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a b s t r a c t

The semi-parametric proportional hazards model is widely adopted in randomized clinical trials with
time-to-event outcomes, and the log-rank test is frequently used to detect a potential treatment effect.
Immuno-oncology therapies pose unique challenges to the design of a trial as the treatment effect may
be delayed, which violates the proportional hazards assumption, and the log-rank test has been shown to
markedly lose power under the non-proportional hazards setting. A novel design and analysis approach
for immuno-oncology trials is proposed through a piecewise treatment effect function, which is capable
of detecting a potentially delayed treatment effect. The number of events required for the trial will be
determined to ensure sufficient power for both the overall log-rank test without a delayed effect and the
test beyond the delayed period when such a delay exists. The existence of a treatment delay is deter-
mined by a likelihood ratio test with resampling. Numerical results show that the proposed design
adequately controls the Type I error rate, has a minimal loss in power under the proportional hazards
setting and is markedly more powerful than the log-rank test with a delayed treatment effect.
© 2015 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

The Cox semi-parametric proportional hazards model [1] is
widely adopted in clinical trials with time-to-event outcomes to
compare an experimental treatment with the best supportive care
(BSC). A key assumption in the Cox model is that the hazard ratio is
a constant over time, which may be violated as there can be a lag
period before the experimental treatment starts to exhibit a
beneficial effect. This is particularly the case for immuno-oncology
therapies, with one example being ipilimumab, a fully human
monoclonal antibody that blocks CTLA-4 to promote immunity.
Ipilimumab demonstrated statistically significant improvements in
overall survival (OS) in two Phase 3 randomized controlled trials in
patients with metastatic melanoma. In both trials a delayed treat-
ment effect of about 4 months was observed based on the
KaplaneMeier (KeM) curves for overall survival [2,3].

The log-rank test is frequently used to detect a potential treat-
ment effect in randomized time-to-event trials, which has been
shown tomarkedly lose power under the non-proportional hazards
setting [4]. Weighted log-rank tests [e.g. Refs. [5e7]] have been
Inc. This is an open access article u
proposed to account for a delayed separation of the KeM curves.
One challenge with aweighted log-rank test at the design stage of a
trial is the choice of the weight function, which determines the
amount of weights assigned to observations at various times. In
addition, when there is not a delayed treatment effect the log-rank
test is the asymptotically most powerful nonparametric test under
the proportional hazards setting [8].

The rest of the paper is structured as follows. In Section 2, we
propose a two-stage design and analysis approach for immuno-
oncology clinical trials. The number of events required for a trial
will be determined to ensure sufficient power for both the overall
log-rank test without a delayed treatment effect and the test of a
treatment effect beyond the delayed period when such a delay
exists. The existence of a treatment delay is determined by a like-
lihood ratio test with resampling [9]. Numerical results are given in
Section 3, which show that the proposed design adequately con-
trols the Type I error rate, has a minimal loss in power under the
proportional hazards setting and is markedly more powerful than
the log-rank test with a delayed treatment effect. Some discussions
and concluding remarks are given in Section 4.

2. Methods

In this section, we first briefly review the sequential testing
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approach proposed by He et al. [9] for detecting potentially mul-
tiple change points in the proportional hazards model. We simplify
their methodology by focusing on detecting only one change point,
which will serve as the first step in the analysis of an immuno-
oncology trial in our proposed approach.

Suppose there are a total of N patients recruited into an
immuno-oncology trial with time-to-event endpoints. The pro-
portional hazards model has the form h1ðtÞ ¼ ebh0ðtÞ, where h1ðtÞ
and h0ðtÞ are the respective hazard functions for the treatment and
BSC arms. Let X1;…;XN denote the independent and identically
distributed survival times, C1;…;CN be the censoring times which
are assumed to be independent of the survival times, and
Zi ¼ 1 or 0; i ¼ 1;…;N; for the treatment arm or BSC arm, respec-
tively. Only the pairs ðTi; diÞ; i ¼ 1;…;N are observed, where
Ti ¼ minðXi;CiÞ and di ¼ IfXi � Cig.

The partial likelihood of the log hazard ratio b is

LðbÞ ¼
YN
i¼1

 
ebZiP

j:Tj�Ti e
bZj

!di

; (1)

and the log partial likelihood of b is

lðbÞ ¼
XN
i¼1

di

8<:bZi � log

0@ X
j:Tj�Ti

ebZj

1A9=;: (2)

The hypotheses are H0 : b ¼ b0 versus H1 : bsb0. The Wald
statistic has the form ð�l€ðbbÞÞ1=2ðbb � b0Þ, where bb maximizes the
log partial likelihood łðbÞ and l€ denotes the second derivative of l.
The null hypothesis H0 can be evaluated based on the asymptotic
normality of. ð�l€ðbbÞÞ1=2ðbb � b0Þ.

