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Abstract: Asthma is a chronic inflammatory disease affecting the airway, and it is characterized by a
wheezing breathing sound, variable airflow obstruction and the presence of inflammatory cells in
the submucosa of the bronchi. Viral infection, pollutants and sensitivity to aeroallergens damage the
epithelium from childhood, which causes asthma. The pathogenesis of asthma includes pathways
of innate stimulation by environmental microbes and irritant pathogens. Damaged epithelial cells
produce thymic stromal lymphopoietin (TSLP) and stimulate myeloid dendritic cell maturation
through the thymic stromal lymphopoietin receptor (TSLPR) heterocomplex. TSLP-activated myeloid
dendritic cells promote naive CD4+ T cells to differentiate into T helper type 2 (Th2) phenotype CD4+

T cells. Re-exposure to allergens or environmental stimuli causes an adaptive immune response.
TSLP-activated dendritic cells expressing the OX40 ligand (OX40L; CD252) trigger naive CD4+

T cells to differentiate into inflammatory Th2 effector cells secreting the cytokines interleukin-4,
5, 9, and 13 (IL-4, IL-5, IL-9 and IL-13), and the dendritic cells (DCs) promote the proliferation of
allergen-specific Th2 memory cells. Allergen presentation by Th2 cells through its interaction with
their receptors in the presence of major histocompatibility complex (MHC) class II on B cells and
through costimulation involving CD40 and CD40L interactions results in immunoglobulin class
switching from IgM to IgE. DCs and other blood cell subsets express the TSLPR heterocomplex.
The regulatory mechanism of the TSLPR heterocomplex on these different cell subsets remains
unclear. The TSLPR heterocomplex is composed of the IL-7Rα chain and TSLPR chain. Moreover,
two isoforms of TSLP, short isoform TSLP (sfTSLP) and long isoform TSLP (lfTSLP), have roles in
atopic and allergic development. Identifying and clarifying the regulation of TSLPR and IL-7Rα in
pediatric asthma are still difficult, because the type of blood cell and the expression for each blood
cell in different stages of atopic diseases are poorly understood. We believe that further integrated
assessments of the regulation mechanism of the TSLP–TSLPR heterocomplex axis in vitro and in vivo
can provide a faster and earlier diagnosis of pediatric asthma and promote the development of more
effective preventive strategies at the onset of allergies.
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1. Introduction

