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Abstract

Attention is vital for optimal behavioural performance in every-day life. Mindfulness medita-

tion has been shown to enhance attention. However, the components of attention altered by

meditation and the related neural activities are underexplored. In particular, the contribu-

tions of inhibitory processes and sustained attention are not well understood. To address

these points, 34 meditators were compared to 28 age and gender matched controls during

electroencephalography (EEG) recordings of neural activity during a Go/Nogo response

inhibition task. This task generates a P3 event related potential, which is related to response

inhibition processes in Nogo trials, and attention processes across both trial types. Com-

pared with controls, meditators were more accurate at responding to Go and Nogo trials.

Meditators showed a more frontally distributed P3 to both Go and Nogo trials, suggesting

more frontal involvement in sustained attention rather than activity specific to response inhi-

bition. Unexpectedly, meditators also showed increased positivity over the right parietal cor-

tex prior to visual information reaching the occipital cortex (during the pre-C1 window). Both

results were positively related to increased accuracy across both groups. The results sug-

gest that meditators show altered engagement of neural regions related to attention, includ-

ing both higher order processes generated by frontal regions, and sensory anticipation

processes generated by poster regions. This activity may reflect an increased capacity to

modulate a range of neural processes in order to meet task requirements. This increased

capacity may underlie the improved attentional function observed in mindfulness

meditators.
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Introduction

Attention is vital in selecting and maintaining processes most relevant for optimal behaviour

[1]. Attentional mechanisms have limited capacity and thus are most effective when allocated

to processes that ensure behaviour consistent with the goals of the organism. In particular,

attentional resources are most likely to enable optimal goal-oriented responses when the neu-

ral processes most at risk of failure are enhanced. In other words, attention improves goal-ori-

ented behaviour by strengthening the weak links in the chain of neural processing that goes

from stimulus detection to behavioural response [2, 3].

One method that enhances attention—mindfulness meditation—is conceptualised as a

practice of training attention (or awareness) with an attitude of openness and non-judgement

towards experiences [4, 5]. Enhanced attention is a key mechanism of action in the improve-

ments associated with mindfulness meditation [1, 5–9]. Notably, meditators demonstrate

improvements in sustained attention after both intensive retreats and after attending regular

classes [10–12], distribution of scarce attentional resources in time after intensive retreats [13,

14] and distribution of scarce attentional resources in space in highly experienced meditators

[15], and attentional control including inhibition of prepotent behaviour after 16 weeks of ten

minutes per day of practice and after regular classes [11, 16]. However, although eight-week

standardized mindfulness programs improve aspects of cognition such as working memory

and cognitive flexibility, they may not improve neuropsychological measures of attention [17].

As such, individual components of attentional processes need further examination to deter-

mine the exact parameters of attentional function improvements that result from mindfulness

meditation.

Reviews suggest that mindfulness meditation most likely has its impact on attentional func-

tions via changes to the structure and function of numerous regions in the prefrontal cortex,

the anterior cingulate cortex, the insular cortex, and the hippocampus and amygdala [18, 19].

As suggested above, sustained attention and inhibition are among the key mechanistic features

from both an empirical and theoretical perspective [19]. One task designed to test both inhibi-

tion and sustained attention is the Go/Nogo task. The Go/Nogo task presents stimuli to which

participants are instructed to respond (Go trials), setting up a prepotent response tendency,

and stimuli to which participants are instructed to withhold their response (Nogo trials). This

task engages conflict monitoring to allocate neural resources between the two competing pro-

cesses (response and non-response), keeping track of the alignment between behaviour (or

potential behaviour) and the goals held by participants [20]. Nogo trials also engage response

inhibition to actively prevent a habitual or prepotent response [21]. The Go/Nogo task also

requires successful sustained attention, in order to keep track of stimuli, potential conflicts,

and engage response inhibition processes [22]. Improved behavioural performance on the Go/

Nogo task has been shown after a three month mindfulness meditation retreat, which was sus-

tained for up to five months, reliably predicting improved socioemotional function [23].

At a neural level, sustained attention and inhibition are reflected by variations in the ampli-

tude and synchronisation of neural oscillations, the average effect of which can be measured

using event related potentials (ERPs) [24]. Two ERPs are elicited by the Go/Nogo task: the N2,

which is related to conflict monitoring and response inhibition, and significantly larger during

Nogo trials [25–28] and the P3, which is generally larger in Nogo trials and associated with the

evaluation of response inhibition behaviour in those trials [29]. The P3 is also present in Go

trials, and as such is also thought to reflect attentional resource allocation, including inhibition

of potentially interfering neural activity that is unrelated to task demands, and as such is

related to sustained attention [30, 31]. The N2 is thought to be underpinned by theta activity

modulations and generated by anterior midcingulate and left inferior frontal brain regions,
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while the P3 is related to delta activity, and generated by precentral, middle frontal, midcingu-

late, insula and right temporo-parietal regions [29]. Six studies have used the Go/Nogo task to

examine the effect of trait mindfulness or mindfulness meditation on ERPs related to conflict

monitoring, response inhibition, and sustained attention (see Table A in S1 File for a sum-

mary). Each has studied a different population or intervention, and results between studies are

inconsistent [32–37].

