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A B S T R A C T   

Background: Neural reactivity to dysphoric mood induction indexes the tendency for distress to promote 
cognitive reactivity and sensory avoidance. Linking these responses to illness prognosis following recovery from 
Major Depressive Disorder informs our understanding of depression vulnerability and provides engagement 
targets for prophylactic interventions. 
Methods: A prospective fMRI neuroimaging design investigated the relationship between dysphoric reactivity and 
relapse following prophylactic intervention. Remitted depressed outpatients (N = 85) were randomized to 
8 weeks of Cognitive Therapy with a Well-Being focus or Mindfulness Based Cognitive Therapy. Participants 
were assessed before and after therapy and followed for 2 years to assess relapse status. Neural reactivity 
common to both assessment points identified static biomarkers of relapse, whereas reactivity change identified 
dynamic biomarkers. 
Results: Dysphoric mood induction evoked prefrontal activation and sensory deactivation. Controlling for past 
episodes, concurrent symptoms and medication status, somatosensory deactivation was associated with 
depression recurrence in a static pattern that was unaffected by prophylactic treatment, HR 0.04, 95% CI [0.01, 
0.14], p < .001. Treatment-related prophylaxis was linked to reduced activation of the left lateral prefrontal 
cortex (LPFC), HR 3.73, 95% CI [1.33, 10.46], p = .013. Contralaterally, the right LPFC showed dysphoria- 
evoked inhibitory connectivity with the right somatosensory biomarker 
Conclusions: These findings support a two-factor model of depression relapse vulnerability, in which: enduring 
patterns of dysphoria-evoked sensory deactivation contribute to episode return, but vulnerability may be miti-
gated by targeting prefrontal regions responsive to clinical intervention. Emotion regulation during illness 
remission may be enhanced by reducing prefrontal cognitive processes in favor of sensory representation and 
integration.   

1. Introduction 

Relapse and recurrence following guideline indicated pharmacologic 
(Rush et al., 2006) or psychotherapeutic (Hollon et al., 2005) treatment 
of Major Depressive Disorder (MDD) remain common and debilitating 
outcomes (Hardeveld et al., 2009). In contrast to the literature on acute 
phase treatment, where promising response indicators have been iden-
tified (Bartlett et al., 2018; Gadad et al., 2018; Godlewska et al., 2018), 
efforts to improve clinical prognosis following MDD episode have yiel-
ded few indicators of sustained remission (Kennis et al., 2020). Prior 

episodes and residual depressive symptoms remain the best predictors of 
future episodes (Eaton et al., 2008; Solomon et al., 2000; Verhoeven 
et al., 2018), yet these markers do not capture the cognitive and affective 
dynamics that underlie MDD vulnerability, nor are they sensitive to 
changes in vulnerability following prophylactic intervention. Identifi-
cation of dynamic, treatment-responsive indicators of episode recur-
rence would support greater precision in prophylactic treatment 
(Kazdin, 2007). 

An emerging neural systems model characterizes MDD vulnerability 
as an overemphasis of dysphoric cognition in response to negative 
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events, to the detriment of sensory integration of novel, depression- 
incongruent events (Disner et al., 2011; Farb et al.). In response to 
negative stimuli, acute MDD episodes are often characterized by 
reduced engagement of cognitive control in brain regions such as the 
dorsolateral prefrontal cortex (PFC), but elevated engagement of 
salience detection in medial PFC (Hamilton et al., 2012, 2013). The lack 
of dorsolateral PFC response to negative stimuli may be due to chronic 
and diffuse hyperactivity observed in resting-state scans of acute MDD 
patients relative to healthy controls (Hamilton et al., 2013; Sheline et al., 
2009). Elevated phasic (stimulus-evoked) dorsomedial PFC activity is 
also thought to contribute to depressive symptom burden, representing 
strategic aspects of depressive self-focus that may extend to the lateral 
PFC (Lemogne et al., 2012). Accordingly, response to depression-specific 
psychotherapy has been linked to normalization of hyperactivity in the 
dorsolateral PFC and related regions (Fonseka et al., 2018; Goldapple 
et al., 2004). 

As both dorsolateral and dorsomedial PFC reactivity seems to be 
provoked by negative stimuli in acute MDD, such reactivity may also 
indicate increased self-referential processing and rumination in remis-
sion, a phenotype repeatedly linked to relapse vulnerability (Kruijt et al., 
2013; Segal et al., 2006). Functional connectivity studies corroborate 
this account, linking MDD to elevated connectivity within prefrontal 
networks (Wang et al., 2016), and remission to reduced connectivity 
within these networks (Meyer et al., 2019). Prefrontal hyperactivity may 
be a lasting consequence of MDD, overwhelming attentional resources 
for engaging in new learning and behaviour even when symptoms have 
lessened (Marchetti et al., 2012). Heightened rumination and self- 
evaluation seem to lead to an expansion of typically dorsomedial PFC 
activity to include the dorsolateral-PFC, thereby reducing opportunities 
for adaptive emotion regulation, a foundational premise of the dorsal 
nexus hypothesis (Sheline et al., 2010). For example, abnormal activity 
in sensory integration regions such as the anterior insula are commonly 
observed in MDD, and their normalization may serve as a prognostic 
marker of treatment response (Dunlop et al., 2015; McGrath et al., 
2013). According to the dorsal nexus hypothesis, reducing hyperactive 
dorsolateral PFC reactivity to negative stimuli in remission may restore 
emotion regulation capacity. 