Asthma is a chronic inflammatory respiratory disease leading to variable airflow obstruction.
Many immune cells, including dendrite cells, T cells, B cells, eosinophils, basophils and mast cells,
infiltrate into the submucosa of bronchi and cause a series of immune reactions in patients with
asthma [1]. The presence of inflammatory cells in the airway causes an altered repair response
and the secretion of growth factors, which induce structural changes in the airway, termed airway
remodeling [2,3]. Remodeling includes mucus cell metaplasia, hyperplasia and hypertrophy of
the airway smooth muscle, angiogenesis, fibrosis and the increase of inflammatory cells [4,5].
Dendritic cells (DCs) located in the airway epithelium and underlying mucosa are a type of
antigen-presenting cell. These cells express receptors of the innate immune system and take up
allergens to process them into small peptides, presenting them through the major histocompatibility
complex (MHC) classes I and II for recognition by T cell receptors [6]. Airways do not contain DCs at
birth. Microbe and irritant damage to the activation of the respiratory epithelium are probably the main
innate immunologic stimuli initiating the ingression of immature DCs from the bone marrow [6,7].
Such damage and activation also cause the release of chemoattractants such as chemokine (C-C motif)
ligand 20, 19, and 27 (CCL20, CCL19 and CCL27) and the ligands for C-C chemokine receptor
type 6, 7, and 10 (CCR6, CCR7 and CCR10), thus directing DC migration toward the epithelium and
underlying mucosa [6,7]. Damaged epithelial cells can produce thymic stromal lymphopoietin (TSLP),
thus stimulating myeloid DC maturation [6]. TSLP also activates DCs through TSLPR and promotes
DCs to cause the differentiation of naive CD4+ T cells into the Th2 phenotype [8]. TSLP can also
directly activate mast cells after the stimulation of epithelial cells and can induce mast cells to release
multiple proinflammatory cytokines and chemokines independent of immunoglobulin E (IgE) [9].
Additionally, activated IgE-mediated mast cells can release tumor necrosis factor-α (TNF-α), which may
induce smooth muscle cells to produce TSLP from inside the airway [9]. TSLP also upregulates
interleukin-13 (IL-13) production in natural killer T cells and decreases airway hyper-reactivity in an
asthma model [10]. TSLP can stimulate human eosinophils through the activation of extracellular
signal-regulated protein kinase, p38 mitogen-activated protein kinase and the nuclear factor-κB
(NF-κB)-dependent signaling pathway [10]. Re-exposure to allergens or environmental stimuli can
cause an adaptive immune response. In patients with asthma, exposure to allergens (such as pollen,
mold spores, dust mites, animal dander and dust), viruses or environmental stimuli can cause adaptive
immune responses. TSLP-activated DCs expressing the OX40 ligand (OX40L; CD252) can trigger
naive CD4+ T cells to differentiate into inflammatory T helper type 2 (Th2) cells and the expansion
of allergen-specific Th2 memory cells [11]. Inflammatory Th2 effector cells also secrete the cytokines
of IL-4, IL-9 and IL-13, which enhance IgE, mast cell and mucous production and increase airway
hyper-responsiveness. In allergen-specific Th2 memory cells, the MHC class II-associated allergen
interacts with the receptors on B cells and costimulates CD40 and CD40L interactions, resulting
in immunoglobulin class switching from IgM to IgE [6]. This results in the selective expansion
of T lymphocytes (particularly the Th2 type), which secrete cytokines encoded on chromosome
5q31–33, including interleukins IL-3, IL-4, IL-5, IL-9 and IL-13, and the granulocyte macrophage
colony-stimulating factor (GM-CSF) that causes airway smooth muscle contraction and vasodilatation
and increased vascular permeability and mucous secretion [1,6]. Lloyd and Saglani [12] indicated that
T cells influence the pathway of asthma by reacting to the genetic and environmental exposures and
interacting with structural cells such as epithelial cells, thus influencing inflammation. A study revealed
that the mechanisms of pulmonary viral clearance might trigger innate and adaptive immune responses
in patients with asthma [13]. Toll-like receptors (TLRs) also have critical effects on the innate immune
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system. Viral double- and single-stranded RNA, endotoxin and bacterial CpGoligodeoxynucleotides
(CpG)-containing DNA activate selective TLRs on epithelial cells, enhancing DCs motility and antigen
processing through the cytokines of TSLP that result in Th2 maturation [6,8]. TSLP is a key cytokine
that initiates the DC-mediated Th2 immune response [14]. The TSLP–TSLPR heterocomplex axis may
play a fundamental role in the innate–adaptive interface in the pathology of asthma (Figure 1).

Figure 1. Role of TSLP in asthma. Airway epithelial-secreted TSLP after stimulation by allergens,
viruses, irritants, pollutants, endotoxins and CpG DNA. TSLP can activate dendritic cells, mast cells,
NKT cells and eosinophils to interact with cytokines and inflammatory mediators on the airway smooth
muscle of patients with asthma. TSLP: thymic stromal lymphopoietin; TNF-α: tumor necrosis factor-α;
NKT: natural killer T cells; Mast: mast cells; DC: dendritic cell; Eos: eosinophils; IL-4: interleukin-4;
IL-9: interleukin-9; IL-13: interleukin-13.