The inconsistencies make it difficult to draw meaningful conclusions about the effect of

mindfulness meditation on attention. As the potential of meditation to alter neural activity is

likely to be most noticeable in those individuals who have engaged in extensive practice, work

with this population is crucial to identifying likely benefits of mindfulness meditation. No

such research to-date has examined neural response to the Go/Nogo task in long term medita-

tors. Prior studies of neural activity related to mindfulness in the Go/Nogo task all used single

electrode measures, further limiting potential conclusions. If meditation alters the P3 distribu-

tion, increasing prefrontal engagement (related to attention enhancements), single electrode

analyses cannot differentiate these distribution differences from amplitude differences. The

inconsistencies in prior studies may also be related to differences in windows and electrodes

selected for analysis, and may have missed early processing changes that have been found in

meditators in other tasks [15]. An analysis technique encompassing all time windows and elec-

trodes without a priori assumptions may be beneficial, in order to obtain a better understand-

ing of the effect of meditation on neural activity. In particular, previous research has indicated

that both voluntary and involuntary attention affects “evoked” sensory processing ERPs such

as the C1, P1, N1, and P2 [38–41]. Differences between meditators and controls in these win-

dows are not detectable with research that focuses on typical Go/Nogo a priori windows of

interest.

Recently developed EEG analytic techniques [42] enable comparison of neural activity

across entire EEG epochs while simultaneously controlling family-wise error. Additionally,

this analysis technique enables discrimination of differences reflecting altered overall neural

response strength from differences in the distribution of neural activity across regions. As

such, this analysis technique could elucidate whether meditation enhances the amplitude of

typical neural responses related to sustained attention or inhibitory processes, or trains a

completely different pattern of brain region engagement, a question that has not been exam-

ined before in studies of meditation.

Aims and hypotheses

The aim of the current study was to assess whether individuals with extensive experience in

mindfulness meditation showed differences in neural activity related to inhibition and sus-

tained attention compared to demographically-matched individuals without meditation expe-

rience. To achieve this aim, we had participants complete a Go/Nogo task. In order to ensure

any potential differences between groups were not due to an interaction between group and

the effect of different frequencies of stimulus presentation (rather than attention or response

inhibition processes) [43], we used a Go/Nogo task with an equal probability of Go and Nogo

trials (which may have reduced response inhibition demands–see the discussion for further

details). We had hypotheses regarding both the amplitude and distribution of neural activity.

Regarding amplitude, we hypothesized that: 1) neural activity related to conflict monitoring

and response inhibition (the Nogo N2 and Nogo P3) would show larger amplitudes in medita-

tors, reflecting increased engagement of these neural processes as a result of the attention

enhancing effect of meditation practice, and 2) neural activity related to attention would show

larger amplitudes in meditators (both Go and Nogo P3) reflecting increased engagement of
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these neural processes. Previous EEG research has not examined the distribution of neural

activity independently of the amplitude of neural activity in meditators. However, research has

suggested better attention and inhibition function are related to frontal activity [44, 45]. As

such, we hypothesised that the meditators would show more frontal activity in these ERPs,

reflecting increased ability to engage the prefrontal cortex to maintain attention and inhibition

processes. We also planned: 1) exploratory analysis of accuracy and reaction time data to

determine whether any differences in neural activity were concurrent with enhanced beha-

vioural performance (without any specific hypotheses), and covariate analyses of the relation-

ship between any behavioural differences and neural differences to determine whether

differences in neural activity in the meditation group were related to improved behavioural

performance, 2) exploratory source analyses to assess which brain areas were activated during

any topographical differences between groups and 3) microstate analysis to further character-

ise topographical differences between groups. Previous research in our lab used simplified

emotional faces as stimuli for the Go/Nogo task, and found the task design differentiated

depressed individuals from healthy controls, but no interaction with emotion [46]. We chose

to use exactly the same task in the current study (since it had previously demonstrated ability

to differentiate groups). However no interaction between group and emotion was expected, as

our previous research suggested the simplified faces were not sufficiently emotionally evocative

to generate between group differences [46].

Methods

Participants and self-report data

Thirty-six controls and 34 meditators were recruited through community advertising. Inclu-

sion criteria for meditators involved a current meditation practice, with at least six months of

meditation for at least two hours per week. All meditators except three had more than two

years of meditation experience. Phone screening and in-person interviews were administered

by experienced mindfulness researchers (GF, KR, NWB) to ensure meditation practices were

mindfulness-based, using Kabat-Zinn’s definition—“paying attention in a particular way: on

purpose, in the present moment, and nonjudgmentally” [47]. Further screening ensured medi-

tation practices were consistent with either focused attention on the breath or body-scan. Any

screening uncertainties were resolved by between two researchers including the principal

researcher (NWB). Control group participants did not have experience with meditation of any

kind.

Exclusion criteria involved self-report of current or historical mental or neurological illness,

or current psychoactive medication or recreational drug use. Participants were additionally

interviewed with the MINI International Neuropsychiatric Interview for DSM-IV [48] and

excluded if they met criteria for any DSM-IV psychiatric illness. Participants who scored in

the mild above range or above in the Beck Anxiety Inventory (BAI) [49] or Beck Depression

Inventory II (BDI-II) [50] were also excluded. All participants had normal or corrected to nor-

mal vision and were between 19 and 62 years of age.

