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Glioblastoma (GBM) is the most aggressive and common brain cancer in
adults with the lowest life expectancy. The current neuro-oncology practice
has incorporated genes involved in key molecular events that drive GBM
tumorigenesis as biomarkers to guide diagnosis and design treatment.
This study summarizes findings describing the significant heterogeneity of
GBM at the transcriptional and genomic levels, emphasizing 18 driver
genes with clinical relevance. A pattern was identified fitting the stem cell
model for GBM ontogenesis, with an upregulation profile for MGMT and
downregulation for ATRX, H3F3A, TP53 and EGFR in the mesenchymal sub-
type. We also detected overexpression of EGFR, NES, VIM and TP53 in the
classical subtype and of MKi67 and OLIG2 genes in the proneural subtype.
Furthermore, we found a combination of the four biomarkers EGFR, NES,
OLIG2 and VIM with a remarkable differential expression pattern which
confers them a strong potential to determine the GBM molecular subtype.
A unique distribution of somatic mutations was found for the young and
adult population, particularly for genes related to DNA repair and chroma-
tin remodelling, highlighting ATRX, MGMT and IDH1. Our results also
revealed that highly lesioned genes undergo differential regulation with par-
ticular biological pathways for young patients. This multi-omic analysis will
help delineate future strategies related to the use of these molecular markers
for clinical decision-making in the medical routine.
1. Introduction
Glioblastoma multiforme (GBM) is the most frequent and aggressive deadly
primary brain tumour in adults, accounting for approximately 82% of all malig-
nant gliomas [1]. Although it can affect children, its incidence riseswith age. GBM
tumours are characterized by increased cell proliferation, aggressive invasion,
active angiogenesis and a remarkable genetic heterogeneity [2]. Histologically,
tumours display a high morphological variability as they contain pleomorphic
and multinucleated cells with high mitotic activity, show microvascular prolifer-
ation, undergo severe and characteristic endothelial hyperplasia, contain
intravascular microthrombi, and extensive necrosis of an ischaemic or pseudo-
empalized nature. The multiforme denomination of GBM tumours is due to the
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diverse and heterogeneous microenvironments that parallel
their multiple histological patterns and cytological features.

According to their ontogeny, most GBMs are primary
tumours that develop de novo in the absence of previous neo-
plasia. Primary GBMs are highly aggressive and invasive,
tend to extend to both cerebral hemispheres, or are bilateral,
and they are most commonly manifested in elderly patients.
Secondary GBMs, in contrast, are located in the frontal lobe
and develop mainly in younger patients suffering from ana-
plastic astrocytoma or low-grade astrocytoma, presenting a
much better prognosis [3]. Recent reports have determined
that primary and secondary glioblastomas have distinct genetic
alterations related to particular biological pathways [1,3,4],
suggesting they require different therapeutic approaches.
Hence, from the clinical perspective, discerning between pri-
mary and secondary GBM is highly relevant [2]. Usually,
primary GBMs present overexpression and gene amplification
of epidermal growth factor receptor (EGFR) and mutations in
cyclin-dependent kinase inhibitor 2A (CDKN2A/p16INK4A)
and phosphatase tensin homologue (PTEN) genes. Molecular
biomarkers of secondary GBM include mutations in tumour
protein 53 (TP53) and isocitrate dehydrogenase-1 (IDH1)
genes, which correlate strongly with O6-methylguanine-DNA
methyltransferase (MGMT) promoter methylation [3,5].

Initiation and progression of GBM tumorigenesis are
related to genetic and epigenetic alterations andmolecular sub-
types of GBM have unique transcriptional profiles. Based on
expression features, GBM tumours were originally classified
into four subtypes: neural, proneural, classical (proliferative)
and mesenchymal [6], a scheme that has been recently revised
using transcriptomic information. The improved classification
eliminates the neural subtype and considers tumours of this
molecular type as containing normal brain tissue contami-
nation [7,8]. GBM molecular subtypes are also associated
with different spatial zones, heterogeneity and aggressiveness
of the tumour [9].

GBMs belonging to the proneural subtype have alterations
in TP53, PDGFRA, PIK3CA and IDH1 genes [10,11]. The classi-
cal subtype, also known as a proliferative subtype, has been
associated with high levels of cell proliferation and upregula-
tion of EGFR [12]. Mesenchymal GBMs show overexpression
of mesenchymal and astrocytic markers (CD44, and MERTK)
and downregulation of neurofibromatosis type-1 (NF1) and
upregulation of chitinase 3 like 1 (CHI3L1/YKL-40) and MET
are frequently observed [10]. While the proneural subtype
has been mostly reported in younger patients and is associated
with a favourable prognosis, the mesenchymal and the
classical subtypes are usually linked to more aggressive
high-grade gliomas that appear in adult or elderly life.

Recent advances employing next-generation sequencing
have led to a better insight into the molecular biology of glio-
mas contributing potential markers for better diagnosis and
new approaches to finding specific treatment strategies [13].
GBM remains an incurable deadly disease with an abysmal
prognosis that has not significantly shown improvement,
causing an enormous individual and societal burden. Thus,
there is a need for tumour-specific drug targets and pharma-
cological agents to inhibit cell migration, dispersal and
angiogenesis [7]. For a current detailed review, see [14].

In the last years, the clinical relevance of GBM heterogen-
eity has been highlighted [15]. This particular feature makes
this type of cancer one of the most challenging to treat and
consists of inter-tumour and intra-tumour feature variations.
Inter-tumour heterogeneity refers to GBMs from different
patients with altered and differing genotypes and pheno-
types related to diverse etiological and environmental
factors. On the other hand, intra-tumour heterogeneity
refers to the presence of multiple and different cell subpopu-
lations within the same tumour, defining its topology and
architecture [16]. The comprehensive genomic classification
of GBM paves the way for an improved understanding of
tumour progression, which in the future may result in per-
sonalized therapy. Hence, there is an urgent need to further
our knowledge of tumour heterogeneity as it will help
design better therapies against GBM and tumour recurrence.

