
very close to each other (see the green curve in Fig. 4a). Thus, changing the anisotropy of the kinetic processes 
one can observe the crossover between the symmetry blockade regime and the regime when Fano asymmetrical 
peak arises if the difference of values of hopping integrals is substantial. To conclude, in this section we analysed 
in details the crossover between the regime of resonant tunneling through the symmetric single electron state of 
double QDs in the case of parallel tunneling to the regime when Fano effect becomes well resolved. Fano effect 

(10)
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ω − ε2 + iŴ2
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12
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,

Figure 2.   (Color online) Schemes of tunneling between tunneling contact leads and intermediate system 
formed by two interacting impurities. Changing the ratio between various tunneling amplitudes one gets 
different regimes. (a) Shows the regime when tunneling between the leads through one of the impurity atoms 
strongly exceeds tunneling between the leads through the other one, tL1, tR1 >> tL2, tR2 ; (b) demonstrates 
the regime when tunneling between the impurity atoms is strong and tL1, tR2 >> tL2, tR1 . This is the case of 
tunneling through two-atom chain. Solid lines demonstrate the main tunneling channels. Dashed lines show the 
weak tunneling channels. Tunneling between the impurity atoms is described by the amplitude T12.



5

Vol.:(0123456789)

Scientific Reports |        (2021) 11:17676  | https://doi.org/10.1038/s41598-021-97199-2

www.nature.com/scientificreports/

appears when tunneling rates between one of the QDs and the leads strongly exceed tunneling rate for another 
QD (see Fig. 3a). We also studied the tunneling conductance modification, which is a result of transfer from 
the regime of parallel tunneling to the regime of sequential tunneling (see Fig. 4a). In this case one can follow 
the appearance of double peak structure in tunneling conductance. The obtained results open the possibility 
to choose the proper experimental geometry to get a required regime of electron transport and corresponding 
properties of tunneling conductance spectra.

Direct channel and channel with a chain of impurities.  In the case when the intermediate system is 
formed by a chain of impurities, one of the tunneling channels corresponds to the electron transitions between 
the leads through the chain and another one is a direct channel between the tunneling contact leads. If the inter-

ecnatcadnoc gnilennuT

ecnatcadnoc gnilennuT

Figure 3.   (Color online) Tunneling conductance as a function of applied bias voltage for the impurities 
configuration shown in Fig.2a. (a) Demonstrates results in the absence of Coulomb interaction; (b) shows 
calculation results in the presence of infinitely large Coulomb interaction. Black curves correspond to the 
tunneling rates tL1 = 0.5T12 , tR1 = 0.5T12 , tL2 = 0.5T12 , tR2 = 0.5T12 ; red curves correspond to the tunneling 
rates tL1 = 0.8T12 , tR1 = 0.8T12 , tL2 = 0.5T12 , tR2 = 0.5T12 ; blue curves correspond to the tunneling 
rates tL1 = 1.2T , tR1 = 1.2T12 , tL2 = 0.5T12 , tR2 = 0.5T12 ; green curves correspond to the tunneling rates 
tL1 = 1.5T12 , tR1 = 1.5T12 , tL2 = 0.5T12 , tR2 = 0.5T12 . Parameters ε1 = ε2 = 5.0T12 , T12 = 1 are the same for 
all figures.
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Figure 4.   (Color online) Tunneling conductance as a function of applied bias voltage for the impurities 
configuration shown in Fig.2b. (a) Demonstrates results in the absence of Coulomb interaction; (b) shows 
calculation results in the presence of infinitely large Coulomb interaction. Black curves correspond to the 
tunneling rates tL1 = 0.4T12 , tR1 = 0.4T12 , tL2 = 0.4T12 , tR2 = 0.4T12 ; red curves correspond to the tunneling 
rates tL1 = 0.4T12 , tR1 = 0.15T12 , tL2 = 0.15T12 , tR2 = 0.4T12 ; blue curves correspond to the tunneling rates 
tL1 = 0.4T12 , tR1 = 0.04T12 , tL2 = 0.04T12 , tR2 = 0.4T12 ; green curves correspond to the tunneling rates 
tL1 = 0.4T12 , tR1 = 0.002T12 , tL2 = 0.002T12 , tR2 = 0.4T12 . Parameters ε1 = ε2 = 5.0T12 , T12 = 1 are the same 
for all figures.
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mediate system is an atomic chain consisting of N sites (see Fig. 1b), one can get a rather simple expression for 
tunneling current using Eq. (9)55,

where ŴL1(RN) = πνL(R)t
2
L1(RN) is the tunneling transfer rate. In this case one can consider ŴL1ŴRN |G