Prior to completing the EEG task, participants reported their age, gender, years of educa-

tion, handedness, and an estimate of the number of years spent meditating and the number of

minutes per week spent meditating. Participants also completed the Freiburg Mindfulness

Inventory (FMI) [51], Five Facet Mindfulness Questionnaire (FFMQ) [52], BAI, and BDI-II

(see Table 1). All participants provided written informed consent prior to participation. The

study was approved by the Ethics Committee of the Alfred Hospital and Monash University

(approval number 194/14).
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Select data was excluded from analysis—four controls were excluded due to scoring in the

mild depression range on the BDI, two due to misunderstanding task instructions, and one

due to non-task completion. One additional control was excluded from neural analysis due to

equipment fault. Two additional controls and three meditators were excluded from the beha-

vioural analysis, due to an intermittent button fault during those sessions (enough correct

response epochs were left for neural analysis, but accuracy calculations were insufficiently reli-

able). This left 28 controls for neural analysis (17 female, all right handed) and 27 controls for

behavioural analysis. No exclusions were made for the meditators’ neural data, leaving 34 med-

itators (21 female, 3 left handed), and 31 for behavioural analysis.

Task and stimuli

Participants performed a Go/Nogo task with simplified emotional faces as stimuli while

64-channel EEG was recorded (see Fig 1). Task details were the same as Bailey et al. [46], with

two blocks (instead of the four in the original design). The two blocks each included 75 happy

and 75 sad faces. The equal trial type frequency was selected to limit between group compari-

sons to processes related to response inhibition (rather than also including processes related to

Table 1. Demographic and self-report data.

Meditators

M (SD)
Controls

M (SD)
Statistics

Age 36.56 (10.88) 35.68 (14.69) t(60) = 0.271, p = 0.794

Gender (F/M) 21/13 17/11 n.s.

Years of Education 16.97 (2.55) 15.87 (2.82) t(60) = 1.598, p = 0.115

Meditation Experience (years) 8.30 (10.28) 0

Current Time Meditating Per Week (hours) 5.50 (4.15) 0

BAI score 4.24 (4.68) 4.50 (5.62) t(60) = 0.202, p = 0.840

BDI score 1.06 (1.87) 1.61 (2.69) t(60) = 0.944, p = 0.349

FMI score 45.62 (7.02) 41.12 (7.75) t(60) = 2.401, p = 0.019�

FFMQ score 152.97 (17.13) 138.39 (12.63) t(60) = 3.741, p < 0.001��

� p < 0.05

�� p < 0.001.

https://doi.org/10.1371/journal.pone.0203096.t001

Fig 1. Go/Nogo task design. Go:Nogo ratio was 50:50, with stimulus response pairings switched in the second block so all

participants responded to an equal number of happy and sad faces, and stimulus response pairings counter-balanced within each

group.

https://doi.org/10.1371/journal.pone.0203096.g001

Meditators show altered neural activity markers of attention in a response inhibition task

PLOS ONE | https://doi.org/10.1371/journal.pone.0203096 August 6, 2019 5 / 25

https://doi.org/10.1371/journal.pone.0203096.t001
https://doi.org/10.1371/journal.pone.0203096.g001
https://doi.org/10.1371/journal.pone.0203096


probability of trial type, as would be the case if Nogo trials were less frequent than Go trials,

since factors such as novelty modulate the Nogo N2 amplitude [53]. Participants were

instructed to respond by using both index fingers to press separate buttons simultaneously

when they saw one emotion, and withhold responses to the other emotion. Stimulus-response

pairings were reversed in the second block—participants who responded to happy faces in the

first block responded to sad faces in the second block, and vice versa. Button press responses

by the dominant hand were recorded. Stimulus-instruction pairing was counterbalanced

across participants and groups. Stimuli were presented for 250 ms, with an inter-trial interval

of 900 ms (with a random jitter of 50 ms to avoid entrainment of EEG activity). Stimuli presen-

tation was pseudo-random so that no more than four of each trial type was presented consecu-

tively. Prior to beginning the task and again before the second block, participants were

presented with a short practice block. The second practice was included to prevent extra errors

and switching effects on the N2 amplitude [53]. Percentage accuracy and reaction time (RT)

for each trial type were extracted offline.

Electrophysiological recording and pre-processing

A Neuroscan 64-channel Ag/AgCl Quick-Cap was used to acquire EEG through NeuroScan

Acquire software and a SynAmps 2 amplifier (Compumedics, Melbourne, Australia). Elec-

trodes were referenced to an electrode between Cz and CPz. Eye movements were recorded

with vertical and horizontal EOG electrodes. Electrode impedances were kept below 5kO. The

EEG was recorded at 1000Hz, with an online bandpass filter of 0.05 to 200Hz.

Data were analysed offline in MATLAB (The Mathworks, Natick, MA, 2016a) using

EEGLAB for pre-processing (sccn.ucsd. edu/eeglab) [54]. Second order Butterworth filtering

was applied to the data with a bandpass from 1–80 Hz and also a band stop filter between 47–

53 Hz. Correct response trials were re-coded, and data were epoched from -500 to 1500 ms

surrounding the onset of the stimulus presentation for each trial; only correct responses were

analysed. Epochs were visually inspected by an experimenter experienced with EEG analysis

and blinded to the group of each participant, and periods containing muscle artefact or exces-

sive noise were excluded, as were channels showing poor signal. Thirty-five or more accepted

epochs were obtained from each participant for each condition, and no significant differences

were detected between groups in the number of accepted epochs (p> 0.10).

Data were combined with epoched data from another cognitive task (results of which will

be presented in a separate publication) for Independent Component Analysis (ICA). AMICA

[55] was used to manually select and remove eye movements and remaining muscle activity

artefacts. Once artefactual ICA components were rejected, raw data were re-filtered from 0.1–

80 Hz, all previous channel and epoch rejections were applied, and rejected ICA components

were applied to this 0.1–80 Hz filtered data to avoid rejecting low frequency brain activity

around 1 Hz (prior to ICA rejection, data below 1 Hz was filtered out as it adversely impacts

the ICA process). Rejected electrodes were re-constructed using spherical interpolation [56].