Based on a multi-omic analysis, in this study we describe
the heterogeneity of GBM at the transcriptional and genomic
levels, with emphasis on driver genes currently used as bio-
markers. For that purpose, from 60 clinical reports, we
selected and analysed 18 driver genes that have shown deregu-
lated behaviour in patient samples. Using bioinformatics
pipelines and the TCGA database, we examined their mRNA
expression in the different GBM molecular subtypes and
the presence of somatic mutations linked to possible disrup-
tion of protein function. We hope that the new knowledge
generated in this study leads to novel therapeutic intervention
strategies.
2. Material and methods
2.1. Data mining for selection of GBM driver genes

currently used as genomic markers in the clinic
The literature research was performed using a systematic
approach to identify GBM biomarkers in the routine clinical
diagnosis that yielded differential transcriptomics or genomic pro-
files on tumour samples. Using a combination of three terms:
(1) ‘Glioblastoma’, (2) ‘Clinical’ and (3) ‘Case’, a total of 3238 clinical
reports were found using the BVS (1548), Cochrane (0), Karger
(271) and PubMed (1419) databases. Clinical reports were ident-
ified and selected by title and summary. All articles were
evaluated using the guidelines of the Preferred Reporting Items
for Systematic Reviews and Meta-Analyses (PRISMA) (http://
prisma-statement.org/) to determine their eligibility, resulting in
60 reports, as described in electronic supplementary material,
file 1. The search was conducted in July 2020 and focused on
studies published in June 2005–June 2020.

2.2. Data source for the gene expression analysis
Eighteen genes were found to be involved in GBM diagnosis
during the neuro-oncology clinical routine and evaluated for
their mRNA expression analysis using data from the Glioblas-
toma BioDiscovery Portal (GBM-BioDP) https://gbm-biodp.nci.
nih.gov [17]. The gene expression data include normalized
(level 3) data from Verhaak 840 Core, a filtered dataset con-
formed of three microarray platforms: HT_HG-U133A (488
patient samples/612 042 features), HuEx-1_0-st-v2 (437 patient
samples/618 631 features), and AgilentG4502A_07_1/2 (101 +
396 patient samples/617 813 features). GBM molecular subtypes
were assigned according to the Verhaak classification [11].

2.3. Determination of gene expression of GBM driver
genes

We classified the mRNA expression analysis of the driver genes
according to their biological ontology into three groups: (1) DNA
repair and chromatin remodelling, (2) cytoskeleton and cellular
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proliferation, and (3) tumour suppressors genes. Using Python
scripts (https://github.com/kap8416/GBM-META-ANALYSIS-
OF-DRIVER-GENES), we determined the average and standard
deviation of the z-score expression values for all patient results
and classified them into the molecular GBM subtypes (Classic,
Proneural, Mesenchymal), and grouped them by their
corresponding biological gene ontology group.

We examined the mRNA expression patterns of the driver
genes clustered by patient subgroups taking their age into
account. From a total of 166 patients, three subgroups were cre-
ated: 10–29-year-old patients (young subgroup), 30–59 years
old (adult subgroup) and 60–89 years old (elderly subgroup).
The average of the z-score values among the patient subgroups
was clustered into the molecular GBM subtypes.

Finally, the Mann–Whitney test was used to examine the stat-
istical difference in the mRNA expression z-scores between GBM
molecular subtypes and patient subgroups and between each
gene and GBM subtypes. Multiplicity adjustments were per-
formed on the obtained p-values by using the Benjamini–
Hochberg method. Statistical significance for the test was set to
p < 0.05.
0200072
2.4. Data source for somatic mutations of GBM
Genomic data from 588 patients for the 18 genes previously
identified as molecular markers was downloaded from the
NIH website https://portal.gdc.cancer.gov/ using the following
restriction criteria: Primary site: brain; Program: TCGA; Project:
TCGA-GB; Disease Type: glioblastoma; Sample type: primary
tumour; Clinical age of diagnosis: 10–29 years, 30–59 years and
60–89 years.
2.5. Determination of mutations in GBM and driver
genes

Using Python scripts (https://github.com/kap8416/GBM-META-
ANALYSIS-OF-DRIVER-GENES), the number of mutations per
gene in the TCGA-GBM project was determined by calculating
the amount of different genomic DNA changes reported in each
gene. Subsequently, the relative percentage of mutations per
chromosome was calculated by taking into account the total
length (base pairs) of the respective chromosome. Substitutions, del-
etions and insertionswere identified, then the number of nucleotide
changes occurring in all genes was determined, and their distri-
bution was compared to the distribution of those present in the
driver genes. Moreover, the total number of mutations per gene
and the genome location of the somatic mutations were compared
among patient subgroups according to their age. Finally, the
protein phenotype impact values (polyphen) of all the canonical
missense variant consequences of the driver genes in the TCGA-
GBM project were determined, analysed and compared between
patient subgroups clustered by age.
2.6. Functional enrichment for driver genes, unique or
shared pathways

GO enrichment analysis was performed using the Metascape
tool (http://metascape.org/). We then used the meta-analysis
workflow to compare the driver gene pathways with those of
the highly mutated genes to identify unique or shared biological
pathways in which they are involved. Using Python scripts, the
top 50 mutated genes observed in the TCGA-GBM project were
clustered by age group. Those genes were selected and analysed
by their GO enriched terms. Finally, affected genes in their
protein polymorphism phenotype with more than three probably
damaging consequences (PR) were clustered by the patient
subgroups for the GO terms and TRRUST enrichment analysis.
3. Results
3.1. Selection of the GBM driver genes as genomic

markers in the clinic
First, we aimed to identify and select the top used biomarkers
in the clinic. Sixty clinical reports were found from 2005 to 2020
that were fully text reviewed (described in electronic sup-
plementary material, F1). A total of 73 patients with GBM
were characterized and described in table 1. Patient demo-
graphics consisted of 43 men and 30 women with ages
ranging from four to 78 years and a mean age of 43.31.
Twenty-two patients were classified as young (4–29 years), 30
as adults (30–59 years) and 21 as elderly (60–78 years).

Patients underwent a biopsy procedure to evaluate the
expression and mutations of biomarkers, which were the
most representative genes used in clinical cases over the last
15 years. More than 80% of the clinical cases highlighted
the use of a combination of 2–11 of the 18 markers. The
most-reported were IDH1, GFAP, MKi67 and MGMT,
followed by TP53, ATRX and EGFR.