Despite its promise, a focus on PFC reactivity addresses cognitive 
features of MDD but speaks less to somatic features. Interoceptive 
dysfunction, presenting as avoidance of somatic experience, may be a 
relatively overlooked facet of depression vulnerability (Harshaw, 2015). 
Dysphoric mood induction has been linked to both activation of the PFC 
and deactivation of the right middle insula (Farb et al., 2010), a region 
supporting sensory integration, including awareness of the body’s in-
ternal state (Craig, 2002). Insula deactivation rather than PFC activation 
was associated with concurrent depressive symptoms, affirming the 
importance of sensory processing in depression. Furthermore, in one of 
the few prospective neuroimaging studies of MDD recurrence, both PFC 
activation and sensory deactivation were associated with new MDD 
episodes over a subsequent 18-month follow-up (Farb et al., 2011). In 
parallel, emerging connectivity studies of depression suggest that 
abnormal sensorimotor connectivity may be a powerful but overlooked 
feature of depressive symptom burden and treatment response (Ray 
et al., 2021). While small sample sizes limit the generalizability of 
regional findings, such studies provide initial evidence for character-
izing MDD relapse vulnerability as an over-reliance on cognitive elab-
oration to the detriment of sensory integration. 

A well-powered prospective neuroimaging design may better char-
acterize neural biomarkers of cognitive reactivity and sensory deacti-
vation. Biomarkers identified herein could then be evaluated in future 
studies for their predictive utility. Furthermore, given evidence that 
prophylactic interventions reduce MDD relapse vulnerability (Guidi and 
Fava, 2020; Kuyken et al., 2016), biomarkers can also be evaluated for 
their sensitivity to treatment response. This approach also permits 
comparing interventions, distinguishing between treatment-specific and 
trans-therapeutic mechanisms of prophylaxis. The current study 

therefore aimed to 1) identify static biomarkers of relapse vulnerability 
over the 24-month clinical follow-up, 2) identify biomarkers sensitive to 
prophylactic psychological treatment, and 3) explore mechanistic dif-
ferences between evidence-based prophylactic treatments. 

2. Methods 

Neuroimaging of a validated dysphoric mood induction task (Farb 
et al., 2010, 2011) was conducted as part of a broader RCT reporting 
both clinical and psychometric outcomes (Farb et al., 2018; Segal et al., 
2019). In brief, fully remitted participants were randomized to receive 
either Mindfulness Based Cognitive Therapy (MBCT) (Segal et al., 2012) 
or Cognitive Behavior Therapy with a Well-Being focus (WB-CT) (Fava, 
2016) before entering a 2-year follow-up period; participants performed 
fMRI and self-report assessment both before and after treatment (Fig. 1). 
The study protocol was approved by the institutional review board at the 
Centre for Addiction and Mental Health (CAMH) and registered at 
clinicaltrials.gov (NCT01178424). 

2.1. Participants 

Participants were screened for inclusion and exclusion criteria and 
provided informed consent. Inclusion criteria were: (1) not currently 
meeting a diagnosis of Major Depressive Disorder (MDD) according to 
DSM-IV criteria, (2) a score of ≤12 on the Hamilton Depression Rating 
Scale (HRSD-17), (3) ≥1 previous episode of MDD, (4) between 18 and 
65 years of age and (5) English speaking and the ability to provide 
informed consent. Exclusion criteria were: (1) a current diagnosis of 
Bipolar Disorder, Substance Abuse Disorder, Schizophrenia or Border-
line Personality Disorder, (2) currently receiving psychotherapy or 
practicing meditation > once per week or yoga > twice per week. 

Following enrolment in the RCT (n = 166), 60% of participants 
(n = 99) opted to attend the pre-intervention neuroimaging scan, of 
whom 86% (n = 85) returned for the post-intervention scan. Participants 
who failed to complete assessments were interviewed by the research 
team to confirm their intention to leave the study. Of the 85 patients 
who entered the two-year clinical follow up, data on relapse status was 
available for 81% of the sample at one year and 60% of the sample at the 
end of two-year follow up. Complete CONSORT information is presented 
in Fig. 2, and details on the rates of voluntary withdrawal vs. relapse 
over the study period are available in Table S1. The neuroimaging group 
did not differ on demographic or clinical history variables compared to 
the original RCT clinical sample at either pre- or post-intervention scan 
timepoints (Table 1) (Farb et al., 2018; Segal et al., 2019). Relapse status 
was not significantly correlated with any of the demographic variables 
listed in Table 1. 

2.2. Sample size justification 

Required sample size was determined prior to study commencement 
using the fMRIPower software package (Mumford, 2012), which used 
data from our prior mood-induction prospective relapse study (Farb 
et al., 2011) to estimate power to detect relapse from mood induction 
responses in the prefrontal cortex and sensory cortices. Detection of 
mood-related activation in the medial (BA32) and lateral (BA 46) pre-
frontal cortex achieved 80% power with 24 participants, whereas 
detection of mood-related deactivation in somatosensory, insula, and 
visual clusters (BA 18) required 35 participants within each group. 
Assuming up to 30% attrition over the clinical intervention period, it 
was decided to recruit 100 participants to baseline fMRI assessment. 