Data were then visually inspected again by a separate researcher (who was also blind to the

group of the data inspected at that time) to ensure the artefact rejection process was successful.

Recordings were re-referenced offline to an averaged reference and baseline corrected to the

-100 to -10 ms period, and epochs from each condition and participant were averaged for ERP

analyses.

Source localisation pre-processing

Estimation of cortical sources during topographical between-group differences was performed

using Brainstorm [57] (http://neuroimage.usc.edu/brainstorm/). EEG data were co-registered
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with the template model (ICBM 152) because individual MRIs were not available. The forward

model used the Symmetric Boundary Element Method implemented in OpenMEEG software

[58]. The inverse model used the computation of minimum norm estimation, with sLORETA

to normalise activity based on the depth of sources [59], with dipole orientations uncon-

strained to the cortex to minimize the impact of using the MRI template [60]. Differences in

estimation were calculated using absolute subtraction. We source localised the well-known

P100 occipital ERP (averaged across 50 to 150 ms) to the correct location to demonstrate our

source analysis was reliable even in the absence of individual MRI templates (see Figure A in

S1 File) [61]. Statistical comparisons of source localisations were not performed, as scalp com-

parisons already demonstrated significant differences, and without MRI co-registration source

statistical comparisons can be unreliable [62].

Statistical comparisons

Self-report and behavioural comparisons were made using SPSS version 23. Independent sam-

ples t-tests were conducted to ensure groups were matched in age, years of education, BAI,

and BDI, and to determine whether groups differed in FMI, FFMQ scores. Chi square tests

were used for gender and handedness. Percentage correct was compared with a repeated mea-

sures ANOVA involving 2 group x 2 Go/Nogo conditions x 2 emotion conditions. RT was

compared in Go trials only (as these were the only trials requiring responses) with a repeated

measures ANOVA involving 2 group x 2 emotion conditions. Fewer than 2 outliers were Win-

sorised for each percent correct condition. No outliers were present for cumulative percentage

correct, and data met assumptions of normality and equality of variances. The Benjamini and

Hochberg false discovery rate (FDR) [63] was used to control for multiple comparisons across

behavioural performance measures.

Primary comparisons. Primary statistical comparisons for EEG data were conducted

using the Randomised Graphical User Interface (RAGU) to compare scalp field differences

across all electrodes and time points with randomisation statistics without making any a priori

assumptions about electrodes or windows for analysis [42]. This reference-free method takes

advantage of the additive nature of scalp fields to allow comparisons of neural activity between

groups and conditions without estimation of active sources by calculating a difference scalp

field between groups or conditions. This difference scalp field shows the scalp field of brain

sources that differed between the two groups/conditions, while brain sources that did not dif-

fer result in zero scalp field difference [42]. RAGU controls for multiple comparisons in both

time and space using randomisation statistics (see [42]). To control for multiple comparisons

in time (which are made at each time point in the epoch), global duration statistics calculate

the duration of significant effects that are longer than 95% of the significant periods in the ran-

domised data, ensuring significant durations in the real data last longer than the random com-

parison data at p = 0.05 [42]. Additionally, area under the curve statistics of significant time

points across the entire epoch confirm sufficient control for multiple comparisons in the time

dimension.

RAGU also allows for independent comparisons of overall neural response strength (with

the global field power—GFP test) and distribution of neural activity (with the Topographic

Analysis of Variance—TANOVA). Prior to the TANOVA, a Topographical Consistency Test

(TCT) was conducted to ensure a consistent distribution of scalp activity within each group /

condition. Lastly, Topographical Analysis of Covariance (TANCOVA) performs the same

operations as TANOVA except it compares neural data to a linear predictor instead of

between-group comparisons [42].
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GFP and TANOVA tests were used to conduct 2 group x 2 Go/Nogo condition condition

comparisons for averaged ERP data from -100 to 700 ms surrounding the onset of the stimu-

lus. Five thousand randomisations were conducted with an alpha of p = 0.05. Post-hoc GFP

and TANOVA tests to explore interactions were only conducted averaged across time periods

of significant interaction after global duration controls.

In order to obtain effect sizes, GFP values were extracted from RAGU and submitted to

parametric repeated measures ANOVA in SPSS. For the TANOVA, partial eta squared was

computed in RAGU using the amount of variance explained in the difference scalp field by the

experimental design.

The Benjamini and Hochberg false discovery rate (FDR) [63] was used to control for multi-

ple comparisons for all comparisons testing primary hypotheses separately from comparisons

involving behavioural data. FDR corrections were performed on the area under the curve p-

values from each main effect or interaction. Area under the curve p-values were measured as

the sum of all time points across the epoch in each comparison (across group main effects and

group by Go/Nogo condition interaction). Controlling for multiple comparisons across both

GFP and TANOVA tests, as well as across main effects and interactions avoided the hidden

multiplicity in ANOVA designs [64]. Post-hoc t-test designs were similarly controlled for

using the FDR method. To enable comparison with other research, both corrected and uncor-

rected p-values are reported for significant comparisons (labelled ‘FDR p’ and ‘p-uncorrected’

respectively).