In this systematic review, only the biomarkers with differen-
tial positive results for patient diagnosis in the clinical reports
were selected for further analysis (table 1). According to their
Biological Process Gene Ontology, driver genes were clustered
using k-means into three groups to determine their possible
role in common pathways. The first group includes ATRX,
H3F3A, IDH1, MGTM and TERT driver genes related to DNA
repair and involved in chromatin remodelling pathways. The
second group includes the cytoskeleton and cellular prolifer-
ation-related genes EGFR, FLT1/(VEGFR), BRAF, GFAP, MKi67,
NES, OLIG2, PIK3CA, SMAD3, S1001A and VIM. In particular,
EGFR has an essential role in activating the receptor tyrosine
kinase/Ras/phosphoinositide3-kinase RTK/RAS/PI3 K pathway.
Alterations in this pathway disrupt the G1-S transition in the
cell cycle, which is highly relevant in the progression and exces-
sive proliferation of GBM tumour cells. The third group
included tumour suppressor genes SMARCB1/INI1 and TP53
which are negative regulators of cell growth control, normally
acting to inhibit tumour development.

3.2. Transcriptomics analysis of driver genes of GBM
tumorigenesis

Due to the high inter- and intra-tumour heterogeneity in
GBM and to gain insight into this complex process, the
expression profiling pattern of the top 18 genes used as
biomarkers in the clinical report systematic review was ana-
lysed using gene expression data from the Glioblastoma
BioDiscovery Portal. We focused on this analysis according
to the Verhaak molecular classification of GBM, which
groups tumours as proneural, classical and mesenchymal
[11,16]. The gene expression analysis included all data avail-
able from the GBM-BioDP, including a total of 166 patients,
from which 56 were proneural, 53 classical and 57 mesench-
ymal subtypes. Gene expression data from each patient were
available for the 18 driver genes analysed (table 2).

First, we analysed the overall profile expression pattern of
each gene among GBM subtypes (table 2). For the DNA
repair and chromatin remodelling genes, such as ATRX and
H3F3A, we observed a tendency to a lower expression level
in mesenchymal and an increased expression in proneural
compared to the classic subtype. An inverse pattern was
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Table 2. Summary of driver gene expression in GBM molecular subtypes with significant p-value. Data represent mean ± standard deviation for z-score in each
gene. Statistical significance is represented by asterisks.

proneural classical mesenchymal

DNA repair and chromatin remodelling genes

ATRX 0.370 ± 0.936 0.084** ± 0.601 −0.213**** ± 0.591

BRAF −0.152 ± 0.495 −0.237 ± 0.563 0.056 ± 0.468

H3F3A 0.340 ± 0.572 −0.079**** ± 0.613 −0.495**** ± 0.606

MGMT −0.128 ± 1.237 −0.078 ± 1.464 0.614** ± 1.268

TERT 0.148 ± 0.385 0.26 ± 0.482 0.156 ± 0.490

cytoskeleton and cellular proliferation genes

EGFR −3.494 ± 3.780 3.502**** ± 4.360 −2.002* ± 3.787

FLT1 −0.571 ± 0.813 −0.301 ± 1.023 0.082** ± 1.093

GFAP 0.114 ± 0.870 0.367 ± 0.493 −0.293* ± 1.037

IDH1 −0.175 ± 0.881 0.484** ± 1.089 −0.168 ± 0.872

MKI67 1.019 ± 1.545 −0.114**** ± 1.269 −0.325**** ± 1.005

NES −0.032 ± 0.852 1.525**** ± 1.004 0.053 ± 0.909

OLIG2 1.316 ± 1.182 0.070**** ± 1.173 −1.455**** ± 0.964

PIK3CA 0.241 ± 1.043 −0.178* ± 0.924 −0.146* ± 0.763

S100A1 0.520 ± 1.218 −0.723**** ± 1.063 −0.013* ± 1.464

SMAD3 −0.234 ± 0.711 0.300**** ± 0.425 0.261**** ± 0.579

VIM −0.602 ± 1.134 0.805**** ± 0.973 0.671**** ± 0.878

Tumour suppressor genes

SMARCB1 0.934 ± 0.884 0.425* ± 1.005 −0.393**** ± 0.893

TP53 0.101 ± 1.026 0.703*** ± 0.813 0.074 ± 0.775

*p < 0.05, **p < 0.01, ***p < 0.001 and ****p < 0.00001.
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observed for MGMT with a tendency to be upregulated in
mesenchymal and downregulated in proneural subtypes.
Related to TERT, no expression differences are observed
between the subtypes.

Among the cytoskeleton and cellular proliferation genes,
the most substantial differences among subtypes are for
EGFR, with a general tendency to be upregulated in the clas-
sical proliferative subtype and downregulated in the
proneural and mesenchymal subtypes (table 2). Another tyro-
sine kinase growth factor, FLT1, did not show big differences
in expression among GBM subtypes; meanwhile, IDH1 has
an upregulation tendency only for the classical subtype.
The downstream effectors for growth factors, PIK3CA and
SMAD3, showed upregulation and downregulation, respect-
ively, for the proneural subtype; meanwhile, the pattern is
inverse, downregulation for PIK3CA and upregulation for
SMAD3 for both the classical and mesenchymal subtypes
(table 2). Another proliferation biomarker, MKi67, showed a
marked overexpression in the proneural subtype and a ten-
dency to downregulation in the classical and mesenchymal
subtypes. NES and VIM appeared to be expressed more in
the classic subtype than in other subtypes. Moreover, no rel-
evant changes were observed for GFAP, another intermediate
filament expressed in neural stem cells. Nevertheless, OLIG2,
an oligodendrocyte marker, is upregulated in the proneural
and downregulated in the mesenchymal subtype. The same
behaviour was observed for the differentiation marker
S100A1 (table 2).
For the tumour suppressor genes, TP53 is clearly upregu-
lated in the proliferative classical subtype. The other gene,
SMARCB1, is also overexpressed in the proneural and classi-
cal, but downregulated in the mesenchymal subtype (table 2).

We then analysed the expression patterns of the driver
genes clustered into three subgroups of patients according
to their age (tables 3–5). An important observation is that
among tumours showing expression of these genes in
patients under 30 years, the mesenchymal subtype was not
observed (table 3). On the other hand, the driver gene
expression in the mesenchymal subtype is only present in
patients older than 80 years (data not shown).

For the young subgroup, the samples were determined to
belong only to proneural and classical subtypes, and from the
18 genes analysed, only OLIG2 and VIM showed a differen-
tial pattern in gene expression. OLIG2 is upregulated in the
proneural tumours, according to its role as a differentiation
biomarker. Meanwhile, our analysis revealed a downregula-
tion tendency in the classical subtype. An inverse pattern
was observed for VIM, which is downregulated in proneural
and upregulated in the classical subtype. Interestingly, EGFR
is downregulated in both subtypes (table 3).