2.3. Randomization and masking 

Eligible patients were randomized in blocks of four, using computer 
generated quasi-random numbers, to receive eight weekly group ses-
sions of either MBCT or WB-CT. Randomization was performed by the 
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study coordinator via a randomization table; investigators were blind to 
group allocation during the intervention and follow-up assessment 
periods. 

2.4. Clinical outcomes 

The primary outcome measure was time to relapse/recurrence of 
DSM-IV-TR major depressive episode (the study began prior to DSM-5 
publication), using the depression module of the SCID. Symptom as-
sessments were conducted at bimonthly intervals alternating between 
an eSurvey using the Quick Inventory of Depressive Symptomatology 
(QIDS-SR) (Rush et al., 2003) and the HAMD-17 during phone in-
terviews (Fig. 1). A QIDS score of ≥12 also triggered a phone assessment 
with HAMD-17 and SCID. Episode return was defined as a score ≥16 on 
HAMD and meeting MDD criteria on a subsequent SCID. All interviews 
were audio-taped and inter-rater agreement was calculated on a subset 
of HAMD-17 interviews, yielding an intraclass correlation coefficient of 
0.94 (n = 18). Similarly, reliability of MDD diagnoses based on the SCID 
yielded a kappa 0.82 (n = 22). Relapse diagnoses were confirmed by an 
experienced research psychiatrist. 

Survival analysis on the Intention to Treat sample indicated that the 
2-year relapse rate was 21% with no differences between the groups (7/ 
37 = 19% in WB-CT and 11/48 = 23% in MBCT), χ2 = 0.2, p = .65. 
Furthermore, although 64% of participants were on a stable regimen of 
antidepressant medication over the study period, the rates of antide-
pressant medication were not significantly different in relapsers (72%) 
than in non-relapsers (61%), χ2 = 0.35, p = .56. Further details about 
assessment and follow-up are available in the published trial protocol 
(Farb et al., 2018). 

2.5. Dysphoric mood induction 

The dysphoric mood induction task has been previously validated 
(Farb et al., 2010, 2011), and was programmed for the current study in 
the Visual Basic programming language (Microsoft Visual Studio 2012; 
Redmond, WA). During fMRI scanning, participants viewed film clips 
and rated their sadness between clips. Participants viewed four sets of 
clips over two fMRI acquisition runs, with each run containing one 
neutral and one sad set per run. The first run always featured a neutral 
set followed by a sad set, with a sad set followed by neutral set in the 
second run. Each set featured an instruction screen (10 sec) prior to 
viewing (45–50 sec), rating (6 sec), and reflecting upon (50 sec) each of 
the four film clips in sequence. Participants rated their sadness on a scale 
of 1 (“Not at All Sad”) to 7 (“Extremely Sad”) using a scanner-compatible 
button box. A blank screen reflection period followed each rating to 
allow washout of film viewing effects. 

2.6. fMRI data acquisition 

Neuroimaging was performed at the Rotman Research Institute using 
a Siemens Trio 3.0-Tesla scanner, with slew rate of 400 T/m/s and a 12- 
channel asymmetric gradient head coil. During the pre- and post- 
treatment scans, 2 runs of 434 functional volumes were collected, for 

a total of 868 volumes per assessment. Additional details can be found in 
the supplementary materials. 

2.7. Preprocessing 

Data preprocessing was performed using fMRIPrep 20.0.6 (Esteban 
et al., 2019, 2020), a consensus standard fMRI preprocessing pipeline; 
complete details are provided in the supplementary materials. In sum-
mary, anatomical images from both baseline and post-intervention were 
segmented and normalized into a standard Montreal Neurological 
Institute (MNI) space through nonlinear registration. Functional runs 
were co-registered to the anatomical images, slice-time corrected, and 
resampled into 2 mm isotropic voxels in MNI space. Preprocessing and 
analysis following the fMRIPrep pipeline were performed using MAT-
LAB 2018a (MathWorks, Natick, MA, USA) and SPM12 (Wellcome 
Department of Cognitive Neurology, UK). Functional data were spatially 
smoothed using an 8 mm Gaussian kernel, as recommended for opti-
mizing group inference (Mikl et al., 2008). 

2.8. fMRI analysis 

Whole brain, voxelwise analyses were based on participants (N = 85) 
who were each scanned both pre- and post-intervention. First level 
analysis featured a block design to model neutral and sad film viewing 
periods as separate boxcar regressors across two functional runs. The 
standard six motion parameters (3 translation + 3 rotation) and global 
CSF signals were included as nuisance regressors, as CSF signals act as a 
reliable proxy for physiological noise (Birn, 2012; Kong et al., 2012). 
Participants did not differ in any of the 6 motion parameters as a func-
tion of Time or Relapse status (Table S2). Sad and neutral film conditions 
were contrasted within each participant session. 

The second level analysis employed a mixed linear model to analyze 
the dependent factor of Time (Baseline vs. Post-Intervention), and the 
independent factors Group (MBCT vs. WB-CT) and Relapse (Relapse vs. 
Remitted). Given their documented relationship to depression vulnera-
bility, residual symptoms (Paykel, 2008), number of past episodes 
(Bulloch et al., 2014), and antidepressant medication status (Dobson 
et al., 2008) were all included as covariates of interest in fMRI factorial 
models and in all Cox regressions. Residuals symptom scores were ob-
tained concurrently at the time of each fMRI assessment, and calculated 
from data reduction of previously described psychometric data (Segal 
et al., 2019). 