Exploratory analysis. Exploratory analyses were not corrected for multiple comparisons,

so should be taken as preliminary findings. In order to assess relationships between beha-

vioural results and neural activity, significant periods from group TANOVA comparisons

were averaged and compared using TANCOVA tests with linear predictor values from signifi-

cant between-group differences at the behavioural level.

Microstates are temporarily stable topographies of neural activation lasting approximately

80–120 ms before very quickly (~5 ms) transitioning to another temporarily stable topography,

reflecting difference source activations [65]. Identification of microstates, determination of the

optimal number of microstates, and statistical analysis was conducted using RAGU [66].

Microstates were identified using atomize and agglomerate hierarchical clustering (AAHC)

algorithm, which merges ERP topographics into clusters so that the average topography of the

clusters explains maximal variance in the ERP [67]. The optimal number of microstates was

computed using cross-validation with the mean ERP from a learning set containing varied

numbers of microstate classes and associated timing, which are then applied to the test set

comprised of the remaining data. The optimal number of microstates is the point where the

mean variance explained in the test set reaches its maximum [66]. Randomisation statistics are

then used to compare microstate properties during periods that were significant in the ERP

TANOVA and GFP comparisons. Lastly, for comparison to previous literature, traditional sin-

gle electrode analyses figures are included in the supplementary materials (Figure B in S1 File).

Results

Demographic and behavioural

The neural analysis was the main focus of the study, so we only examined demographic and

self-report differences for the participants included in the neural analysis. Results are summa-

rised in Table 1. For participants included in the neural analysis, no significant differences

were present between groups in age, years of education, BAI score, BDI score, gender or hand-

edness (all p> 0.3). Meditators showed significantly higher FMI t(60) = 2.401, p = 0.019 and

FFMQ scores t(60) = 3.741, p< 0.001.
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To examine behavioural performance, we compared percentage correct and reaction times.

Normality, Box’s test, and Levene’s test were violated for percentage correct for Go and Nogo

trials independently, however no significant interaction involving group was present with

repeated measures ANOVA (Go/Nogo x group F(1,56) = 0.004, p = 0.952. Log10, natural log,

and z-score transforms were attempted, but data remained non-normal. As such, corrections

to normalise data were not performed. Cumulative percent correct across all conditions was

calculated and found to be normally distributed. Meditators showed higher cumulative per-

centage correct with independent samples t-test t(56) = 2.511, p-uncorrected = 0.015 partial

eta squared = 0.101, FDR p = 0.045.

No significant difference was found for any condition, group or interaction in the number

of accepted epochs (all p> 0.10). No significant differences were found in reaction time for

group comparisons or interactions involving group (all p> 0.10, see Table 2).

Within the meditation group, no correlations were significant between cumulative percent-

age correct and meditation experience (years), minutes per week, or FFMQ scores (all

p> 0.10).

Neural data

Global field potential test. To assess the strength of neural response to Go/Nogo trials,

we analysed the data using the GFP test. A significant group by Go/Nogo trial interaction was

present between 336 ms to 449 ms (area under the curve statistic p-uncorrected = 0.0198, FDR

p = 0.0396), global duration statistic = 33 ms. When activity was averaged across the significant

window (336 to 449 ms) to obtain a single value for analysis, the effect was still significant

(p = 0.001). Post-hoc comparisons within trial type in RAGU indicated that controls and med-

itators did not differ in Go trial comparisons (p = 0.298) nor Nogo trial comparisons

(p = 0.184). Controls showed a significant difference between Go and Nogo trials—Go trials

showed larger amplitude than Nogo trials (p-uncorrected < 0.001, FDR p = 0.004). Meditators

did not show a difference between Go and Nogo trial amplitudes (p = 0.743). See Fig 2 for

details. These results suggest that controls generate larger P3 amplitudes during Go trials, and

smaller P3 amplitudes during Nogo trials, while meditators showed no differences. No differ-

ences were present in the N2 window (thought to reflect inhibition and conflict monitoring).

Table 2. Behavioural and accepted epoch data.

Meditators

M (SD)
Controls

M (SD)
Statistics

Total Percent Correct 97.13 (2.48) 95.32 (2.99) t(56) = 2.511, p = 0.015�

Happy Go % 98.19 (3.90) 96.69 (3.52)

Sad Go % 98.62 (2.11) 96.45 (4.26)

Happy Nogo % 96.08 (3.44) 94.57 (5.25)

Sad Nogo % 95.62 (4.16) 93.59 (5.14)

Total Go RT 389.92 (46.58) 388.47 (55.09) F(1,56) = 0.012, p = 0.914

Happy Go RT 388.31 (47.92) 384.19 (55.77)

Sad Go RT 391.53 (48.88) 392.75 (57.67)

Accepted Happy Go Epochs 71.12 (7.37) 68.18 (9.90) t(60) = 1.339, p = 0.186

Accepted Sad Go Epochs 70.41 (8.05) 68.89 (7.52) t(60) = 0.762, p = 0.449

Accepted Happy Nogo Epochs 70.21 (3.52) 68.79 (5.85) t(60) = 1.181, p = 0.242

Accepted Sad Nogo Epochs 69.79 (4.13) 68.21 (5.00) t(60) = 1.364, p = 0.178

� p < 0.05

https://doi.org/10.1371/journal.pone.0203096.t002
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In order to obtain effect sizes, GFP values were extracted from RAGU and submitted to a

parametric repeated measures ANOVA in SPSS. Partial eta squared from Group x Go/Nogo

interaction in parametric repeated measures ANOVA = 0.098. 95% Confidence intervals for

controls Go = 2.253 to 2.999, Nogo = 1.718 to 2.349, meditators Go = 2.022 to 2.699, Nogo =

2.037 to 2.610. There was no main effect of group (p> 0.1).