Among the subgroup of adult patients, the behaviour of
the EGFR stands out as it is upregulated in the classic subtype
and downregulated in proneural and mesenchymal subtypes
(table 4). The same pattern was observed in the elderly
subgroup, but with a larger gap between subtypes (table 5).
Analyses of genes ATRX, H3F3A, MGMT, MKi67, NES,



Table 3. Summary of driver gene expression in GBM molecular subtypes in
the 10–29 year subgroup with significant p-value. Data represent mean ±
standard deviation for z-score in each gene. Statistical significance is
represented by asterisks.

young subgroup
(10–29 years) proneural classical

DNA repair and chromatin remodelling genes

ATRX 0.105 ± 1.316 −0.105 ± 0.711

BRAF 0.257 ± 0.466 0.034 ± 0.777

H3F3A 0.375 ± 0.626 −0.202 ± 0.619

MGMT 0.297 ± 0.494 0.176 ± 1.782

TERT 0.066 ± 0.335 0.196 ± 0.464

cytoskeleton and cellular proliferation genes

EGFR −3.133 ± 1.228 −4.563 ± 2.382

FLT1 −0.946 ± 0.61 −0.955 ± 0.539

GFAP −0.106 ± 0.914 0.262 ± 0.113

IDH1 −0.679 ±−0.679 −0.910 ± 0.204

MKI67 0.820 ± 2.157 0.572 ± 1.801

NES −0.207 ± 1.018 0.822 ± 1.167

OLIG2 0.998 ± 1.427 −1.341* ± 0.859

PIK3CA 0.058 ± 0.526 0.272 ± 0.844

S100A1 0.452 ± 1.032 0.101 ± 0.807

SMAD3 0.104 ± 0.732 0.664 ± 0.438

VIM −1.127 ± 1.343 1.455* ± 0.353

tumour suppressor genes

SMARCB1 0.830 ± 0.653 0.653 ± 0.874

TP53 0.286 ± 0.993 −0.336 ± 1.242

*p < 0.05, **p < 0.01 and ***p < 0.001.

royalsocietypublishing.org/journal/rsfs
Interface

Focus
11:20200072

10
OLIG2, S100A1, VIM, SMARCB1 and TP53 in the adult and
elderly patients (tables 4 and 5) revealed the same pattern
in the expression changes among subtypes as observed in
the overall analysis (table 2).

To analyse the variation of these biomarkers at different
stages of life in each subtype, we selected the genes with
the most remarkable differential expression pattern. The
most common GBM biomarker, EGFR gene, showed a
remarkable upregulation in the classic subtype from adult
to elderly subgroups, while it was downregulated in the
young subgroup. No differential pattern among ages was
observed for the proneural or mesenchymal subtypes
(figure 1a). For BRAF, a differential pattern was observed
only in the proneural subtype, being upregulated in tumours
from young patients and downregulated in elderly patients
(figure 1b). OLIG2 had a remarkable differential pattern
in the classical subtype, in which it is downregulated in
young patients and shows an upregulation in elderly patients
(figure 1c). IDH1 expression varies in the classical subtype,
being downregulated in young patients and upregulated in
both adult and elderly patients (figure 1d ).

Summarizing, the gene expression analysis showed that
the altered expression pattern in the mesenchymal subtype
includes overexpression of MGMT that contributes to
mutation development and downregulation of the differen-
tiation biomarker OLIG2 but upregulation of the stemness
biomarker VIM. The altered expression profile in the classical
subtype includes overexpression of the proliferation bio-
marker EGFR and the stemness biomarkers NES and VIM.
The expression profile in the proneural subtype showed
more characteristics of neural progenitor with the upregula-
tion of OLIG2.
3.3. Somatic mutation analysis on driver genes
Gene mutation profiling has also served as a biomarker for
the diagnosis and treatment of GBM. We used high-through-
put data from the TCGA-GBM project and obtained the
genomic profiles of a total of 588 clinical GBM cases.

Among the driver genes, cases showed that the most fre-
quently affected genes in patients were TP53 (26%), EGFR
(22%), ATRX/PIK3CA (approx. 10%) and IDH1/MKi67
(approx. 5%) (electronic supplementary material, figure S1).
For an overall view of GBM aberrations, the distribution of
the total mutated genes and their DNA changes was deter-
mined using the relative percentage of gene mutations
according to the total length (base pairs) of each chromo-
some. The highest rate was found in chromosomes 19, 17
and 11, and the lowest levels were found in chromosomes
18, 13 and Y (figure 2a). Chromosome 1, which contains the
highest number of coding genes (2076), showed a lower per-
centage of mutations than chromosome 17, which contains
less than 60% the number of genes (1209). TP53 (17p13.1),
which suffers from a broad amount of mutations, and
GFAP (17q21.31), two of the most commonly used genomic
markers for GBM, are found in this chromosome (figure 2b).
Among all mutations, 95% substitutions, 3% deletions and
2% insertions were identified (figure 2a).

A comparison was done to determine whether the relative
abundance of the types of DNA changes present in driver
genes was similar to that of the whole genome. This revealed
that the base substitutions were the highest both in driver
genes and in the whole genome and that the nucleotide G-C
change the most common (figure 2c and data not shown).
However, mutations in the driver genes displayed a higher
number of deletions and insertions than the whole genome.

The genomic location and frequency of mutations were
determined according to the patient age subgroup. Chromo-
somes 19, 17, 11 and 16 had the highest percentage of
mutations in all subgroups. However, some chromosomes,
such as 6 and 18, showed different patterns according to
patient age. Regarding mutation types, substitutions were
the highest in all patients, but an increase of deletions and
insertions was found according to patient age (figure 3a).
We also observed that mutations in the driver genes reflect
the parallel distribution of the genome-wide mutations
(figure 3b), as is the case in other cancers [18]. However, the
frequency of mutations varies according to age group, high-
lighting the different mutational behaviour of driver genes
in the young subgroup. In particular, TP53 and EGFR,
which are shown to be the most mutated genes in the adult
and elderly subgroups, are not so in the young subgroup,
where ATRX is the most affected driver gene. Among other
DNA repair and chromatin remodelling genes, the mutation
frequency behaviour of IDH1, and MGMT increases at
30 years of age and decreases at 60 years (figure 3b). When
analysing these mutations in more detail, we observed that
most of the mutations in all subgroups are substitutions:
91% in young, 80% in adults and 87% in the elderly.