2.8.1. Statistical thresholds 
False positive rates were addressed through statistical thresholding 

using clusters determined by a voxel height threshold of z > 2.58 
(p < .005) and an FWE-corrected cluster threshold of p < .05 (~750 
voxels at 2x2x2 resolution). Despite earlier calls for highly conservative 
peak threshold of p < .001 (Eklund et al., 2016), more recent research 
has advocated for an equitable balance between voxel and cluster 
thresholds, an approach that has proved superior to voxelwise p < .001 
alone (Cox, 2019). Furthermore, a focus on cluster thresholding over 
voxel thresholding appears to lead to superior replicability in larger 

Fig. 1. Study design summary. Smartphones and computers alternating within the follow-up period indicate bimonthly assessment points, which alternated between 
phone-based and online eSurvey assessments. 
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datasets such as ours (170 scans) (Bossier et al., 2020). While novel 
adaptive clustering techniques have been introduced to the neuro-
imaging community during the preparation of this manuscript (Cox, 
2019; Smith and Nichols, 2009), we followed an a priori analysis plan to 
fix voxel threshold at p < .005. Our planned threshold was successfully 
employed in past studies using this film-based mood induction paradigm 
(Farb et al., 2010, 2011); control for Type-1 error was still maintained 
using the cluster correction algorithms built into SPM12. 

2.8.2. Relapse biomarker identification 
Three a priori analyses supported the study aims: 
Static Biomarkers. To identify static biomarkers of relapse vulnera-

bility, the main effect of Relapse (non-relapsers – relapsers) across both 
assessment time points (Baseline and Post-Intervention) was computed 
as an unbiased estimator of static relapse vulnerability. To test the sta-
bility of the regions identified, post hoc simple effects analyses were 
conducted for the main effect of Relapse at both baseline and post- 
intervention, as well as an exploratory conjunction analysis between 
these separate timepoint whole brain contrasts. 

Fig. 2. Study consort diagram.  
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Dynamic Biomarkers. To identify biomarkers of treatment response, 
all regions demonstrating a main effect of Time [Post-intervention – 
Baseline] within the non-relapse group were analyzed for their associ-
ation with future relapse. The analysis was constrained to the non- 
relapse group to isolate changes that could plausibly be related to 
treatment-induced prophylaxis again depression, as a more conven-
tional whole-brain Time * Relapse interaction effect might be driven by 
either baseline differences or changes in the relapse group, neither of 
which speak to treatment response. Because changes in the non-relapse 
group could be non-specific effects of time rather than relevant for 
depression vulnerability, all significant regions of interest were then 
subjected to post-hoc Time * Relapse interactions to determine their 
clinical significance. These post-hoc tests were conducted in the R sta-
tistical programming environment (R Core Team, 2017), using the 
‘lme4′ library for mixed models (Bates et al., 2015, p. 4), using the 
following equation: 

% Signal Change ∼ Time ∗ Group ∗ Relapse+(1|Participant ID)

Time * Group interactions within regions identified from the non- 
relapse group were also explored to identify differential responses to 
prophylactic intervention associated with future relapse. Again, only the 
non-relapse group was included in the initial contrasts to provide the 
most sensitive estimator of treatment response, as the relapse group, by 
definition, did not experience sufficient change over time to achieve 
prophylaxis. 

Given the typicality of running Relapse × Time interactions in clin-
ical trials rather than focusing on change in the non-relapse group, an 
exploratory Relapse × Time whole brain analysis was conducted and is 
described in the supplementary results, but are not reported in the main 
text as they did not inform treatment-related change. 

2.8.3. Survival analysis 
To better characterize neural reactivity associated with relapse, 

survival analysis was performed using Cox proportional hazards models 
featuring neural reactivity scores were estimated using the ‘survival’ 
library (Therneau and Grambsch, 2000) in the R statistical programming 
environment (R Core Team, 2017). Cox models were used to estimate 
relapse risk at each of the bimonthly time points over the follow-up 
period, including the activation levels of neural regions-of-interest 
while controlling for past episodes and concurrent depressive symp-
toms as covariates. The analysis also modelled censoring of participants 
due to study withdrawal, so that the most complete dataset available at 
each time point was used to estimate relapse risk. While neural activity 
was a continuous variable in the model, median splits were used for 
generating survival curves using the ‘survminer’ and ‘ggplot2′ libraries 
(Kassambara et al., 2020; Wickham, 2016, p. 2). 

2.8.4. Psychophysiological interaction (PPI) analysis 
The neural region-of-interest most significantly associated with 

relapse (peak MNI location: x = 52, y = − 30, z = 64) was used as a seed 
region in a post-hoc, generalized psychophysiological interaction (gPPI) 
analysis to measure task-evoked changes in whole-brain functional 
connectivity with the seed region. Within each participant-session, 
signal from the seed region was extracted to construct an interaction 
term with a vector contrasting film task conditions (Sad vs. Neutral). The 
resulting first-level participant-session maps indicated areas where seed 
region functional connectivity was significantly altered as a function of 
film condition. At the group level, relapse status was regressed onto the 
participant-session maps to identify where mood-related changes in 
somatosensory connectivity were associated with relapse. 