The change point model proposed by He et al. [9] assumes the
hazard ratio function bðtÞ to be a step function as follows:

bðtÞ ¼

8>><>>:
b1 0 � t � t1
b2 t1 < t � t2
«
bkþ1 t > tk;

where 0 ¼ t0 < t1 <…< tkþ1 ¼ ∞ denote the change points. Here
we use a simplified version of their model that assumes only one
change point t to be clinically meaningful. Therefore the hazard
ratio function bðtÞ has a simpler form:

bðtÞ ¼
�
b1 0 � t � t

b2 t > t:

By replacing bwith bðtÞ in (2), we obtain a combined form of the
log partial likelihood for b1, b2 and t:

lðb1; b2; tÞ ¼
XN
i¼1

di

8<:1fTi�tg

�
b1Zi � log

� X
s:Ts�Ti

eb1Zs
��

þ 1fTi > tg

�
b2Zi � log

� X
s: Ts�Ti

eb2Zs
��9=;: (3)

The corresponding likelihood ratio statistic LRt is as follows:

LRt ¼ �2log
supblH0

ðbÞ
supb1;b2;t1

lH1
ðb1;b2; t1Þ

(4)

The following resampling procedure is adopted to estimate the
distribution of LRtunder the null hypothesis:
1. Calculate the Breslow [10] estimate of the baseline cumulative

hazard function bLðtÞ and obtain the KeM estimate of the

censoring distribution bScðtÞ. The survival functions for the BSC
arm and the experimental arm can be estimated by

bSBSCðtÞ ¼ expf�bLðtÞg and bSexpðtÞ ¼ bSexpðbbÞBSC , respectively.
2. Generate a total of B (e.g. B ¼ 2000) simulated trials with the

survival functions bSBSCðtÞ and bSexpðtÞ, which LRtcorrespond to a
true model of no change points, and the censoring distributionbScðtÞ. Obtain the likelihood ratio statistics LRb

t ; b ¼ 1;…;B for
each resampled trial.

3. Reject the null hypothesis if LRt, the likelihood ratio statistic
calculated from the original trial, is larger than the ð1� aÞ � 100
th percentile of fLRb

t ; b ¼ 1;…;Bg where a controls the false
discovery rate under the null hypothesis.

Intuitively, when analyzing an immuno-oncology trial a natural
first step is to determinewhether a change point in the hazard ratio
function exists. If a change point is not detected, one should pro-
ceed with the standard log-rank test to determine whether a
treatment effect exists. If a change point is detected, which implies
a delayed treatment effect, one should assess whether there is a
statistically significant treatment effect beyond the change point
and also ensure that there is not a statistically significant and
clinically meaningful effect favoring the control arm before the
change point. In this two-stage analysis approach it is important to
ensure that the overall Type I error rate is not inflated.

Given the desired properties above we propose the following
two-stage analysis approach:

1. Apply the likelihood ratio and resampling approach of He et al.
[9] to determine whether a change point in the hazard ratio
function exists with false discovery rate a1.

2. If a change point is not detected the standard log-rank test is
used to assess whether a treatment effect exists with Type I
error rate a2. If a change point is detected, a log-rank test for the
observations beyond the change point (or equivalently the score
test based on the proportional hazards assumption) is con-
ducted with type I error rate a1 þ a2 ¼ a to determine whether
a treatment effect exists, where a is the desired overall type I
error rate. When a treatment effect is detected the same test
should be applied to the observations before the change point to
ensure no early harm caused by the experimental treatment.

Theoretically, the proposed approach controls the overall Type I
error rate, which is split between the two analysis steps. Intuitively,
under the null hypothesis of no treatment effect a1 controls the
probability that the analysis will not use the log-rank test, and even
if we conservatively assume that the null hypothesis is always
rejected when a change point is incorrectly detected the overall
Type I error rate is still controlled by a1 þ a2 ¼ a. In practice, we
may set a1 ¼ 1% and a2 ¼ 4% when the overall Type I error rate is
set to be 5%. By having a2 ¼ 4%the proposed two-stage approach
will have minimal power loss under a proportional hazards alter-
native. For example, a designwith 90% power at the 5% Type I error
level will have 88% power at the 4% Type I error level, and a loss of
2% in this setting as a tradeoff can translate to a substantial power
gain under the non-proportional hazards setting, which is
demonstrated in Section 3.