Fig 2. Significant group by Go/Nogo GFP interaction during the P3 window. A—Averaged GFP within the significant 336 ms to

449 ms window (green periods = 46 ms reflect periods that exceed the duration control for multiple comparisons across time = 33 ms).
� p-uncorrected< 0.001 (FDR p< 0.004). B—Averaged topography during the significant window for each group. C–p-values of the

group by Go/Nogo trial comparison for the real data against 5000 randomly shuffled permutations across the entire epoch.

https://doi.org/10.1371/journal.pone.0203096.g002
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Topographical consistency test. In order to assess consistency of neural activity within

groups and trial types, the TCT test was conducted [42]. The TCT showed significant signal

indicating consistency of neural activity within all groups / conditions across the entire epoch

except prior to the stimulus and during a brief period (< 20 ms) at 550 ms in Nogo trials for

controls, see Fig 3). Consistent neural activity within conditions and groups indicates that

TANOVA comparisons between conditions and groups are valid.

TANOVA. In order to examine potential differences in the distribution of neural activity

in response to the Go and Nogo trials, TANOVAs were conducted. Significant main effects of

group that survived duration control for multiple comparisons were present from -1 ms to 62

ms (prior to the C1 period, referred to as pre-C1 henceforth) (p = 0.003 averaged across the

significant window, partial eta squared effect size = 0.0720), and from 416 ms to 512 ms (dur-

ing the P3 period) (p = 0.007 averaged across the significant window, partial eta squared effect

size = 0.0657). The area under the curve statistic for the entire epoch within the group main

effect was p-uncorrected = 0.011 (FDR p = 0.040), and the global duration control statistic was

46 ms. Figs 4 and 5 depict the topographical differences between groups for the pre-C1 (-1 to

62 ms) and P3 (416 to 512 ms) periods respectively. No significant interaction between group

and trial type was present (p> 0.1).

Fig 3. Topographical consistency test. The line indicates GFP values and the grey bars indicate p-values, with the red line indicating

p = 0.05. White sections indicate regions without significantly consistent distribution of activity within the group/condition, while green

periods indicate consistent distribution of activity across the group/condition after duration control for multiple comparisons across time

[42]. Note significant consistency across all conditions for both groups except for prior to stimulus onset, and around 550 ms in the Nogo

trials for control participants.

https://doi.org/10.1371/journal.pone.0203096.g003
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Overall, the differences indicate more fronto-central negativity and right posterior positiv-

ity in the meditation group during the pre-C1 (from -1 and 62 ms). Because the C1 is thought

to be the first neural processing of visual stimuli [40, 68], the difference in pre-C1 activity is

likely to reflect group differences in anticipatory activity.

The results also reflect more fronto-central positivity during the P3 in the meditation

group. Because this difference was present across both Go and Nogo trials, the higher frontal

activity in the meditation group may reflect altered attentional function of the P3 rather than

altered inhibitory processes. No differences were present in the N2 window (thought to reflect

inhibition and conflict monitoring).

TANCOVA. To assess relationships between the altered distribution of neural activity

shown by the TANOVA and behavioural performance, TANCOVAs were conducted between

significant periods of activity in the TANOVA and cumulative percentage correct. Since par-

ticipants performed at ceiling, groups were combined to maximise statistical power. TAN-

COVA between cumulative percentage correct and topographies averaged across the pre-C1

window (-1 to 62 ms) (p = 0.006) and the P3 window (416 to 512 ms) (p = 0.048) were signifi-

cant, with positive topographics showing activity more similar to meditators, suggesting those

topographies were related to better performance (see Fig 6). However, this may be confounded

by group differences in both topographies and performance. When running this analysis just

within the meditation group the same pattern was apparent, but non-significant (p = 0.240 for

-1 to 62 ms, and p = 0.766 for 416 to 512 ms), and the same was true for analysis within the

control group (p = 0.112 for -1 to 62 ms, and p = 0.182 for 416 to 512 ms).

Microstates. To further explore the differences in ERPs, we used a microstate analysis

approach which clusters different time periods into dominant scalp topographies. Microstate

analyses were restricted to durations showing significant group main effects in the TANOVA

[66]. Three microstates differed in meditators–microstate 2, reflecting pre-C1 activity, and

microstates 5 and 6, reflecting the P3 (see Fig 7 for details). The findings suggested that pre-C1

Fig 4. TANOVA main group effect from -1 to 62 ms. A—p values of the between-group comparison for the real data against 5000

randomly shuffled permutations across the entire epoch (green periods reflect periods that exceed the duration control for multiple

comparisons across time = 46 ms). B—Averaged topographical maps for each group during the significant time window. C—p-map for

meditators topography minus control topography during the significant time window (p = 0.003 averaged across the significant window,

partial eta squared effect size = 0.0720).

https://doi.org/10.1371/journal.pone.0203096.g004
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period neural responses began earlier in meditators compared to controls, and that meditators

spend more of the P3 period showing frontally dominant topographies compared to controls.