3. Results 

3.1. Effects of mood induction 

Characterization of dysphoric mood induction effects was conducted 
prior to analyses supporting the study aims (Table S3). Sadness ratings 
were greater for sad than neutral clips, β = 1.78, 95% CI [1.57, 2.00], 
p < .001; relapse status did not interact with evoked sadness ratings, 
β = − 0.11, 95% CI [− 0.65, 0.43], p = .69. 

The contrast of [Sad Films – Neutral Films] revealed that dysphoric 
mood induction was associated with activation along the cortical 
midline, including the posterior cingulate, striatum, and medial pre-
frontal cortex, as well as the anterior insula and superior temporal gyrus. 
Deactivations were apparent across diverse sensory representation re-
gions, including the primary somatosensory cortex, posterior insula, and 
visual regions such as the fusiform gyrus, as well as aspects of the 
inferior frontal gyrus (Fig. 3A; Table S4). 

3.2. Covariates of interest 

Three common indicators of depression relapse vulnerability, past 
episodes, residual symptoms and antidepressant status were entered as 
covariates to the dysphoric-reactivity analysis. Antidepressant 

Table 1 
Demographic and clinical characteristics by study stage.  

Measure Clinical 
Sample 
n = 166 

Baseline 
Sample 
n = 99 

Post- 
Intervention 
n = 85 

Age, mean (SD) 40.63 
(11.77) 

39.23 
(12.00) 

39.08 (12.16) 

Gender, n (%) 
Female  112 

(67.5%)  
62 (62.6%)  58 (68.2%) 

Ethnicity, n (%)    
Caucasian 132 

(82.0%) 
79 (86.8%) 73 (86.9%) 

Afro-Canadian 8 (5.0%) 1 (1.1%) 0 
Asian/East-Asian 12 (7.5%) 6 (6.6%) 6 (7.1%) 
Hispanic 4 (2.5%) 1 (1.1%) 1 (1.2%) 
Other 5 (3.1%) 4 (4.4%) 4 (4.8%) 
Education, n (%)    
High school 27 (16.3%) 16 (16.2%) 14 (16.5%) 
College/University 110 

(66.3%) 
60 (60.6%) 56 (65.9%) 

Graduate school 25 (15.1%) 16 (16.2%) 15 (17.6%) 
Other 4 (2.4%) 7 (7.1%) 0 
Employment, n (%)    
Full time job 91 (59.9%) 49 (57.0%) 46 (58.2%) 
Part time job 23 (15.1%) 15 (17.4%) 15 (19.0%) 
Unemployed 29 (19.1%) 17 (19.8%) 14 (17.7%) 
Student/Other 9 (5.9%) 5 (5.8%) 4 (5.1%) 
Age of onset of first episode of 

depression, mean (SD) 
22.43 
(10.67) 

20.87 (9.45) 20.46 (9.41) 

Number of past episodes of 
depression, mean (SD) 

3.86 (2.34) 4.17 (2.60) 4.08 (2.51) 

Previous hospitalization n (%) 38 (22.9%) 27 (27.3%) 27 (31.8%) 
Suicide attempts, n (%) 29 (17.5%) 19 (19.2%) 16 (18.8%) 
Family Hx depression, n (%) 114 

(68.7%) 
67 (67.7%) 62 (72.9%) 

Antidepressant at intake, n (%) 100 
(60.2%) 

59 (59.6%) 55 (64.7%) 

Previous or current 
psychotherapy, n (%) 

140 
(84.3%) 

77 (77.8%) 70 (82.4%) 

Remission achieved via, n (%)    
CBT 39 (28.7%) 16 (20.3%) 16 (21.9%) 
Psychotherapy 16 (11.8%) 10 (12.7%) 8 (11.0%) 
Medication 34 (25.0%) 23 (29.1%) 20 (27.4%) 
Medication & psychotherapy 26 (19.1%) 19 (24.1%) 18 (24.7%) 
Other 21 (15.4%) 11 (13.9%) 11 (15.1%) 
Number of treatment sessions 

attended, mean (SD) 
6.27 (2.00) 6.21 (2.14) 6.72 (1.48) 

Chi-square tests (for categorical variables) and t-tests for (continuous variables) 
across all 3 samples revealed no significant differences. Please note that par-
ticipants had the option to disclose demographic information at their discretion; 
as such, the total number of demographic variable responses may be less than 
the full sample size. Percentages are relative to the total number of respondents 
for each demographic variable. 
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medication status was not associated with neural reactivity to dysphoric 
mood provocation. 

However, a greater number of past episodes was associated with 
greater sadness-evoked deactivation in the medial somatosensory cor-
tex, right anterior insula, and precuneus (Table S5), accounting for 
14.4% of the variance in mean signal from these regions. Post-hoc 
analysis confirmed that this relationship was significant both within 
non-relapsers, R2 = 0.130, p < .001, and for relapsers, R2 = 0.182, 
p = .027 (Fig. 3B). 

Furthermore, greater levels of residual symptoms were associated 
with greater sadness-evoked deactivation bilaterally within the so-
matosensory cortex and posterior insula (Fig. 3C; Table S4), accounting 

for 7.6% of variance in these regions. Post-hoc analysis confirmed this 
relationship was significant for non-relapsers, R2 = 0.075, p = .002, but 
failed to reach significance for relapsers, R2 = 0.046, p = .198. 

