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Abstract: The pathogenesis of hidradenitis suppurativa (HS) is yet to be fully understood. However,
inflammation is a key element in the development of skin lesions. The aim of this study was to
evaluate the expression of monocyte chemotactic protein-1-induced protein-1 (MCPIP1) in the skin
of patients suffering from HS. Skin biopsies of 15 patients with HS and 15 healthy controls were
obtained and processed for immunohistochemistry, western blot, and real time PCR. The highest
mean MCPIP1 mRNA expression was found in the inflammatory lesional skin of HS patients. It was
significantly higher than MCPIP1 mRNA expression in the biopsies from both healthy controls and
non-lesional skin of HS patients. Western blot analysis indicated that expression of MCPIP1 was
elevated within both lesional and non-lesional skin compared to the healthy control. The increased
MCPIP1 mRNA and protein expression level in HS lesions may indicate its possible role in the
disease pathogenesis.

Keywords: MCPIP1; hidradenitis suppurativa; Regnase-1

1. Introduction

Inflammation is a basic immune response of our organism that enables survival
during infections or injuries. On the molecular level, it is a set of interactions between
inflammatory factors and cells, often described as a stress response of tissue or organism
to noxious conditions [1,2]. Although usually beneficial and life-preserving, disturbances
of the innate immune system may lead to development of immune-mediated diseases [3].
Moreover, failure in neutralizing acute response often causes chronic inflammation and
severe metabolic consequences [4]. Many of the important immune responses are carried
out in the skin [5].

Hidradenitis suppurativa (HS) is a debilitating skin disorder of a complex pathogen-
esis, which remains unclear [6]. The role of overproduction of inflammatory cytokines
and an inability of its inhibition has been mentioned by many authors [7]. The possible
suppression of inflammation is of benefit for the treatment of HS [8–10].

Monocyte chemotactic protein-1-induced protein-1 (MCPIP1), also known as Regnase-1,
is an RNase protein encoded by the ZC3H12A gene. It regulates the inflammatory activation
and maintains immune homeostasis by selectively promoting the destabilization of mRNAs
of certain proinflammatory cytokines (e.g., IL-6 and IL-1β) and transcription factors [11–15].
The lack of MCPIP1 in mice resulted in systemic inflammation leading to growth retarda-
tion, anemia, splenomegaly, lymphadenopathy, and premature death [11,16–18]. Recent
studies indicated that in the skin, MCPIP1 functions as an important regulator of epidermal
homeostasis. The ZC3H12A gene is induced by many inflammatory mediators including
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IL-17 and IL-36 [19–21]. Our previous studies on the influence of MCPIP1 on keratinocytes
showed that its deficiency leads to the skin barrier impairment and spontaneous cuta-
neous inflammation [22]. On the other hand, MCPIP1 was shown to be upregulated in
human psoriatic skin [20,23], whereas its deficiency in mice led to the much aggravated
psoriasis-like inflammation phenotype induced by imiquimod [21,23,24].

We hypothesized that MCPIP1 may be involved in the pathogenesis of other than
psoriasis skin disorders of inflammatory background, like HS. The aim of this study was to
evaluate the expression of MCPIP1, both on mRNA and protein level, in the skin of patients
suffering from HS. To the best of our knowledge, this is the first study to investigate the
possible association between MCPIP1 and the pathogenesis of HS.