2. Pediatric Asthma

Viral infection, environment, allergens, genetics, nutrition and immune responses play crucial
roles in pediatric asthma [15,16]. However, the precise mechanisms of pediatric asthma remain
unclear. In a Danish study, Harpsoe et al. [17] reported that maternal obesity and gestational
weight gain increase the risk of asthma in children. A rapid increase in the body weight index
during the first two years of childhood up to age of six results in an increased risk of pediatric
asthma [18]. Viral infections are responsible for a substantial proportion of instances of asthma
exacerbation in young children [19]. Cysteinyl leukotriene levels are elevated in children with asthma
and are also increased during respiratory syncytial virus bronchiolitis, which causes acute bronchiolitis
leading to the development of pediatric asthma [20,21]. Sex, urbanization and geographic region
are all significantly associated with acute bronchiolitis and pediatric asthma [19]. A previous study
also revealed that human asthmatic epithelium cells produce higher TSLP levels in response to
respiratory syncytial viral infections [22]. This may also explain why respiratory viral infections
exacerbate the symptoms of bronchial asthma. Parainfluenza type 1 is the most common causative
pathogen of croup. The adjusted hazard ratio for asthma was 1.78-times higher in children with
croup living in urban areas than in those living in rural areas [23]. Viral infections that trigger TSLP
secretion may increase the risk of asthma. Moreover, research on DNA methylation in pediatric
asthma has been conducted. Reduced whole blood DNA methylation at 14 CpG sites associated
with transcriptional profiles indicates the activation of eosinophils and cytotoxic T cells in pediatric
asthma [24]. A clinical diagnosis of asthma is difficult if the patient is younger than two years.
In Taiwan, the diagnosis of asthma is based on the Global Initiative for Asthma guidelines. In older
children, spirometry with forced expiratory volume in 1 s (FEV1) less than 80% can assist in diagnosing
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pediatric asthma. The treatment response to bronchodilators reflects the reversibility of airway
obstruction and can be used as an adjunctive test to diagnose pediatric asthma. The response to
a short-acting bronchodilator can be expressed by the absolute change in FEV1 [25]. A change
of 12% or higher and 200 mL or above in the FEV1 from the baseline is commonly defined as a
significant response to treatment [26]. However, Tse et al. [25] examined the diagnostic accuracy of
the bronchodilator response of 12% and concluded that a threshold of less than 8% is superior to
12% for asthma diagnosis. Malinovschi et al. [27] demonstrated that exhaled nitric oxide is an indicator
of inflammation and is thus related to the diagnosis of asthma. Oh et al. [28] reported that exhaled
nitric oxide might be a more favorable biomarker than airway hyper-responsiveness and pulmonary
function for asthma phenotypes in preschool children. Epidemiological studies have indicated
that the occurrence of suspended substances in the environment is strongly correlated with the
development of asthma. When these substances are inhaled into the respiratory tract, they may cause
allergies and inflammation of the airway. Therefore, the avoidance of allergens can prevent asthma
development in children. Clinically, the main treatments for asthma can be divided into five broad
categories: (1) steroids: corticosteroids [29], prednisone [30] and methylprednisolone (Solumedrol) [31];
(2) leukotriene modifiers: montelukast (Singulair); (3) theophylline (Xanthium) [32]; (4) bronchodilators
salmeterol (Serevent) [33], albuterol (Ventolin) [34], bambuterol (Bambec) [35], fenoterol (Berotec) and
terbutaline (Bricanyl); and (5) Intalinhaler: cromolyn sodium [36]. Corticosteroids, currently the
most efficacious drugs used to treat asthma and respiratory irritation [29], inhibit proinflammatory
protein production [37]; reduce the number of eosinophils, T lymphocytes, mast cells and DCs during
respiratory inflammation [38]; and decrease the incidence of asthma and exercise-induced asthma [39].
However, they have numerous side effects, such as dependency on drug dosage [40]. Overuse of
steroids may elicit side effects such as inhibition of growth hormone secretion [41] and development of
osteoporosis [42], adrenal insufficiency [43] and diabetes [44]. Salmeterol is a long-acting β2-agonist
drug that reduces the severity of asthma in children [45] and suppresses TSLP secretion in human
bronchial epithelial cells [33]. Usually, for the acute exacerbation of asthma, bronchodilators, such as
the short-acting β2-agonist, are the primary drugs administered to relive shortness of breath. During an
asthma attack, children experience difficulty breathing, which may cause mortality. However, asthma
attacks in children may not be due to exposure to allergens; cold air exposure and excessive exercise
are also notable causes. Pediatric asthma attacks often have different triggers, but the clinical
symptoms are similar. Approximately 5%–10% of those who experience an asthma attack have
a history of severe asthma [19]. Usually, the condition of such patients cannot be effectively controlled.
These patients are a high-risk group who are likely to die due to asthma. Although patients with
asthma have different allergies, chronic bronchial inflammation and airway fibrosis are the main causes
of asthma. Previous studies have revealed that certain genes regulate cytokines and antibodies in
allergic diseases [46]. However, in some patients, asthma cannot be detected using an allergen-specific
antibody. Additionally, some children are too young to undergo spirometry. Therefore, these children
cannot be diagnosed early and may die due to an asthma attack. The early diagnosis of asthma in
children is crucial. The TSLP–TSLPR heterocomplex axis is involved in innate–adaptive immunity;
the TSLPR heterocomplex may be an early biomarker of the development of asthma and therefore
warrants further investigation.