3.3. Static (Treatment-Invariant) relapse biomarkers 

To identify treatment-invariant (static) neural biomarkers of relapse 
(Aim 1), dysphoric neural reactivity across both timepoints (baseline 
and post-intervention) was regressed onto relapse status over the 24- 
month follow-up period. The contrast of [Non-Relapsers – Relapsers] 
revealed that relapse was not associated with greater activation in any 
region, but were associated with greater deactivation in bilateral 

Fig. 3. Neural reactivity to dysphoric mood induction. A) Main Effect of Task (Sad – Neutral); B) past episodes covariate of neural reactivity, with a scatterplot of the 
relationship between past episodes and the peak covariate region located in the medial somatosensory cortex; C) residual symptom covariate of neural reactivity, 
with a scatterplot of the relationship between residual symptoms and the peak covariate region in the right somatosensory cortex and posterior insula. Scatterplots 
use data from both timepoints (baseline and post-intervention) and show linear fit within both the non-relapser and relapser sub-groups to illustrate the consistency 
of the relationship. Gray shaded areas around the fit lines are 95% confidence intervals. 
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somatosensory cortex, supplementary motor area (SMA), and fusiform 
gyrus (Fig. 4A, Table S6). Post-hoc analysis confirmed that all four re-
gions were significantly associated with relapse at both time points 
(Table S7), and an exploratory conjunction analysis that examined the 
overlap of relapse associations estimated separately at each time point 
replicated these findings (Fig. S1). 

To evaluate the potential independence of the four static relapse 
biomarkers, stepwise Cox regressions were performed, beginning with a 
baseline model containing number of past episodes and residual symp-
toms. The right somatosensory cortex region was the most significant 
correlate of relapse, demonstrating significantly greater deactivation in 
relapsers compared to non-relapsers, β = − 0.65 [− 0.87, − 0.44], 
p < .001 (Fig. 4B). Including average right somatosensory reactivity in 
the Cox model significantly improved model fit, from R2 = 0.201 to 

R2 = 0.837, χ2(2) = 28.5, p < .001. Survival probability at the end of the 
follow-up period was much higher for participants above the median 
level of somatosensory deactivation, p = .945; 95% CI [0.874; 1.00], 
than for those below the median, p = .566; 95% CI [0.419; 0.765] 
(Fig. 4C). Including additional regions did not improve model fit 
(Table S8), so only the right somatosensory region was retained as a 
static vulnerability marker. 

3.4. Dynamic (Treatment-Varying) relapse biomarkers 

To identify treatment-varying (dynamic) neural biomarkers of 
relapse (Aim 2), the effect of Time within non-relapsers was explored. 
Time-related reductions were observed in the right inferior parietal lobe, 
left DLPFC and left superior occipital regions (Fig. 5A, Table S9). Change 

Fig. 4. Main effects of future relapse status on 
neural reactivity to dysphoric mood induction. A) 
Regions sensitive to future relapse status; B) 
Boxplot of right somatosensory reactivity at both 
timepoints with 95% confidence intervals; C) 
survival plot for participants over the follow-up 
period as a function of average right somatosen-
sory reactivity (sad – neutral film clip viewing) 
across both time-points. Cross-hatches indicate 
participants censored due to relapse or being lost 
to follow-up. Please note that due to the context 
of sadness-evoked deactivation, ‘Above Median’ 
scores indicate less deactivation, whereas ‘Below 
Median’ scores indicate greater deactivation.   
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scores from all three regions were entered into separate Cox regressions 
to model relapse risk, controlling for past episodes. Concurrent depres-
sive symptoms and antidepressant status. Of the three regions, only 
change in the left DLPFC was associated with future relapse status 
(Table S10). 

Follow-up multilevel modelling of Time × Relapse effects suggested 
that reductions in left DLPFC reactivity were less pronounced for re-
lapsers than non-relapsers, Relapse × Time β = 0.40 [0.06, 0.73], 
p = .022 (Fig. 5B). The interaction was driven by a significant reduction 
for non-relapsers, β = − 0.36 [− 0.51, − 0.20], p < .001, but no evidence 
of change for relapsers, β = 0.04 [− 0.24, 0.32], p = .773 (Fig. S2). 

Compared to the baseline Cox model of past episodes, residual 
symptoms and antidepressant status, including change in left DLPFC 
reactivity significantly improved model fit, from R2 = 0.201 to 
R2 = 0.410, χ2(2) = 5.44, p = .020. Including additional regions did not 
improve model fit (Table S10), so only the left DLPRC region was 
retained as a dynamic vulnerability marker. Survival probability at the 
end of the follow-up period was much higher for participants below the 
median level of DLPFC reactivity change, p =.910; 95% CI [0.815; 1.00], 
than for those above the median, p =.567; 95% CI [0.416; 0.773] 
(Fig. 5C). 

An exploratory, whole-brain Relapse × Time interaction analysis 
suggested an additional dynamic region in the right cerebellum 

(Fig. S3A), but follow-up analysis revealed that this interaction was 
driven only by change in the relapse group (Fig. S3B, Table S11), and 
therefore not a good candidate biomarker of treatment-related change. 

3.5. Interactions with treatment group 

To identify distinctive neural mechanisms between the MBCT and 
WB-CT groups (Aim 3), the overall Group × Time interaction, 
Group × Time interaction within non-relapsers, and 
Group × Time × Relapse interactions were explored. However, no group 
effects were observed. 