2. Results
MCPIP1 Is Aberrantly Expressed in Hidradenitis Suppurativa

To investigate potential association of MCPIP1 with HS, we analyzed the expression
of MCPIP1 on both mRNA and protein levels in the lesional and non-lesional skin of HS
patients, and healthy controls. The highest mean MCPIP1 mRNA expression was found
in the inflammatory lesional skin of HS patients (HS-1: lesional skin) (0.0236 ± 0.0134).
It was significantly higher than MCPIP1 mRNA expression in the biopsies from both
healthy controls (CTR) (0.0080 ± 0.0034, p < 0.001) and non-lesional skin of HS patients
(HS-2: non-lesional skin) (0.0049 ± 0.0034, p < 0.001) (Figure 1A). There were no statistical
correlations between MCPIP1 mRNA expression in lesional HS skin and well-known
HS predisposing factors (obesity and smoking), as well as between sexes, those with
and without family history of HS or those who had or had not suffered from juvenile
acne in their adolescence (detailed data not shown). We next determined MCPIP1 protein
expression in the lysates of control and HS skin. Western blot analysis indicated that
expression of MCPIP1 was elevated within both lesional (2,5-fold increase) and non-lesional
skin (2,3-fold increase) compared to the healthy control (Figure 1B,C). Subsequently, we
determined the in situ expression of MCPIP1 in the skin. Generally, all biopsies showed a
similar pattern of immunostaining. Specific MCPIP1 immunostaining was cytoplasmic and
present in the epidermis, as well as in hair follicles. MCPIP1 immunoreactivity was found
in all studied biopsies (HS-1: lesional skin, HS-2: non-lesional skin and healthy control
skin) in the suprabasal layers of the epidermis. The basal layer of the epidermis showed no
MCPIP1 immunoreactivity. There was also no MCPIP1 immunoreactivity in the dermis.
Both lesional and non-lesional HS skin showed aberrant distribution of MCPIP1 within
epidermis (Figure 1D).

In parallel to the analyses of MCPIP1 expression, we investigated the level of inflamma-
tory influx within HS skin. Haematoxylin and eosin staining showed a large inflammatory
cell infiltration into the dermis of HS lesional skin (Figure 2A). This correlated with in-
creased gene expression level of selected inflammatory mediators: IL-1β, IL-6, TNFα and
S100A8 (Figure 2B). The non-lesional HS skin did not show any signs of inflammatory
reaction (Figure 2A,B).
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Figure 1. Increased expression of monocyte chemotactic protein-1-induced protein-1 (MCPIP1) in the hidradenitis suppu-
rativa skin. (A) qRT-PCR analysis of MCPIP1 (ZC3H12A) transcript level in the healthy human skin (CTR), non-lesional 
hidradenitis suppurativa patients’ skin (HS-2) and lesional HS patients’ skin (HS-1) (n = 14). (B) Representative Western 
blot for MCPIP1. β-actin was used as the loading control. (C) Densitometric quantification of MCPIP1 protein level (n = 4). 
(D) Representative MCPIP1 immunofluorescence staining of the skin sections. Scale bar 100 μm. Data represent the mean 
± SEM. * p < 0.05, *** p < 0.001 by one-way ANOVA. 

 
Figure 2. Abundant inflammation in the hidradenitis suppurativa skin. (A) H&E staining of the 
CTR, HS-1, and HS-2 skin sections at different magnification. (B) qRT-PCR analysis of IL1B, IL6, 
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rativa skin. (A) qRT-PCR analysis of MCPIP1 (ZC3H12A) transcript level in the healthy human skin (CTR), non-lesional
hidradenitis suppurativa patients’ skin (HS-2) and lesional HS patients’ skin (HS-1) (n = 14). (B) Representative Western
blot for MCPIP1. β-actin was used as the loading control. (C) Densitometric quantification of MCPIP1 protein level
(n = 4). (D) Representative MCPIP1 immunofluorescence staining of the skin sections. Scale bar 100 µm. Data represent the
mean ± SEM. * p < 0.05, *** p < 0.001 by one-way ANOVA.
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Figure 2. Abundant inflammation in the hidradenitis suppurativa skin. (A) H&E staining of the CTR, HS-1, and HS-2 skin
sections at different magnification. (B) qRT-PCR analysis of IL1B, IL6, TNFA and S100A8 transcript level. Scale bar 100 µm.
Data represent the mean ± SEM. * p < 0.05, ** p < 0.01, *** p < 0.001 by one-way ANOVA.
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3. Discussion

The pathogenesis of HS is yet to be fully understood. Among several proposed
pathogenetic factors (obesity, smoking, hormonal disbalance, genetic predisposition) im-
munological disturbances are considered crucial for the development of HS lesions. The
involvement of the immune system and disruption in the immune response have been
confirmed with the favorable outcome of anti-inflammatory biologic treatment [8–10].