R
1N (ω)|

2 as 
an effective transmission amplitude |Teff |

2 . Direct tunneling between the leads is described by the Hamiltonian 
Ĥdirect,

where the tunneling transfer amplitude T̃ is assumed to be independent of momentum and spin. Taking into 
account the interference effects between two channels one can get the general expression for the effective trans-
mission amplitude Teff  which can be represented by the diagrams shown in Fig. 5 and has the form

where GR
jj  is the retarded Green’s function of the j-th impurity in the chain and N is a number of impurities in 

the chain.
Expression (13) is the main result of this section. The effective transmission amplitude (Eq. 13) takes into 

account multiple electron transitions between the lead and the intermediate system (impurity atom or quantum 
dot). It describes transmission through the direct channel and through the intermediate system as well as inter-
ference contributions. Expression (13) describes both the inter-channel and the intra-channel interference. The 
first term corresponds to the inter-channel interference, which occurs due to the presence of several paths of 
electron transport. The second term describes the intra-channel interference and takes into account the inter-
ference between any trajectory due to the multiple electron transitions between the lead and the intermediate 
system calculated using nonequilibrium Keldysh diagram technique. For completeness the simple case with a 
single impurity localised in one of the channels is described in Section 1 of the Supplementary Material.

When the atomic chain consists of two impurities we get for the retarded Green’s functions

where T12 is the tunneling transfer amplitude between the impurity atoms in the chain. Substituting the Green’s 
functions in (13) one can calculate tunneling conductance (neglecting Coulomb interaction) which is shown in 
Figs. 6 and 7. Figure 6 corresponds to the symmetric coupling of impurities chain with the leads of the tunneling 
contact ( tL1 = tR2 ), while Fig. 7 shows the case of the asymmetric coupling ( tL1  = tR2 ). It demonstrates two well 
resolved peaks corresponding to the symmetric ε + T and antisymmetric ε − T states of the impurity complex. 
Both peaks have Fano-like asymmetric shape and the asymmetry increases with the growth of direct tunneling 
transition amplitude since in this case interference effects in the system become more pronounced. The presence 
of asymmetry is a direct consequence of both the constructive intra-channel and inter-channel interference. 
Proposed approach can easily be generalised for the case of more than two impurity atoms in the chain.

The role of Coulomb interaction
Now we take into account Coulomb interaction between the electrons localised in the intermediate system. 
We will consider on-site Coulomb repulsion of electrons localised in the same impurity atom and neglect for 
simplicity inter-site Coulomb repulsion between the electrons localised in the different impurity atoms. Let us 
remind that we do not take into account interaction between localised electrons and band electrons in the leads 
as Kondo regime is beyond the scope of this work. Thus, the interaction Hamiltonian reads

(11)IT =4

∫

1

2π
dωŴL1ŴRN |G

R
1N (ω)|

2[n0L(ω)− n0R(ω)],
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(13)Teff (ω) =T̃[1+ iŴL1G
R
11(ω)+ iŴRNG

R
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√

ŴL1ŴRNG
R
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12

,

GR
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12

,

GR
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12

,

Figure 5.   (Color online) Diagrams contributing to the effective tunneling transfer amplitude Teff  considering 
multiple electrons returns from intermediate site to one of the contact leads.
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where n̂σi = âσ+i âσi  and Ui is the on-site Coulomb repulsion and i is the number of the impurity atom or quan-
tum dot. To take Coulomb interaction into account one can use the expressions for the tunneling conductance 
obtained in the previous sections with the corresponding modification of Green’s functions. Now retarded and 
advanced functions depend on electron occupation numbers ni which should be determined from the calcula-
tions. For brevity we present here only the case of very large Coulomb interaction U, i.e. when it strongly exceeds 
the single electron energies and the applied bias voltage. That means that only one electron with a fixed spin 
projection can be localised at the impurity energy level56.