3. Thymic Stromal Lymphopoietin

From 25 genome-wide association studies of asthma, 16 genes including TSLP were implicated in
disease pathophysiology, as indicated by functional studies [47]. TSLP has been identified in culture
supernatants of murine thymic stromal cells and has been defined as an epithelial-derived cytokine.
The human TSLP gene is located on chromosome 5q22.1 [48,49]. It is a four-helix bundle cytokine [50].
Its function is similar to that of IL-7, in that it can promote the early differentiation of T and B cells.
It also promotes B cell proliferation and prevents cell apoptosis [49,51]. Many cells can produce
TSLP, including epithelial cells and keratinocytes in the skin, gut, lung, eye tissue and thymus [52,53].
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TSLP can also be secreted by mast cells [54], basophils and DCs [55]. In humans, atopic dermatitis
is characterized by a high level of TSLP in skin lesions, which is secreted by keratinocytes [56].
Keratinocytes that lack retinoid X receptors produce TSLP to induce atopic dermatitis [57]. In patients
with allergic conjunctivitis, conjunctival epithelial cells produce TSLP, which activates DCs and induces
IL-13 mRNA expression in mast cells synergistically with IL-33 to cause ocular allergy [58]. In patients
with allergic rhinitis, TSLP expression is increased in the nasal mucosa and is strongly correlated with
the number of eosinophils and the clinical severity of symptoms [59]. In patients with autoimmune
diseases, TSLP may also trigger Th1 and Th17 to secret proinflammatory cytokines that contribute to
tissue inflammation [60]. TSLP and its receptor play a proinflammatory role by enhancing Th17 cells
and causing tissue destruction in patients with autoimmune arthritis [60]. Recently, researchers have
revealed that the secretion of TSLP by cancer cells can reduce the antitumor activity of Th1 cells [61].
However, the role of TSLP in tumor progression is still controversial [62]. Recently, two isoforms of
TSLP have been discovered. Increasing studies have focused on the role of these two isoforms in
diseases. These isoforms consist of 159 amino acids and 60 amino acids, respectively [48,49]. The short
isoform TSLP (sfTSLP) exerts homeostatic effects, whereas the long isoform TSLP (lfTSLP) exerts
inflammatory effects [63,64]. lfTSLP can be regulated through TLR 2, 3, 5 and 6 to maintain Th2 cytokine
secretion [53]. In human keratinocytes, toll-like receptor ligands (polyI:C, FSL-1 and flagellin), as well as
proinflammatory cytokines (Interferon-γ (IFN-γ), TNF and IL-1β) are potent inducers of lfTSLP,
but not sfTSLP [63–65]. In human intestinal and skin tissue, the ratio of these two isoforms is highly
correlated with the severity of inflammatory disorders [66]. Additionally, 1α,25-dihydroxyvitamin
D3 (1,25D3), sfTSLP inducer, and sfTSLP itself can alleviate house dust mite-induced asthmatic
airway inflammation [67]. Because lfTSLP and sfTSLP have the same C-terminal portion, C-terminal
targeting neutralization leads to severe side effects, because these two isoforms have opposite functions.
The relationship between the polymorphisms of the TSLP gene promoter and susceptibility to bronchial
asthma [33] has been evaluated using sex-stratified analysis method [68,69].