The results of our study clearly demonstrate the increased MCPIP1 mRNA and pro-
tein expression in the lesional skin of HS patients. Our results are comparable with those
reported in psoriatic plaques [20,23]. Similarly to our study, MCPIP1 mRNA and protein
expression was significantly increased in psoriatic skin than in healthy control skin samples.
The similarities between both studies confirm a possible mutual immune-pathogenetic
pathway of HS and psoriasis. Higher MCPIP1 expression and its function in inflamma-
tory regulation may play an important role in the pathogenesis of both disorders. As
hypothesized by Monin et al. [23] it is likely that the increased MCPIP1 mRNA expression
reflects the ongoing inflammatory milieu, and particularly the high IL-17A levels, demon-
strated in lesional skin of both HS and psoriasis. This is not surprising as the resemblances
between HS and psoriasis have already been found in pathogenesis and treatment in
both disorders [25].

We observed that the level of MCPIP1 protein was elevated not only within lesional
skin, but also in the skin surrounding the HS lesion. In that region MCPIP1 was sta-
bilized, most likely as a result of a highly inflammatory environment. This, however,
did not correlate with increased transcriptional expression of ZC3H12A. This may be
explained by the fact that MCPIP1 RNase regulates, among many other mRNAs, also its
own transcript half-live [26].

To the best of our knowledge, this is the third study in which MCPIP1 expression
was assessed in human skin. Ruiz-Romeu et al. [20] in healthy skin found the expres-
sion of MCPIP1 exclusively present in the granular layer of the epidermis. A similar
pattern of MCPIP1 immunoreactivity was found in atopic dermatitis [20]. In contrast,
Monin L et al. [23] demonstrated MCPIP1 expression distributed in the whole epidermis
of the healthy skin. Our study clearly showed MCPIP1 immunoreactivity in the suprabasal
layers of the epidermis of healthy controls. In HS lesional skin we demonstrated abundant
MCPIP1 immunoreactivity in the suprabasal layers of the epidermis with comparable
immunostaining pattern as in non-lesional HS skin and healthy control skin. In lesional
psoriatic skin MCPIP1 immunoreactivity was also predominantly found in the epidermis,
distributed equally in the entire epidermis [23] or in its upper layers [20]. In both stud-
ies MCPIP1 immunoreactivity was similarly localized both in lesional and non-lesional
psoriatic skin [20,23].

In the lesional skin of HS, MCPIP1 is elevated on both transcriptional and transla-
tional level and it is not sufficient to resolve inflammatory processes. We noticed high
inflammatory influx and elevated transcriptional expression of selected HS-related factors:
IL-1β, IL-6, TNFα and S100A8. Enhanced expression of IL-6 and IL-1β was demonstrated
in the lesional skin of HS patients [27]. Expression of S100A8/A9 was also shown to be
elevated in HS [28]. Moreover, increased levels of TNFα in HS patient serum and skin have
been reported [29–32].

Another molecule that may be important in HS pathogenesis is the seventh subunit of
P2X receptor (P2 × 7R), which is plasma membrane channel gated by adenosine triphos-
phate (ATP) [33]. It is widely distributed, especially in immune system cells. Its role is to
activate the NLRP3 inflammasome and promote IL-1β maturation and release. The receptor
have been previously described in psoriasis, rosacea, and HS [34–36]. Manfredini et al. [35]
found that P2X7R protein level is higher in keratinocytes, lymphocytes, and monocytes of
HS skin in comparison to healthy controls [35]. Moreover, authors presented, that P2X7R
has significant, yet weak association with NLRP3 inflammasome [35].

We are aware of limitations of our study. Firstly, our group consisted only of 15 people
suffering from HS. Although the population of well diagnosed HS patients is small, the
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number of patients in future studies should be bigger in order to provide more accurate
data. Moreover, we have focused on MCPIP1 and its expression in the skin of HS patient.
Future studies aiming for correlation between MCPIP1 and well-known proinflammatory
molecules, including newly described P2X7R, would play an important role in discovering
the pathogenesis of HS.