Table 4. Summary of driver gene expression in GBM molecular subtypes in the 30–59 year subgroup with significant p-value. Data represent mean ± standard
deviation for z-score in each gene. Statistical significance is represented by asterisks.

adult subgroup (30–59 years) proneural classical mesenchymal

DNA repair and chromatin remodelling genes

ATRX 0.279 ± 0.920 0.113 ± 0.608 −0.180** ± 0.583

BRAF −0.125 ± 0.392 −0.122 ± 0.561 0.064 ± 0.505

H3F3A 0.375 ± 0.446 −0.121**** ± 0.609 −0.451**** ± 0.602

MGMT −0.354 ± 1.236 0.200 ± 1.339 0.786** ± 1.272

TERT 0.099 ± 0.402 0.357 ± 0.472 0.138 ± 0.451

cytoskeleton and cellular proliferation genes

EGFR −2.693 ± 3.863 3.314**** ± 4.265 −1.970 ± 3.678

FLT1 −0.637 ± 0.735 −0.259 ± 1.091 0.194* ± 1.220

GFAP 0.055 ± 1.018 0.249 ± 0.541 −0.399 ± 1.054

IDH1 −0.054 ± 0.833 0.781** ± 1.065 −0.115 ± 0.889

MKI67 1.065 ± 1.551 −0.052** ± 1.278 −0.061** ± 0.938

NES −0.198 ± 0.700 1.380**** ± 0.884 −0.151 ± 0.941

OLIG2 1.396 ± 1.021 −0.029**** ± 1.083 −1.581**** ± 1.063

PIK3CA 0.415 ± 1.229 −0.370* ± 0.785 −0.328* ± 0.625

S100A1 0.467 ± 1.287 −0.674** ± 0.930 0.127 ± 1.516

SMAD3 −0.207 ± 0.838 0.271 ± 0.431 0.198 ± 0.542

VIM −0.369 ± 1.083 0.564* ± 0.850 0.778** ± 0.944

tumour suppressor genes

SMARCB1 1.008 ± 0.951 0.311* ± 0.998 −0.297**** ± 0.862

TP53 0.194 ± 1.162 0.829* ± 0.654 −0.124 ± 0.809

*p < 0.05, **p < 0.01, ***p < 0.001 and ****p < 0.00001.
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Summarizing, the TP53 tumour suppressor gene was
found to have the highest frequency of mutations among all
patient groups. For SMARCB1, another tumour suppressor
gene, we found few mutations in adult and elderly sub-
groups, and none for the young subgroup (figure 3b).
3.4. Phenotypic consequences of mutations on driver
genes

We also studied the phenotypic consequences of each
mutation, which can often cause several of them. In the
case of TP53, for example, a single mutation affects its 27
transcripts, causing consequences of different types. The mis-
sense variant consequence appears to be by far the most
abundant, representing 47% of all consequences elicited by
somatic mutations. Downstream and upstream gene variants,
frameshift and intron variants, and stop gain, represent 35%
of the consequences caused by mutations, and the remaining
percentage is distributed among all other consequences.

Then, we focused on analysing the biological relevance of
mutations on the driver genes. Polymorphism Phenotyping
(polyphen) helps to predict the functional significance of an
allele replacement from its features by a Naive Bayes classifier
[19]. The polyphen impact reported in TCGA is a prediction
of a mutation consequence being probably damaging, poss-
ibly damaging, or benign. Therefore, we used this data to
indicate the possible impact of the consequence types on
the function of the proteins encoded by the driver genes.
As we found that polyphen impact was mainly reported for
the missense variant consequence, we focused on the possible
impact of amino acid substitutions.

Driver gene mutations were clustered by patient age and
analysed by their protein phenotype impact values. Among
the driver genes, the most affected among all patient samples
were TP53, EGFR, ATRX, PIK3CA, IDH1 andMKi67 (figure 4).
Mutations in the tumour suppressor gene TP53 represent one
of the most common genetic lesions in cancer. In keeping with
this, TP53was the most affected gene among the driver genes
and in the whole genome, increasing abruptly with patient
age, as was the case for EGFR. In this clinical cohort, among
the DNA repair and chromatin remodelling genes, MGMT
and H3F3A mutations were present only in the young and
adult subgroups, with no possible negative impact on their
protein functions. In FLT1, BRAF and MKi67 the polyphen
impact indicates damage in protein functions for the adult
subgroup. NES and VIM mutations were present only
among patients below 60 years of age with an unfavourable
consequence in protein structure and function. For the GFAP
and S1001A genes, no mutations with protein polyphen
impact were found. Notably,OLIG2mutations with damaging
impact consequenceswere found only in the elderly subgroup.
3.5. Driver gene biological pathways compared to the
highest affected genes in GBM

Functional enrichment analysis was carried out for driver
genes and for other genes identified with the worst protein
polyphen impact. Driver genes are significantly enriched in



Table 5. Summary of driver gene expression in GBM molecular subtypes in the 60–89 year subgroup with significant p-value. Data represent mean ± standard
deviation for z-score in each gene. Statistical significance is represented by asterisks.