Microstate 2 shows an earlier centre of gravity in meditators (the timepoint reflecting the cen-

tre of the GFP area for microstate 2 is earlier in meditators, p = 0.018), suggesting earlier

Fig 5. TANOVA main group effect from 416 to 512 ms. A—p values of the between-group comparison for the real data against 5000

randomly shuffled permutations across the entire epoch (green periods reflect periods that exceed the duration control for multiple

comparisons across time = 46 ms). B—Averaged topographical maps for each group during the significant time window. C—p-map for

meditators topography minus control topography during the significant time window (p = 0.007 averaged across the significant window,

partial eta squared effect size = 0.0657).

https://doi.org/10.1371/journal.pone.0203096.g005

Fig 6. TANCOVA topographies depicting the relationship between cumulative percentage correct and averaged

topography. From -1 to 62 ms (left) and 416 to 512 ms (right) across both groups. � p = 0.048, �� p = 0.006.

https://doi.org/10.1371/journal.pone.0203096.g006
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processing of the stimuli in this group (the microstate is present from ~0 to ~100 ms following

stimuli, matching TANOVA results in the -1 to 62 ms window). Microstate 5 shows a shorter

duration in meditators (p = 0.003, meditators 78 ms, controls 217 ms). It also shows a smaller

area under the curve in meditators (p = 0.031, meditators 105.9 ms x microvolts, controls

252.4 ms x microvolts), and an earlier centre of gravity (p = 0.028, meditators 318.2 ms, con-

trols 381.9 ms). Microstate 6 shows more area under the curve in meditators (p = 0.044, 21.1

ms x microvolts in meditators, 0 ms x microvolts in controls). Microstate 5 is replaced by

microstate 6 in meditators (indicating a more frontally distributed P3 during this period) but

microstate 5 does not change to microstate 6 at all in controls. These results match the 416–

512 ms period of significance in the TANOVA.

Source analysis. To ascertain which brain regions contribute to the differences in scalp

ERPs observed between the groups, we estimated the cortical sources of the signal using sLOR-

ETA. Source analysis suggested similar distributions of activity between the groups in both the

pre-C1 and P3 time periods. Difference maps indicated that meditators showed more pre-C1

activity in right temporal and parietal regions, and a widespread pattern of more P3 activity in

the central frontal and parietal regions. See Figs 8 and 9 for details.

Fig 7. Microstate analysis showing overall between-group effects. Meditators differed in microstate 2 (reflecting pre-C1 activity), and

microstates 5 and 6 (reflecting P3 activity). � p< 0.05 indicates an earlier centre of gravity in meditators, �� p< 0.01 indicates a longer

duration in controls, + p< 0.05 indicates a larger area under the curve in controls, ^ p< 0.05 indicates larger area under the curve in

meditators [66].

https://doi.org/10.1371/journal.pone.0203096.g007
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Discussion

Our study examined whether experienced mindfulness meditators showed differences in neu-

ral activity related to conflict monitoring, response inhibition, and sustained attention. The

methods used enabled us to separately examine differences in the distribution of activated

brain regions from differences in strength of neural activation, which has not been previously

studied in meditators. Meditators showed higher accuracy across both Go and Nogo trials and

frontally shifted distribution of neural activity during the P3 in both Go and Nogo trials. The

latter finding suggests alterations to global attentional processes rather than inhibition specifi-

cally. Additionally, meditators showed less differentiation in the strength of neural activity

between response and response inhibition trials during the early P3 window. Meditators

showed more right parietal positivity during the pre-C1 period, suggesting more anticipatory

neural activity for stimulus processing. The distribution of neural activity during both the pre-

C1 and P3 significant time periods was correlated with behavioural performance across both

Fig 8. Source reconstruction during the -1 to 62 ms window using sLORETA and minimum norm imaging, unconstrained to cortex (to

minimise assumptions). Group averages do not depict positive or negative voltages, only where a region was activated. Difference maps

reflect meditator minus control activity (red reflecting more activity in meditators compared to controls, blue reflecting less activity in

meditators).

https://doi.org/10.1371/journal.pone.0203096.g008

Fig 9. Source reconstruction during the 416 to 512 ms window using sLORETA and minimum norm imaging, unconstrained to cortex

(to minimise assumptions). Group averages do not depict positive or negative voltages, only where a region was activated. Difference maps

reflect meditator minus control activity (red reflecting more activity in meditators compared to controls, blue reflecting less activity in

meditators).

https://doi.org/10.1371/journal.pone.0203096.g009
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groups, with better performing participants displaying the same distribution of activity

observed in meditators.

These results suggest a range of differences in neural activity in mindfulness meditators

compared to demographically matched controls. These differences likely reflect enhanced

attentional mechanisms from long-term practice engaging attentional processes. The differ-

ences may reflect adaptive adjustments to the neural processes responsible for devoting

resources to the functions maximally taxed by task requirements.

A more frontally distributed P3

Meditators showed a more frontally distributed P3 than controls (partial eta squared effect

size = 0.0657). Previous research has indicated that engaging response inhibition processes

generates a more frontally distributed P3 [29], though no comparable work has explained the

function of a more frontal P3 across both Go and Nogo trials. The more frontally distributed

P3 in meditators across both trial types suggests that the differences were due to general atten-

tion effects rather than response inhibition. Additionally, source analysis indicated more activ-

ity in meditators across the superior/medial frontal gyrus, particularly the left hemisphere, as

well as the bilateral parietal regions, spreading more laterally in the right hemisphere. Previous

research has indicated the superior frontal gyrus to be related to executive function [45]. Activ-

ity in the medial frontal gyrus is more pronounced when top-down control is allocated to Go/

Nogo stimuli and is usually more related to attentional control than inhibition [44]. Lastly,

activity in the parietal cortex is thought to be related to selective and sustained attention, and

the right parietal cortex to spatial attention [69, 70]. These results suggest that the altered P3

distribution in meditators is likely to reflect enhanced attentional control. Further support for

this conclusion comes from the finding that a more frontally distributed P3 was related to

improved behavioural performance.