4. Materials and Methods

The study was approved by the local Bioethics Committee of Wroclaw Medical Uni-
versity. The studied group included 15 patients with HS: 7 females (46.67%) and 8 males
(53.55%). The mean age of the group was 35.8 ± 11.2 years. According to the mean BMI
(30.1 ± 6.31 kg/m2) the population was considered obese. The majority (8 people, 53.6%)
of the subjects were active smokers with the mean of 9.6 ± 6.1 pack-years. 7 people (46.7%)
reported to suffer from juvenile acne during adolescence, while only 2 (13.3%) had a pos-
itive family history of HS. A total 86.7% (13) of patients were treated previously, with
unsatisfactory results. All included patients have not been treated for HS for at least of
two months before the enrollment to the study. All the patients were examined by the
dermatologists experienced with HS, in order to properly assess HS severity. Accord-
ing to Hurley staging [37] the severity of the disease in the majority of the patients was
assessed as Hurley II (8 patients, 53.3%), in 4 subjects (26.7%) as Hurley III and in the
rest (3 people, 20%) as Hurley I. As for IHS4 assessment [38], on average the patients
scored 15.9 ± 8.9 points, indicating severe disease. Among the HS–associated subjective
symptoms, assessed with 11-point Numeral Rating Scale (NRS), pain was the most severe
(4.4 ± 2.9 points), then purulent discharge (4.2 ± 2.9 points), foul smell (3.4 ± 3.4 points)
and pruritus (2.5 ± 2.6 points). 9 patients (60%) had multiple body areas affected by HS,
while 6 (40%) presented HS limited to one area. Among the most frequently affected
areas were armpits (11 patients, 73.3%), while buttocks affectation was present in only
1 subject (6.7%).

Additionally, 15 control healthy skin samples were collected from the age and sex-
matched patients who underwent surgical procedures for non-malignant skin lesions
or blepharoplasty.

4.1. Biopsy

Prior to the biopsy, the patients got locally injected the mixture of anesthetic
(2% lidocaine) and adrenaline to diminish pain and impede bleeding. Two 5-mm punch
biopsies were obtained from every HS patient. One of the biopsies was taken from the ac-
tive, inflammatory lesion, while the other from the healthily looking skin in close proximity
from the first one (at least 2 cm).

4.2. RNA Isolation and Quantitative Real-Time PCR

All collected skin samples were frozen in RNAlater (Sigma-Aldrich, Saint Louis, MO,
USA) and stored at −80 ◦C. Total RNA was extracted from tissues by homogenization
in Fenozol (A&A Biotechnology, Gdynia, Poland) using a tissue homogenizer (Miccra
D-1, Miccra GmbH, Germany). The purity and concentration of total RNA were as-
sessed using a NanoDrop 1000 spectrophotometer (Thermo Fisher Scientific, Waltham,
MA, USA). Subsequently, 1 µg of total RNA was reverse-transcribed with oligo(dT) primer
and M-MLV reverse transcriptase (Promega, Madison, WI, USA). The cDNA was di-
luted 5 times, and real-time PCR was performed using a QuantStudio 3 system (Ap-
plied Biosystems, Thermo Fisher Scientific, Waltham, MA, USA) with SYBR Green qPCR
master mix (A&A Biotechnology, Gdynia, Poland). The mRNA level of MCPIP1 tran-
script was determined relative to elongation factor-2 (EF2) by the 2−∆Ct method. The
following gene-specific primer pairs were used: for ZC3H12A: GGAAGCAGCCGTGTC-
CCTATG and TCCAGGCTGCACTGCTCACTC, for EF2: GACATCACCAAGGGTGT-
GCAG and TCAGCACACTGGCATAGAGGC, for IL1B: GATGTCTGGTCCATATGAACTG
and TTGGGATCTACACTCTCCAGC, for IL6: GTGAAAGCAGCAAAGAGGCA and
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TCACCAGGCAAGTCTCCTCA, for TNFA: TAGCCCATGTTGTAGCAAACC and TGATG-
GCAGAGAGGAGGTTG, for S100A8: GAATTTCCATGCCGTCTACAGG and GCCACGC-
CCATCTTTATCACCAG.