elderly subgroup (60–89 years) proneural classical mesenchymal

DNA repair and chromatin remodelling genes

ATRX 0.557 ± 0.718 0.077** ± 0.557 −0.255**** ± 0.597

BRAF −0.331 ± 0.498 −0.474 ± 0.408 0.047* ± 0.416

H3F3A 0.293 ± 0.649 0.014 ± 0.606 −0.551**** ± 0.606

MGMT −0.07 ± 1.377 −0.57 ± 1.449 0.394 ± 1.230

TERT 0.226 ± 0.372 0.121 ± 0.463 0.178 ± 0.535

cytoskeleton and cellular proliferation genes

EGFR −4.398 ± 4.122 5.495**** ± 2.32 −2.045** ± 3.921

FLT1 −0.368 ± 0.887 −0.229 ± 0.939 −0.062 ± 0.884

GFAP 0.253 ± 0.647 0.575 ± 0.382 −0.157 ± 0.997

IDH1 −0.103 ± 0.916 0.307 ± 0.966 −0.237 ± 0.844

MKI67 1.05 ± 1.226 −0.356*** ± 1.032 −0.663**** ± 0.987

NES 0.193 ± 0.864 1.904**** ± 1.004 0.314 ± 0.792

OLIG2 1.36 ± 1.204 0.524* ± 1.091 −1.293**** ± 0.792

PIK3CA 0.143 ± 0.968 0.03 ± 1.056 0.086 ± 0.855

S100A1 0.596 ± 1.211 −0.973*** ± 1.2 −0.192* ± 1.373

SMAD3 −0.387 ± 0.489 0.269**** ± 0.376 0.341**** ± 0.614

VIM −0.629 ± 1.021 1.048**** ± 1.111 0.535*** ± 0.764

tumour suppressor genes

SMARCB1 0.901 ± 0.886 0.602 ± 1.016 −0.515**** ± 0.916

TP53 −0.058 ± 0.864 0.724** ± 0.767 0.327 ± 0.645

*p < 0.05, **p < 0.01, ***p < 0.001 and ****p < 0.00001.
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hsa:0513 and hsa:0512 for pancreatic and endometrial cancer
from the KEGG pathway (−log 10, 9.05 >−7.3), and the top
GO terms include dsRNA processing, multicellular organism
growth, negative regulation of cell differentiation, regulation
of DNAmetabolic process and regulation of neuron apoptotic
process (−log10–7.3 >−4.80) (figure 5a). We also observed that
themost affected protein phenotypes are functionally enriched
in biological processes such as blood circulation, purine con-
taining compound biosynthetic process, cellular response to
nitrogen compound and vascular process in the circulatory
system (−log10–30.02 <−22.68) (figure 5b). The biological
pathways enriched were Reactome has R-HSA-382551: Trans-
port of small molecules, (−log10–46.69), KEGG has:04022
cGMP PKG signalling pathway, has:0513 and 00071 Fatty
acid degradation and has:00010 Glycolysis/gluconeogenesis
pathways (−log10–39.80 >−16.74) (figure 5b). Those lesioned
genes were linked to seizures, epilepsy, weight loss, paediatric
failure to thrive, mental depression, irritation and vomiting
symptoms (−log10–18 <−8.3) (figure 5b).
4. Discussion
Current clinical standardmethods in neuro-oncology for GBM
diagnosis consist of tumour surgery resection and biopsy fol-
lowed by pathology analysis. We searched the literature over
the last 15 years and found 60 clinical reports of 73 clinical
cases in which patient tumour biopsy or fluid sample under-
went the analysis of a combination of biomarkers which
mainly consisted in IDH1, GFAP, MKi67 and MGMT coupled
in sets with more than two and up to 11 additional markers
per sample for diagnosis. Molecular markers were reported
for their relevance as measurable indicators of the presence
and severity of GBM. Among those genes, the measures on
the expression of ATRX, MGMT, FLT1, GFAP, MKi67, NES,
OLIG2, S1001A, VIM, PIK3CA, as well as the genetic analysis
of driver mutation events in BRAF, H3F3A, TERT, EGFR,
IDH1, SMAD3, TP53 and SMARCB1 were highlighted from
our literature search strategy. We searched among clinical
results for a pattern of biomarker behaviour in the analysed
samples with unsuccessful results. Aware of inter-tumour
molecular heterogeneity as a significant challenge, and due
to the remarkable importance of driver genes for the routine
clinical role, we delved into their biological behaviour. A com-
pendium of summarized findings of driver genes is shown in
electronic supplementary material, file 2.

GBM inter-tumour heterogeneity allows molecular
subclassification based on genomic profiling. This is also
affected by intra-tumour heterogeneity, originating from two
proposed mechanisms, clonal evolution and cancer stem
cells. Clonal evolution is the process by which a single cell
undergoes reiterative genetic changes which allows it to
evolve and disseminate, forming a tumour [20]. By contrast,
cancer cells in GBM could possess different stemness accord-
ing to their cellular ontology, being a direct transformation
from a normal stem cell or a reprogramming process from a
cancer stem cell with less proliferative or differentiation
capacity [17]. The GBM tumour consists of a core region of
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high cell proliferation and inflammation, delimited by a
margin between the tumour tissue and the normal brain
cells, and then the peritumoral brain zone mainly composed
of normal tissue with some infiltrative and isolated tumour
cells [16].

Based on amulti-omic analysis, we herein describe the het-
erogeneity of GBM at the transcriptional and the genomic
levels, with an emphasis on tumorigenesis driver genes cur-
rently used in the clinic as molecular markers. Altogether,
our results suggest that a combination of these biomarkers
would provide a multidimensional approach for a better diag-
nosis and GBM subtype molecular classification for patient
prognosis. Besides, our studies for gene expression and
somatic mutations will provide information on the heterogen-
eity of primary GBM types due to their clinical relevance.

Our transcriptomics analysis from mRNA expression
data agrees with previous reports with respect to the
mesenchymal subtype. This subtype is characterized by its
poor prognosis, stem cell biomarkers, angiogenesis and pro-
minent radio- and chemoresistance. From the 18 genes
analysed, we found upregulation of MGMT, which may be
related to its own promoter’s unmethylated status frequently
observed in this GBM subtype and related to temozolomide
treatment resistance and short patient survival [21]. In our
analysis, this expression profile was conserved during adult
and elderly life stages.

Furthermore, the downregulation of ATRX, H3F3A and
EGFR was observed. ATRX encodes an adaptor protein
that contributes to the Methyl-CpG binding protein 2
(MeCP2)-mediated pericentric heterochromatin organiz-
ation, which is very important for neural differentiation
[22]; thus, downregulation of this gene might be expected
in cells of a less differentiated subtype with more stemness
such as the mesenchymal GBM subtype. The opposite,
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upregulated behaviour, was observed in the proneural sub-
type, which has less stemness and more characteristics of
differentiated cells. Another chromatin remodeller, H3F3A,
whose driver mutations HK27M and G34R induce dysfunc-
tion of Polycomb repressive complex 2 (PRC2) and dramatic
alterations of gene expression [23,24], may contribute to high
alterations in profile expression for mesenchymal GBM sub-
type. EGFR, which is perhaps one of the best-characterized
molecules in primary GBM [25], showed a downregulation
in mesenchymal and proneural subtypes, but a clear upregu-
lation in the classical GBM subtype. This behaviour is
conserved across all age groups and strikingly marked for
the elderly population. This expression profile could be
dependent on mesenchymal GBM increased mutation
rates, which may play a feedback role in downregulating
EGFR gene expression. The coexistence of mutations in
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critical molecules from downstream EGFR signalling such as
Ras or PTEN, which maintain active signalling without a
ligand to the receptor, could play a role as an alternative
mechanism.