3.6. Combined relapse model 

To explore biomarker independence, the candidate relapse bio-
markers were combined into a single Cox regression model, controlling 
for past episodes, depressive symptoms, and antidepressant medication 
status. The static somatosensory and dynamic DLPFC biomarkers both 
independently contributed to model fit (Fig. 6), with the combined 
model accounting for 89.7% of the variance in relapse status, with 
excellent concordance (C = 0.86). 

Fig. 5. Effects of time (baseline vs. post-intervention) on neural reactivity to dysphoric mood induction within the non-relapse group. A) Regions demonstrating 
reduced reactivity over time; B) Boxplot of left lateral prefrontal cortex (LPFC) change scores over time with 95% confidence intervals; C) survival plot for par-
ticipants over the follow-up period as a function of change in left LPFC change scores. Cross-hatches indicate participants censored due to relapse or being lost to 
follow-up. Please note that due to the context of reduced reactivity over time, ‘Above Median’ scores indicate a failure to reduce reactivity, whereas ‘Below Median’ 
scores indicate reduced reactivity. 
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3.7. Psychophysiological interaction (PPI) analysis 

Finally, a psychophysiological interaction analysis (PPI) was con-
ducted to explore the whole-brain network arising around sadness- 
evoked somatosensory deactivation. The right somatosensory region 
identified as a static biomarker of relapse was employed as a seed region. 
The analysis indicated that dysphoric mood induction introduced an 
inhibitory relationship between the prefrontal cortex/cortical midline 
and posterior sensory regions including the somatosensory, auditory, 
and visual cortices (Fig. 7A; Table S12). In response to mood induction, 
relapse was associated with a shift from positive to negative connectivity 
between the somatosensory seed and a right lateral PFC region (Fig. 7B, 
Table S12). Examination of the raw (non-PPI) functional connectivity 
scores between the right somatosensory seed region and the right LPFC 
indicated positive functional connectivity during neutral mood condi-
tions, but negative (inhibitory) connectivity under sad mood (Fig. 7C). 
Participants for whom sadness evoked a greater shift from positive to 
negative connectivity were more likely to relapse (Fig. 7D). 

4. Discussion 

Prior research has focused on elevated prefrontal activity in acute 
phase depression (Lemogne et al., 2012), which has been interpreted as 
a loss of cognitive control over emotion (Sheline et al., 2009), poten-
tially due to the recruitment of cognitive resources in depressive rumi-
nation (Segal et al., 2006). Functional connectivity studies support this 
view, as cognitive control networks including the LPFC are observed less 
frequently in patients remitted from MDD (Figueroa et al., 2019), 

whereas non-relapsers tend to show increased connectivity of the LPFC 
with executive control regions following antidepressant discontinuation 
(Berwian et al., 2020). While less often the focus of neuroimaging 
research, emerging mechanistic accounts of depression have also 
implicated sensorimotor dysfunction a reliable correlate of symptom 
burden (Ray et al., 2021), which is consistent with established findings 
linking experiential avoidance to depression vulnerability (Barnhofer 
et al., 2014; Panayiotou et al., 2015). The present findings affirm the 
role of sensory deactivation in characterizing depression relapse 
vulnerability, broadening accounts of depression vulnerability to also 
sensorimotor deactivation as a contributing vulnerability biomarker. 

Here, neural responses to dysphoric mood induction in remitted 
depressed patients implicated sensory deactivation in past, present, and 
future depression. Greater numbers of past episodes and concurrent 
residual symptoms were each linked with greater deactivation of the 
somatosensory cortex and insula, replicating prior findings (Farb et al., 
2010). After controlling for these effects, sensory deactivation further 
accounted for episode return over a 24-month follow-up, characterized 
by the deactivation of somatosensory, motor, and visual cortices, 
replicating our earlier exploratory work (Farb et al., 2011). Importantly, 
the use of two scanning sessions before and after prophylactic treatment 
allowed for novel distinctions between static (time-invariant) and 
treatment-responsive (time-varying) vulnerability biomarkers. The 
pattern of sadness-evoked sensory deactivation in somatomotor and 
visual cortices was invariant with respect to treatment in its character-
ization of depressive relapse, with right somatosensory deactivation 
providing the strongest measure of association. 

To identify relapse-relevant effects of prophylactic treatment, we 

Fig. 6. Summary model of relapse risk. The Hazard Ratios for the combined Cox regression model for Relapse that includes neural biomarker activity from both the 
static marker of relapse (right somatosensory cortex) and the dynamic marker, wherein activity changed over the intervention period (left lateral prefrontal cortex), 
controlling for past episodes, concurrent depressive symptoms, and antidepressant medication status. 
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identified changes in reactivity over the intervention period in patients 
who sustained remission across the 24-month follow-up (non-relapsers). 
Time-related changes in the remission group likely also include non- 
specific effects of time such as practice effects, so regions identified as 
changing over time were then screened for their association with future 
relapse status. Decreased reactivity was observed in the left DLPFC, 
occipital cortex and temporal/parietal junction, but only change in the 
left DLPFC indicated future relapse. Sustained remission was linked to a 
decrease in DLPFC reactivity over the treatment period that was not 
apparent in patients who relapsed. DLPFC reductions were most often 
observed in patients with elevated baseline DLPFC reactivity (Fig. S2), 
consistent with findings of both greater baseline PFC activity indicating 
acute phase treatment response (Godlewska et al., 2018; Goldapple 
et al., 2004; Lemogne et al., 2012), and reductions in cortical midline 
activity following prophylactic intervention (Williams et al., 2020). 
Together, these findings support a model of prefrontal hyperactivity as a 
dynamic, treatment-modifiable marker of maladaptive cognitive 
reactivity. 