4. TSLPR Heterocomplex

Immune regulation disorder is a key factor in disease development in humans [70]. It is crucial
to maintain the balance between TSLP secretion by the epithelium and TSLPR heterocomplex
expression levels in target cells. In peripheral blood, the TSLPR heterocomplex is considerably
expressed in monocytes [71], DCs [72], lymphocytes [73] eosinophils [10,74], basophils [75] and
mast cells [76]. TSLPR heterocomplex is composed of TSLPR (also known as cytokine receptor-like
factor 2 (CRLF2)) [77] and the IL-7Rα chain [78]. The regulation of these two subunits of the
TSLPR heterocomplex is different. Exon 4 of IL-7Rα single-nucleotide polymorphism (SNP) is
correlated with the severity of asthma [79,80]. After TSLP binds to the TSLPR heterocomplex,
the phosphorylation of Janus kinase1 (Jak1) and 2 (Jak2) activates signal transducers and activators of
transcription (STATs) proteins, including STAT1, STAT3, STAT4, STAT5a, STAT5b and STAT6. TSLP also
activates other signaling molecules such as phosphatidylinositol-3-kinase (PI3K)-protein Kinase B
(AKT)- mammalian target of rapamycin complex 1 (mTORC1) pathway (PI3K/Akt/mTOR pathway),
Proto-oncogene tyrosine-protein kinase/Tyrosine-protein kinase pathway (SRC/TEC pathway),
extracellular-signal-regulated kinase 1/2 (ERK1/2), NF-κB, c-Jun N-terminal kinase 1/2 (JNK1/2)
and P38 mitogen-activated protein kinases (P38MAPK) activation [81,82]. Through the TSLPR
heterocomplex, TSLP-induced bone marrow-derived DCs (mDCs) express higher levels of CD40, CD54,
CD80 and CD86 surface markers and secrete IL-8, eotaxin, macrophage-derived chemokine (MDC) and
thymus and activation regulated chemokine (TARC). Though CCR4 interaction, mDCs activate T cells
polarized to Th2 cell development. Th2-type cell development leads T cells to secrete IL-4, IL-5, IL-13
and TNF. Simultaneously, the secretion of Th1-type cytokines such as IFNγ, IL-12, IL-23 and IL-27
is suppressed by treatment with TSLP [83,84]. TSLP and TSLPR heterocomplex cognation activates
the Jak-STAT signaling pathway, which leads to the proliferation and chemotaxis of eosinophils.
Although sfTSLP can bind to the TSLPR heterocomplex and has superior antimicrobial peptide (AMP)
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activity to lfTSLP, it regulates atopic inflammation, in contrast to traditional TSLP (lfTSLP). The receptor
that mediates this effect is still unclear [64,66,85], as is the unique receptor of sfTSLP. Recently,
structural interactions between TSLP, TSLPR and IL-7Rα have been reported [86]. The association
of IL-7Rα gene polymorphisms with asthma has been observed in different populations [79,80,87].
TSLPR SNP analysis has been conducted in eosinophilic esophagitis [88], atopic dermatitis and eczema
herpeticum [89], but the TSLPR SNP in pediatric asthma is still unclear. The administration of a TSLPR
blocker can alleviate the severity of asthma [81–85,90]. Owing to the complicated regulation by the two
isoforms of the TSLP and TSLP receptor heterocomplex, especially the expression of IL-7Rα is highly
regulated and involved in T cell activation [91,92]. It is a considerable challenge in the therapeutic
application of the TSLP blocker [86].