We observed other genes with striking profile expression,
including NES, VIM and TP53, with upregulation behaviour.
NES and VIM encode the intermediate filament proteins
Nestin and Vimentin. Vimentin is expressed mainly in
mesenchymal cell types, while Nestin mainly in neural stem
and progenitor cells in the central nervous system [26]. These
proteins function not only as part of the cytoskeleton,
but also impact several key cellular processes such as prolifer-
ation, death, migration and invasiveness [26]. Our analysis
showed that VIM is upregulated in both mesenchymal and
classical GBM subtypes andNES only in the classical subtype.
This pattern may be related to the ontogenesis of these
tumours and suggest the transition state for classical GBM to
a possible mesenchymal GBM, but with a neural stem cell
marker remaining.
The proneural GBM subtype showed upregulation of
MKi67 and OLIG2. MKi67 encodes the DNA binding protein
Ki-67 and is widely used as a proliferation marker as it
participates in chromosome motility and chromatin organiz-
ation during the cell cycle [27]. OLIG2 encodes a central
nervous system transcription factor that plays an essential
role in the proliferation of oligodendrocyte precursors
and their differentiation [28]. OLIG2 also showed down-
regulation in classical and mesenchymal GBM subtypes.
Therefore, these expression patterns support the idea that
the proneural GBM subtype arises from central nervous
system progenitors with fewer stemness properties but with
proliferative capacity.

Our analysis in the expression profile for the 18 driver
genes supports the GBM ontogenesis hypothesis from
Celiku et al. [17], which proposes that proneural subtypes
can be generated from neural progenitors, and these cells
may gain somatic mutations to become classical and consecu-
tively mesenchymal subtypes. It is also possible that classical
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or mesenchymal subtypes originate from central nervous
system progenitors with high stemness.

In this study, we found that all driver genes have reported
mutations in GBM patients. However, genes that are
significantly mutated and that display multiple biological
consequences include TP53, ATRX, PIK3CA and EGFR.
Abnormalities of TP53 have been the most extensively investi-
gated genetic variations found in more than 50% of human
tumours [29]. Contrary to other reports where TP53mutations
are more related to paediatric tumours [30], we found an
increasing behaviour from the young to elderly subgroups.
The same behaviour is observed for genes ATRX, PIK3CA
and EGFR. However, TP53 and EGFR were found to be the
most mutated genes in adult and elderly subgroups, while
these mutational behaviour changes in the young subgroup,
in which ATRX is the most affected gene (figure 4b).

Impairment of DNA repair is expected to increase the
overall frequency of mutations and, hence, the likelihood of
cancer-causing mutations. In comparison to other studies in
which ATRX was found to be mutated only rarely in adult
primary GBM, but frequently found in younger adults with
lower-grade glioma (WHO grade II/III) [31], we found a
high frequency at 30 years that decreases in elderly patients.
A similar behaviour was observed for the DNA repair and
chromatin remodelling genes IDH1 and MGMT.

Additionally, NES and VIM mutations were absent in the
elderly subgroup and are present only in patients below 60
years of age with an unfavourable consequence in protein
structure and function. By contrast, OLIG2 mutations with
negative impact consequences were found only in the elderly
patient subgroup.

Some driver mutations on key genes have been pivotal for
the diagnosis and prognosis of GBM patients. We focused
particularly on the effects of mutations with non-synon-
ymous changes, also called missense mutations, which alter
the codons so that they specify different amino acids during
protein synthesis (electronic supplementary material, figure
S2), and carried out a comparison of GO enriched terms
of the selected driver genes with those identified with a
higher probability of damaging consequences. Similar in leth-
ality and aggressiveness to GBM, pancreatic cancer is a solid
tumour difficult to treat and often fatal, characterized by the
absence of early symptoms. Driver genes of tumorigenesis
shared between GMB and the hsa:0513 pancreatic cancer
pathway are BRAF, EGFR, SMAD3, PIK3CA, TP53, IDH1,
TERT, VIM, ATRX and GFAP. Owing to their high prolifera-
tive condition, cancer cells have an increased demand for
nutrients. As a mechanism, tumours alter their metabolism
to feed their extensive anabolic requirements having a
uniquely high demand for amino acids. Accordingly, upregu-
lation of selective amino acid transporters has been reported
[32]. R-HSA-382551 transport of small molecules pathway is
involved in the regulation and movement of small molecules
across plasma membranes and between cellular organelle
compartments within cells. Our functional enrichment analy-
sis on highly affected proteins shows a significant abundance
of the solute carrier (SLC) superfamily related to this path-
way. Examples of highly lesioned solute carrier proteins
found are SLC1A6 (with 10 probably damaging (PR) conse-
quences), SLC5A7 (6: PR), SLC9A2 (6: PR) and SLC6A19 (4:
PR). In pancreatic cancer, the clinical potential of an amino
acid transporter SLC6A14 as a drug target has been recently
reported [32]. We also found that highly affected pathways
such as blood circulation and vascular processes in the circu-
latory system are consistent with alterations in angiogenesis
in GBM. We also identified a link of the lesioned proteins
to seizures, epilepsy, weight loss, paediatric failure to
thrive, mental depression, irritation and vomiting, among
other symptoms that are in agreement with those reported
in the clinical cases reviewed.

Efforts have been made for the identification of relevant
biomarkers to assess GBM progression by targeting genes
with the highest density of missense mutations. For example,
tumours with the BRAF V600E mutation tend to be more
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severe. This somatic mutation prevents the Braf protein from
controlling cell proliferation (electronic supplementary
material, figure S3), which has been reported in the TCGA
database, appearing at all ages but more frequently in
elderly patients.

TP53 mutations were predominantly point mutations,
which lead to amino acid substitutions in the DNA binding
domain (DBD). The substitution of arginine residues within
the DBD, such as R175, R248 and R273, was reported in other
studies and was also found in GBM patients [33]. However,
this was not the most abundant amino acid substitution,
being G105R, S127Y, P152S and V157G, examples of some
amino acid changes abundantly reported in the TCGA cohort.

The most cited biomarker for diagnosis IDH1 R132H has
also been reported in the TCGA database as a mutation in all
age subgroups with a negative polyphen impact [3]. On the
other hand, the H3K27M mutation that has been highly
linked to paediatric thalamic gliomas and is associated with a
worse prognosis than low-grade tumours were not found in
the TCGA cohort, which is the case of other biomarkers used
in clinical studies, such as H3G34R, H3G34N, EGFR R776C,
and the TERT promotermutations C228T and C250T [23,24,31].