4.3. Western Blot Analysis

The protein lysate from skin tissues was isolated in RIPA (Radioimmunoprecipitation
assay buffer) solution with protease and phosphatase inhibitors (Roche, Basely, Switzer-
land) using a tissue homogenizer and then centrifuged for 20 min, 4 ◦C, 14,000× g. The
protein concentrations in the tissues lysates were measured with the bicinchoninic acid
assay. The electrophoresis separation was carried out in 10% polyacrylamide gel and elec-
trotransferred to PVDF (Polyvinylidene fluoride) membranes (Merck-Millipore, Burlington,
MA, USA). After the transfer, membranes were blocked for 1 h in 3% milk in Tris-buffered
saline with 0.05% Tween (BioShop, Burlington, ON, Canada) followed by an overnight in-
cubation in the primary antibody at 4 ◦C. On the following day, the membranes were rinsed
and incubated for 1 h with the secondary antibody. The Immobilon TM Western Chemilumi-
nescent HRP Substrate (Merck-Millipore, Burlington, MA, USA) and the ChemiDoc system
(Bio-Rad, Hercules, CA, USA) were used for signal detection. Densitometric quantification
was performed using ImageLab (Bio-Rad, Hercules, CA, USA). The MCPIP1 protein level
was normalized to β-actin level. The following antibodies were used: rabbit anti-MCPIP1
(GTX110807; 1:2000; GeneTex, Inc., Irvine, CA, USA), mouse anti-β-actin (A1978; 1:2000;
Sigma-Aldrich), peroxidase-conjugated anti-rabbit (A0545; 1:20,000; Sigma-Aldrich, St.
Luis, MO, USA) and peroxidase-conjugated anti-mouse (1:20,000; BD Pharmingen).

4.4. Immunofluorescence Staining

Skin tissues were embedded in Tissue-Tek O.C.T. Compound (Scigen Scientific Gar-
dena, Gardena, CA, USA) and stored at −80 ◦C. Then, 8 µm cryosections were cut and
stained with hematoxylin and eosin (H&E) using standard protocol. For immunofluo-
rescence staining, antigen retrieval was performed in 10 mM citrate buffer (pH 6.0) for
30 min at 95 ◦C. Subsequently, skin samples were blocked with 5% horse serum, 1% BSA
and 0.05% Tween in PBS for 1 h and incubated with primary rabbit antibodies against
MCPIP1 (1:100; GeneTex) overnight at 4 ◦C in blocking buffer. Bound primary antibodies
were detected by incubation with secondary goat antibodies Alexa Fluor 488 anti-rabbit
(A11008; 1:600; Invitrogen, Darmstadt, Germany) for 1 h at room temperature, followed
by counterstaining with Hoechst 33,258 (1:2500; Thermo Scientific). After incubation, the
sections were mounted in fluorescent mounting medium (Dako) and visualized in Leica
DMC5400B microscope (Leica Microsystems, Wetzlar, Germany). All figures were prepared
using ImageJ (National Institutes of Health, Bethesda, MD, USA).

4.5. Statistical Analysis

The statistical analysis of the obtained results was performed with the use of IBM
SPSS Statistics v. 26 (SPSS INC., Chicago, IL, USA) software. All data were assessed for
parametric or non-parametric distribution. The minimum, maximum, mean and standard
deviation numbers were calculated. Analyzed quantitative variables were evaluated using
Mann–Whitney U test, Spearman and Pearson correlations, while for qualitative data test
Chi2 was used. One-way ANOVA was used for the comparison of mRNA and protein
expression levels between two HS samples and healthy skin. A 2-sided p value of ≤0.05
was considered to be statistically significant.

5. Conclusions

As far as we know, this is the first study assessing the expression of MCPIP1 in the skin
of HS patients. Our preliminary results may be of benefit for the deeper understanding of
the possible immunopathogenesis of this chronic and recurrent inflammatory dermatosis.
Nevertheless, though our study sheds light on possible involvement of MCPIP1 in HS
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pathogenesis, further studies are necessary to clarify the exact role of MCPIP1 in the
pathogenesis of HS.
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