(15)Ĥint =
∑

i

Uin̂
σ
i n̂

−σ
i ,
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Figure 6.   (Color online) Tunneling conductance as a function of applied bias voltage for the impurities 
configuration shown in Fig. 3b in the case of the intermediate system formed by a chain of two impurity atoms. 
(a) Demonstrates results in the absence of Coulomb interaction; (b) shows calculation results in the presence 
of infinitely large Coulomb interaction. Black curves correspond to the tunneling rates tL1 = tR2 = 0.3T12 , 
T = 0.0 ; red curves correspond to the tunneling rates tL1 = tR2 = 0.3T12 , T = 0.6T12 ; blue curves correspond 
to the tunneling rates tL1 = tR2 = 0.3T12 , T = 1.0T12 ; green curves correspond to the tunneling rates 
tL1 = tR2 = 0.3T12 , T = 1.2T12 . Parameters ε1 = ε2 = 5.0T12 , T12 = 1 are the same for all figures.

ecnatcadnoc gnilennuT

ecnatcadnoc gnilennuT

Figure 7.   (Color online) Tunneling conductance as a function of applied bias voltage for the impurities 
configuration shown in Fig. 3b in the case of the intermediate system formed by a chain of two impurity 
atoms. (a) Demonstrates results in the absence of Coulomb interaction; (b) shows calculation results in the 
presence of infinitely large Coulomb interaction. Black curves correspond to the tunneling rates tL1 = 0.1T , 
tR2 = 0.3T12 , T = 0.0 ; red curves correspond to the tunneling rates tL1 = 0.1T , tR2 = 0.3T12 , T = 0.6T12 ; blue 
curves correspond to the tunneling rates tL1 = 0.1T , tR2 = 0.3T12 , T = 1.0T12 ; green curves correspond to the 
tunneling rates tL1 = 0.1T , tR2 = 0.3T12 , T = 1.2T12 . Parameters ε1 = ε2 = 5.0T12 , T12 = 1 are the same for all 
figures.
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Two parallel tunneling channels: each channel with impurity atom.  In the case of large Coulomb 
interaction Green’s functions look as57

Section 3 of the Supplementary Material shows how to calculate nonequilibrium occupation numbers n1 and n2 
for the impurity atoms states. Using expressions (13) and (16) one can calculate tunneling conductance in the 
presence of strong Coulomb interaction. Results for the both “parallel” and “sequential” tunneling regimes are 
shown in Figs. 3b and 4b, correspondingly. As it was mentioned above in “Two parallel tunneling channels: each 
channel with impurity atom” the difference between the tunneling regimes is caused by different tunneling ampli-
tudes ratio. In both cases Coulomb interaction strongly modifies the shape of the peaks in tunneling conductance. 
For the case of “parallel” tunneling (Fig. 3b) asymmetric shape is “inverted” due to Coulomb correlation effects. 
For the “sequential” case (Fig. 4b) the asymmetry becomes much more pronounced. The asymmetry of the peaks 
is the direct manifestation of the tunneling conductivity modification by the occupation numbers which reveal 
the presence of Coulomb interaction in the system. In the regime of “parallel” tunneling (Fig. 3b) the presence of 
Coulomb interaction also leads to the “shoulders” for the tunneling conductance peak. The described behaviour 
of the conductance is determined by the corresponding features of the occupation numbers. The appearance of 
the “shoulders” in the presence of Coulomb interaction is a result of the dependence of tunneling probability on 
occupation numbers. Occupation numbers are changing strongly when applied bias is close to the single electron 
energy levels or to the energy of electron transitions between electronic states with n and n+ 1 particles. For low 
temperatures and small tunneling rates (tunneling rates are much smaller than all the electronic energies) the 
occupation numbers as a function of applied bias reveal a step like behavior. Each step appears when applied 
bias is equal to the energy of electron transitions between electronic states with n and n+ 1 particles. Such sharp 
change of occupation numbers leads to modification of tunneling conductance and results in the appearance of 
the “shoulders” in the vicinity of the resonant peak in tunneling conductance.