To understand better the behaviour of mutations in young
patients, we analysed genes that are involved in GBMwith the
worst polyphen impact consequences and analysed the tran-
scription factors that regulate them. Our results showed that
the young subgroup behaves differently, as genes that are
mutated are regulated by different transcription factors (TFs).
Moreover, the TFs that regulate genes with mutations in the
young subgroup share almost no TFs with adult and elderly
subgroups. This might explain why the young subgroup has
a divergent behaviour in comparison with the other sub-
groups. On the other hand, the adult and elderly subgroups
share most of the biological pathways, while microtubule
cytoskeleton organization, regulation of microtubule-based
process, adenylate cyclase-inhibiting G protein-coupled gluta-
mate receptor signalling among others areGO terms unique for
the adult subgroup, while protein–protein interactions at
synapses, regulation of cyclase activity and carbohydrate
digestion and absorption are unique functional terms for the
elderly subgroup. In particular, genes with mutations with a
negative polyphen impact in the 10–29-year-old subgroup
share fewer identities with the 60–89-year-old subgroup (elec-
tronic supplementary material, figure S3).

It is surprising that among all the TCGA data reported
for GBM, several mutations that are defined as biomarkers
could not be found. The absence of a clearly defined and
concordant pattern between clinical, transcriptomics and
mutational dynamics studies, support the idea of outstanding
heterogeneity in GBM. Despite the high abundance of
somatic aberrations in GBM tumours, only a select few
have been associated with clinical relevance and are currently
used as biomarkers. No single mutation has been identified
to trigger a particular type of GBM tumour. The intra- and
inter-tumour heterogeneity of GBM has revealed its ‘multi-
forme’ nature not only at its morphologic and phenotypic
levels but also on its genotype.

Furthermore, the relationship between genetic alterations
and gene expression at the mRNA level is not always linear.
The interplay between distant genetic interactions and epige-
netic changes also has a significant impact on the expression
of specific genes. Hence, the selection of the most commonly
mutated and amplified genes as therapeutic targets may not
be sufficient. Our results showed that the link of markers and
profile expression with their phenotypic alterations is more
complex than previously thought. With this analysis, how-
ever, we expect to contribute to the construction of a panel
of driver genes to delineate better the intra- and inter-
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tumour heterogeneity for a more accurate diagnosis. To
achieve this objective, it is crucial to analyse the raw data
for other key molecules involved in the mechanisms that
drive the balance between proliferation and differentiation
in the stem and cell precursors for the central nervous system.

Currently, expression levels of ATRX,MGMT, FLT1, GFAP,
MKi67, NES, OLIG2, S1001A, VIM and PIK3CA are used in
the clinic for patient GBM diagnosis and prognosis. Our
results indicate that the biomarker set integrated by EGFR,
H3F3A, FLT1, MGMT, MKi67, NES, S100A, TP53, OLIG2
and VIM genes could be a strong combination to determine
the GBM molecular subtype (figure 6). For example, the
mesenchymal subtype, known as the most aggressive GBM,
showed overexpression of MGMT and VIM, and the repres-
sion of EGFR, H3F3A, OLIG2, S100A and TP53. On the
other hand, while overexpression of EGFR, NES, VIM and
TP53 was characteristic of the proliferative or classical sub-
type, concomitant overexpression of MKI67 and OLIG2
could be more favourable prognosis owing to their associ-
ation with the less aggressive proneural subtype. Recently,
Teo et al. based on TCGA data used a set of 1500 genes
from GBM subtypes across Caucasian, Korean and Chinese
populations [34]. In comparison, from our selected driver
genes EGFR, IDH1, MKI67, NES, S100A1 and VIM were
reported to be differentially expressed and overlapped with
the three datasets of TCGA-GBM populations samples. More-
over, EGFR, NES and S100A1 are among their selected 500
genes used for the classification of the three GBM subtypes.
Furthermore, in accordance with their study we also ident-
ified that EGFR presents subtype specificity. In addition,
our study suggests that NES, OLIG2 and VIM are also sub-
type specific genes. Altogether, our findings indicate that
EGFR, NES, OLIG2 and VIM genes represent an outstanding
selection of biomarkers for patient prognosis, since a remark-
able differential pattern from the combination of them was
revealed by our transcriptomic analysis (figure 6). Further
clinical trials with patient samples for expression analysis,
together with the development and application of gene
expression-based classifier algorithms for molecular subtypes
testing the above-mentioned biomarkers could provide
confirmatory evidence for their clinical potential.
5. Conclusion
GBM is a highly heterogeneous cancer that consists ofmultiple
molecular alterations. Despite the vertiginous advances in the
clinical medical area, the prognosis of patients continues to be
unfavourable, with an average survival of less than 1 year. The
differential molecular characteristics of histologically similar
tumours make it difficult to predict clinical outcomes and
select optimal treatment strategies. Given the heterogeneity
of GBMand themultitude of factors that influence disease pro-
gression, general clinical characteristics are insufficient to
predict individual prognosis and survival accurately. In the
clinical routine, a combination of biomarkers is necessary for
differential diagnosis and prognosis being IDH1, GFAP,
Mki67 and MGMT the most reported ones. The inter-tumour
molecular heterogeneity remains the hardest challenge in
neuro-oncology practice. In our study, the expression profiles
of those markers revealed a consistent link with the pro-
gression model for GBM tumour ontogenesis, supporting
that tumours display a unique behaviour and that ‘personal-
ized’ treatment must be required for each molecular subtype.
Our results indicate that a combination of the biomarker
genes EGFR, NES, OLIG2 and VIM could be a strong set to
determine the GBM molecular subtype for patient prognosis.
Notably, the frequency of mutations varies according to age
group, highlighting the different mutational behaviour of
driver genes in the young subgroup. In particular, TP53 and
EGFR, which are the most mutated genes in the adult and
elderly subgroups, are not mutated in the young subgroup,
in which ATRX is the most affected driver gene. Besides, a
unique distribution of somatic mutations was found for the
young and adult populations, particularly for the genes
related to DNA repair and chromatin remodelling ATRX,
MGMT and IDH1.We also identified regulatory and biological
pathway behaviours that variedwith agewhich could serve as
a basis for further analysis in the journey of the development of
improved therapy for patients suffering from this disease.
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