The association of relapse with exaggerated DLPFC activation and 
somatosensory deactivation also supports a model of depression 
vulnerability based on an over-reliance on prefrontal processes such as 
cognitive elaboration to the detriment of sensory integration. Accord-
ingly, exploratory PPI analyses using the right somatosensory biomarker 
as a seed region illustrated that dysphoric mood induction introduced an 
inhibitory relationship with the right DLPFC, contralateral to the left 
LPFC dynamic biomarker. This inhibition is understandable given that 
strategies such as distraction or reappraisal feature prominently in 

treating acute phase depression (Cuijpers et al., 2013; Markowitz, 
2008). However, continued attempts to avoid negative affect or down- 
regulate negative events may leave patients at insensitive to periods of 
relative symptom quiescence, preventing identification of symptom 
improvement (Farb et al.; Mellick et al., 2019). A parallel can be found in 
the use of somatically-informed approaches to support patients in re-
covery from addiction or in the long term management of chronic pain 
(Garland, 2016) and therapies delivered during depression remission, 
such as MBCT and WB-CT, encourage the regulation of negative affect 
via exposure to its somatic and cognitive features. It is possible that 
relapsers were less flexible than non-relapsers in adapting their regula-
tory strategies; this view is supported here by reductions in DLPFC 
reactivity being limited to the non-relapse group, and in the literature by 
findings of increased perseveration in remitted depressed patients 
(Stange et al., 2020). 

The final study aim sought to distinguish MBCT and WB-CT mech-
anisms. However, consistent with psychometric analysis of the larger 
clinical trial (Farb et al., 2018; Segal et al., 2019), no neural evidence of 
process dissociation was observed. Although at a procedural level, 
MBCT and WB-CT emphasize divergent therapeutic strategies, reduction 
of DLPFC-related cognitive reactivity represents a common prophylactic 
marker. The attenuation of sensory deactivation would also clearly be a 
favorable outcome for prophylaxis, but these biomarkers were not 
impacted by prophylactic treatment. It remains possible that sensory 
deactivation might be addressed as treatment-acquired skills are 
consolidated over time (Segal et al., 2019), a potential longitudinal 
consequence of reduced prefrontal reactivity. 

Fig. 7. Effects of PPI analysis. A) Regions with altered connectivity to the right somatosensory cortex as a function of mood context (sad vs. neutral). Orange areas 
are FWE-corrected positive PPI score areas, whereas blue areas are negative scores. B) Sadness-evoked connectivity change with the right lateral prefrontal cortex 
(LPFC) is significantly related to future relapse status. C) Connectivity between the somatosensory cortex and right LPFC is responsive to dysphoric mood induction. 
D) The magnitude of sadness-evoked deactivation between right LPFC and somatosensory cortex distinguishes relapsers from non-relapsers. Interpretation of how 
this connectivity relates to the right somatosensory seed region may be challenging given that main effect within the somatosensory region was a deactivation; by this 
logic, orange areas were more negatively associated with the somatosensory cortex during sad-mood induction, whereas blue areas were more positively associated 
with the somatosensory cortex, sharing in the deactivation pattern. (For interpretation of the references to colour in this figure legend, the reader is referred to the 
web version of this article.) 
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4.1. Limitations and constraints on generalizability 

There are several limitations to consider in this work. First, while the 
study implicates novel biomarkers of depression vulnerability, it is 
limited by the lack of an independent sample by which to test these 
biomarkers’ predictive utility (Poldrack et al., 2017). Second, we uti-
lized a dual-criterion threshold for determining clinical relapse (SCID 
and HRSD); while commonly used (Klein et al., 2004; Reynolds et al., 
2006), this approach prioritizes confidence in relapse events at the 
expense of excluding partial relapse phenomena. Third, this study 
characterizes MDD vulnerability only in the context of dysphoric reac-
tivity and treatment-response to MBCT and WB-CT. A more compre-
hensive account would require integrating data from pharmacotherapy 
and neurostimulation treatments, along with a passive control for the 
time elapsed between our baseline and post-intervention scans. Fourth, 
while dysphoric-mood induction proved to be a fruitful approach, 
probing other aspects of MDD such as anhedonia or self-blame may also 
expand the neural profiles of relapse and remission (Lythe et al., 2015). 
Finally, future research should explore ecologically valid indicators of 
cognitive reactivity or sensory deactivation to characterize dynamic 
regulatory responses to momentary negative affect. 

5. Conclusions 

Neural responses to dysphoric mood-induction in remitted depressed 
patients support a 2-factor model of MDD relapse vulnerability, in which 
i) enduring patterns of dyphoria-evoked sensory deactivation contribute 
to MDD vulnerability, but ii) vulnerability may be mitigated by targeting 
prefrontal regions where elevated DLPFC reactivity seems responsive to 
clinical intervention. These findings have the potential to inform eval-
uation of prophylactic treatment response and to spur the development 
of interventions designed to consolidate clinical remission. 
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