Direct channel and channel with a chain of impurities.  If tunneling occurs through a chain of two 
impurities (quantum dots) it is convenient to use symmetric and antisymmetric states as a basis set. Correspond-
ing Green’s functions GR

a  and GR
s  can be written similar to Eq. (16) as57:

with εs(a) = ε ± T12 and Ŵa(s) = ŴLa(s) + ŴRa(s).
For strong tunneling coupling between the impurities one could omit the last term in Eq. (13) after substitu-

tion of GR
a  and GR

s  into the formula for the tunneling current.
Expressions for occupation numbers ns and na can be found from the stationary solution of kinetic equations 

similar to Eq. (5) in Sect. 3 of the Supplementary Material:

where

and

where X = εa,s and for resonant tunneling Ŵa(s) = 1/2Ŵ1(2).
Results for the tunneling conductivity in this case for symmetric and asymmetric coupling of the chain with 

the leads are shown in Figs. 6b and 7b. As in Figs. 3 and 4 Coulomb interaction strongly modifies the shape 
of the peaks which arise in the tunneling conductance. Modified peaks (Figs. 6b and 7b)reveal well resolved 
asymmetric Fano-like shape even in the case of small tunneling amplitude through the direct tunneling channel. 
We see that the asymmetry of peaks in this case reflects mostly the impact of Coulomb interaction on impurity 
states occupation numbers.

Let us now discuss the parameters and relations achievable in the real QDs systems. QDs parameters such 
as single electron energy levels, Coulomb interaction, tunneling amplitudes and coupling between the dots 
depend on the dot sizes and shapes as well as the growth procedure. These quantities determine the arrangement 

(16)
GR
1 (ω) =

1− n1 − 2n2

ω − ε1 + iŴ1

,

GR
2 (ω) =

1− n2 − 2n1

ω − ε2 + iŴ2

.

(17)
GR(A)
a =

1− ns − 2na

ω − εs ± iŴa
,

GR(A)
s =

1− na − 2ns

ω − εa ± iŴs

(18)
ns =

NT
s (εs)(1− NT

a (εa))

[1+ NT
s (εs)][1+ NT

a (εa)] − 4NT
s (εs)N

T
a (εa)

,

na =
NT
a (εa)(1− NT

s (εs))

[1+ NT
s (εs)][1+ NT

a (εa)] − 4NT
s (εs)N

T
a (εa)

,

(19)NT
a(s)(εa(s)) =

ŴLa(s)NL(εa(s))+ ŴRa(s)NR(εa(s))

ŴLa(s) + ŴRa(s)

(20)NL(R)(X) =
1

π

∫

dωnL(R)0(ω)
ŴLa(s) + ŴRa(s)

(ω − X)2 + (ŴLa(s) + ŴRa(s))
2
,
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in space and, consequently, the strength of interaction of the dots with other dots and the leads. Typically, the 
tunneling amplitudes between the dots exceed the coupling between the dots and the tunneling contact leads. 
Single electron energy level values are larger than the tunneling amplitudes between the quantum dots. Cou-
lomb correlation energies could exceed all other characteristics energy values in the system. For example, for 
GaAs/AlGaAs/InGaAs quantum dots58–60 the single electron energy level values are about 2–5 meV, T12 is about 
0.4 meV, Coulomb interaction is about 4–6 meV and coupling to the leads is about 10–100 µeV. Similar values 
of the system parameters can be achieved for the Si-based quantum dots61,62.

Conclusion
We investigated the conductance features for the system formed by several interacting impurity atoms or quan-
tum dots localised between the leads. The derived generalised expression for effective tunneling transmission 
amplitude through multi-channel intermediate system allowed to evaluate the role of various interference effects. 
It was shown that crossover from Fano regime with an asymmetric peak in the tunneling conductivity to sym-
metry blockade regime with a single symmetric peak could be observed if one tunes the ratios between the 
tunneling rates (for example by external gate voltage ). The modification of tunneling conductivity spectra from 
“parallel” to “sequential” coupling to the leads was analysed in the frame of suggested approach.

On-site Coulomb interaction between localised electrons strongly modifies the effective tunneling probability, 
which depends on the nonequilibrium electron occupation numbers of the QDs. The double occupation of QDs 
states is restricted in a particular range of applied bias. Moreover, Coulomb interaction substantially changes the 
single electron interference picture due to the Coulomb correlations between tunneling electrons. The shape of 
tunneling conductance peaks is very sensitive to the geometry of the QDs system and the strength of Coulomb 
correlations. It was shown that in some cases the main effect which determines the shape of the tunneling peaks 
is not Fano interference but mostly nonequilibrium correlation effects for the occupation numbers of localised 
states.
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