5. Role of the TSLP and TSLPR Heterocomplex in Asthma

Studies have evaluated the role of the TSLP and TSLPR heterocomplex in asthma. Epithelial cells,
neutrophils, endothelial cells, macrophages and mast cells have been revealed to be significant sources
of TSLP in asthmatic patients [93]. TSLP is associated with atopic diseases, and TSLP genes are
associated with allergic inflammation mechanisms, including eosinophil levels, IgE levels and bronchial
asthma [8]. TSLP is a signature “Th2-favoring” or proallergic cytokine that has recently been linked
to asthma [82]. A high level of TSLP in asthmatic airways has been correlated with Th2-attracting
chemokines and disease severity [93]. TSLP and TARC/CCL17 expression is associated with airway
obstruction in patients with asthma [8,54]. TSLP-influenced pulmonary Treg function is associated with
tolerogenic immunity and increased protein expression in bronchoalveolar lavage fluids in the airways
of patients with asthma [94]. Moreover, human asthmatic epithelial cells express TSLPR heterocomplex,
and TSLP induces IL-13 production, which increases bronchial epithelial cell proliferation and injury
repair [95]. The viral and genetic risk factors for the TSLP and TSLPR heterocomplex may have
important roles in the onset of asthma. In response to rhinovirus infection, asthmatic epithelial cells
produce higher pro-Th2 cytokine TSLP and lower Interferon-β (IFN-β) levels [96]. A previous study
revealed that compared with the population without asthma, the SNPs of the TSLPR gene had a higher
allele frequency of 33G > C in patients with asthma [97]. However, the polymorphisms of TSLPR
were not significantly associated with total IgE, forced vital capacity (FVC) or FEV1 in patients with
asthma [79]. A recent study reported that epistasis between TSLP and SPINK5 genes contributes to
pediatric asthma [98]. Additionally, TSLP assists natural helper cells to induce corticosteroid resistance
in patients with asthma [99]. The anti-TSLP antibody reduces allergen-induced bronchoconstriction in
patients with allergen-induced asthma [100]. It also decreases sputum and blood eosinophils in patients
with allergic asthma [100]. The human anti-TSLP antibody named tezepelumab in the phase 2 study
had a reduced annualized rate of asthma attack on uncontrolled asthmatic adults that were already
treated with medium-to-high doses of inhaled glucocorticoids and long-acting β-agonists. [101].

6. Conclusions

Atopic diseases such as asthma, allergic rhinitis and atopic dermatitis are Th2-dominated
inflammatory diseases Genetic, environmental and nutritional factors all contribute to the development
of allergies, and more effective diagnostic markers are urgently required [102]. The role of the
TSLP–TSLPR heterocomplex axis in these atopic diseases is increasingly pertinent and requires
clarification [53]. Additionally, in clinical settings, the diagnosis of pediatric atopic asthma requires
many criteria, clinical symptoms, family history and other biochemical analyses such as total IgE,
allergen-specific IgE and eosinophil cell count, to be fulfilled. Additionally, lung function must
be evaluated, and practitioners should directly assess discomfort in patients. Asthmatic symptom
scoring, spirometry and inhaled nitric oxide are difficult to perform in young children. A rapid and
straightforward diagnosis method for doctors is crucial if an adequate correlative biomarker can be
identified. In our group, we revealed that IgE and TSLP levels in the peripheral blood of children with
allergic asthma are higher than those in normal children. Furthermore, TSLPR mRNA expressions in
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the peripheral blood mononuclear cells of children with allergic asthma are significantly higher than
those in other groups (nonallergic nonasthmatic, nonallergic asthma and allergic nonasthmatic) [103].
However, clarifying and identifying the regulation of TSLPR and IL-7Rα in pediatric asthma is still
difficult because the type of blood cells and the type of expression for each blood cell in different stages
of atopic diseases are poorly understood. We hypothesize that TSLPR heterocomplex expression by
each peripheral blood cell subset is different in pediatric atopic asthma (Figure 2). Further investigation
of the following issues is recommended: (1) the two isoform ratios of TSLP during atopic development
and the therapeutic period; (2) TSLPR heterocomplex expression (inducible by allergic stimulation or
hereditarily); and (3) the intra-structural stability of TSLPR heterocomplex and the affinity or avidity
between the two isoforms of TSLPs and the TSLPR heterocomplex. We believe that an integrated
assessment of these issues can provide a faster and earlier diagnosis for pediatric asthma and promote
the development of more effective preventive strategies in the future.

Figure 2. Hypothesis of TSLPR heterocomplex regulation during allergic inflammation. Three possible
expression changes occur after allergic inflammation: (I) TSLPR heterocomplex expression increased on
the cell membrane surface by one or several specific cell subsets. (II) TSLPR heterocomplex expression
by one or several specific cell membrane surfaces does not change, but the absolute number of one or
several specific cell subsets is increased. (III) A combination of the phenomenain (I) and (II). “?” means
cell subsets from T, Mo: monocyte; DC: dendritic cell; Eos: eosinophil; Neu: neutrophil; or mast cells;
lfTSLP: long isoform of TSLP; sfTSLP: short isoform.
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