The proposed approach can be further simplified if there is a
strong prior belief that the treatment will not cause early harm to
patients. In this case, b1 in the approach of He et al. [9] can be set to
be 0. Intuitively, with this added assumption there is one less var-
iable to estimate in the change point detection algorithm, which
increases the power for detecting the change point when one exists



Table 1
Power analyses of the proposed design and Logrank design under various scenarios.

t Exp (b1) Exp (b2) Proposed design Logrank design

Null case NA 1.0 1.0 0.048 0.049
Proportional hazard case NA 0.75 0.75 0.886 0.903
Non-proportional case 1 4 1.0 0.5 0.994 0.975
Non-proportional case 2 5 1.0 0.5 0.978 0.890
Non-proportional case 3 6 1.0 0.5 0.937 0.738
Non-proportional case 4 7 1.0 0.5 0.878 0.576
Non-proportional case 5 8 1.0 0.5 0.712 0.321
Non-proportional case 6 4 0.9 0.5 0.998 0.996
Non-proportional case 7 5 0.9 0.5 0.992 0.977
Non-proportional case 8 6 0.9 0.5 0.986 0.938
Non-proportional case 9 7 0.9 0.5 0.955 0.876
Non-proportional case 10 8 0.9 0.5 0.872 0.741
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and as a result increases the overall power of the proposed test.
When designing a trial with a potentially delayed treatment

effect one should consider where a change point is likely to occur
and what the treatment effect size is likely to be beyond the change
point. The total number of events for a trial adopting the proposed
two-stage design should provide sufficient events beyond the
change point so that a treatment effect can be detected with suf-
ficient power. This requires reasonable estimates of survival func-
tions for both treatment arms based on data from early phase trials.

3. Numerical results

In this section we consider a similar trial design as in Ref. [11] to
compare the performance of the proposed approach with that of
the standard log-rank test. A randomized trial is designed using the
conventional exponential distribution assumption, and 512 events
are required to detect an overall hazard ratio of 0.75 between two
treatment arms using a log-rank test with a two-sided Type I error
rate of 5% and power of 90%. The accrual duration for 680 ran-
domized patients is assumed to be 12 months, and the median
survival for the control arm is assumed to be 6 months. The total
number of 512 events is considered sufficient to ensure sufficient
power for detecting a treatment effect beyond the change point (if
one exists) as only 90 events are needed to ensure 90% power for a
hazard ratio of 0.5, and a change point is expected to be in the range
of 4e8 months.

Table 1 shows that the proposed design adequately controls the
Type I error rate when the experimental treatment is not beneficial.
Under the alternative of proportional hazards with hazard ratio of
0.75 the power of the proposed test is slightly less than that of the
log-rank test. Under the alternative of a delayed treatment effect
the proposed approach is markedly more powerful than the log-
rank test for various locations of the change point in the hazard
ratio function. For each scenario a total of 2000 trials were simu-
lated to compare the performance of the two designs. Intuitively,
for the proposed design to significantly outperform the log-rank
test the algorithm by He et al. [9] needs to be able to accurately
detect the change point with high probability, which requires suf-
ficient number of events to be observed both before and after the
change point. If the change point occurs very early in the hazard
ratio function the proposed design may not provide a substantial
advantage over the standard log-rank test. If the change point oc-
curs late the long time interval with no treatment effect leads to
reduced power for both approaches even though the power of the
proposed design is relatively higher than that of the log-rank test.

4. Discussions and conclusions

When designing randomized clinical trials for immuno-
oncology therapies the standard design based on proportional
hazards assumption and log-rank test may not be optimal if there is
a reasonable chance of a delayed treatment effect based on the
mechanism of action and the available pre-clinical and clinical data
to date. A two-stage design and analysis approach is proposed,
which first tries to determine if a delayed effect exists. When such
an effect is detected testing should be done for the time periods
before and after the change point separately. If a delayed effect is
not detected the proposed algorithm proceeds with the standard
log-rank test. The tradeoff between a small loss in power under the
proportional hazards setting and a marked gain when a delayed
effect exists may be considered favorable for certain classes of
therapies. When considering the two-stage approach extensive
simulations should be conducted based on reasonable assumptions
on the important trial parameters to determinewhether it is indeed
favorable over the standard design. The proposed approach may be
most valuable when sufficient numbers of events are expected for
the time periods before and after the change point. In this case, the
standard log-rank test is expected to markedly lose power, and the
proposed approach not only has a high likelihood of accurately
detecting the change point but also provides sufficient sample size
to characterize the treatment effect for both periods. The change
point detection algorithm of He et al. [9] is capable of detecting
multiple change points in the hazard ratio function, which may be
utilized to develop a broad class of designs where treatment effect
can be detected for at least one time interval with no harm
demonstrated in the other time intervals. Finally, the proposed
approach can be easily extended to group sequential trials with an
alpha-spending function. In particular, one may spend a small
portion (e.g. 20%) of the a to be spent at each interim on identifying
a potential change point. Alternatively, since it's unlikely to detect a
change point at the early interims given the immaturity of the KeM
curves onemay start to detect change points at the later interims or
only at the final analysis.
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