Smaller P3 amplitude difference between response and response inhibition

and No N2 differences in meditators

The meditation group showed no difference between Go and Nogo trials in overall neural

response strength during the P3 window, while the control group showed larger neural

response strength to Go trials than Nogo trials. However, no difference was found between

groups in post-hoc comparisons of Go and Nogo trials independently, suggesting that trial

type only differentiates neural response strength within controls rather than that meditators

differ from controls. These results were not hypothesized, and contradicted our expectation

that the Nogo P3 would be enhanced in the meditation group, reflecting enhanced response

inhibition [71]. One potential explanation is that the task was easier for meditators. More diffi-

cult Go/Nogo tasks generate larger differences in neural activity between trial types [21]. This

explanation aligns with the better behavioural performance in the meditation group, who also

showed less difference in neural activity between Go and Nogo trials.

Additionally, research has suggested that Go/Nogo ratios of 50/50 (as used in the current

study) reduce response inhibition related neural activity by more than 60% [72]. Equal ratio

Go/Nogo tasks may simply compare general response-related activity to trials where response-

related activity is never initiated (rather than trials that initiate response activity that subse-

quently must be inhibited [72]). Single electrode ERP figures for the current data showed

larger frontal P3 amplitudes in Nogo compared to Go trials (see Figure B in S1 File), typical of

response inhibition activity in Go/Nogo tasks [29]. This suggests the task did engage response

inhibition processes. However, the equal ratio of Go and Nogo trials may have meant these

inhibitory processes were not difficult to successfully perform, and so were not differentially
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modulated by group. As such, observed differences may merely reflect improved attentional

control in meditators rather than improved inhibitory processes. In support of this explana-

tion, studies using harder Go/Nogo tasks with lower frequencies of Nogo trials show enhanced

Nogo P3 activity in ADHD patients who have undergone meditation training [33]. However,

the Go and Nogo P3 is influenced by stimuli frequency [73]. Thus, future research examining

response inhibition in meditators should attempt to differentiate between frequency and

response inhibition effects.

Additionally, although an interaction between trial type and group was present for P3

amplitudes, no interaction was present in the behavioural data. The lack of behavioural differ-

ence likely reflects a ceiling effect–the behavioural results were too consistently high to reveal

an interaction, while neural data may be more sensitive. Lastly, we expected the N2 component

to be altered in meditators. Previous research with infrequent Nogo trials has demonstrated

N2 alterations from meditation, perhaps as a result of the higher demand placed on response

inhibition related neural processes [32, 36]. As mentioned with the lack of altered Nogo P3

activity in meditators, the N2 component may not have differentiated the groups in the current

research because response inhibition processes were not sufficiently taxed by the equiprobable

Go/Nogo task.

More right posterior pre-C1 positivity

The meditators showed a topography with more negative fronto-central activity and more

right posterior positivity during the pre-C1 window (partial eta squared effect size = 0.0720).

The result reflects differences in neural activity that precedes the earliest point that visual

related activity has been shown to reach the occipital cortex (~ 50 ms post stimulus [40, 68]).

Meditators showed differences in neural activity before stimulus perception. Anticipatory

activity is present during periods leading up to stimulus processing, reflecting top-down atten-

tional control to enhance cortical processing of stimuli, ensuring optimal processing [74–77].

In other words, the pre-C1 may reflect enhanced endogenous attention, which has been

defined as “the exercising of an intention to selectively attend, based on some internal representa-
tion of what will be attentionally relevant in the near future. This intention interacts with atten-
tion deployment systems to reorganize the attentional set of the brain in preparation for
incoming stimuli—a preparatory attentional state” [78].

Such anticipatory activity has been found in the dorsal visual processing stream (in tem-

poro-occipital regions), with top-down influences from lateral parietal attentional gating

regions, and frontal control regions [68, 74, 78]. These regions overlap with those shown in

our source analysis. These areas may exert an excitatory effect on primary visual areas that

increase and prolong stimulus processing in those areas [79]. Thus, this pre-C1 difference may

reflect an improved attentional preparedness among meditators, reflecting a greater readiness

for stimulus processing and enhanced focus, as is a goal in many early mindfulness meditation

practices [4, 6–8, 11].

Additionally, the right occipital and temporal regions have been shown to specialise in pro-

cessing faces as well as for anticipation of general visual processing, suggesting that higher

activity in these regions in the meditation group is likely to assist stimuli processing in the cur-

rent task [78, 80]. As such, the results could reflect enhancement of the visual processing path-

way so the chain of information from perception to performance is more effective [68].

Although unexpected, our pre-C1 results provide further evidence for the suggestion that

enhanced attention in meditators reflects a stronger ability to modulate neural activity towards

the optimal achievement of goals [2, 81]. As such, this difference in anticipatory pre-C1 activity

may reflect an altered top-down brain state that prepares meditators’ brains for the subsequent
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perceptual brain states. This may have enabled an increased ability of meditators to sustain

attentional focus on the chosen object and by consequence to show enhanced behavioural per-

formance (which in this case are the task stimulus) [7]. The difference in meditator neural

activity with such a short latency following the stimuli is currently unique in meditation

research simply because the current study is the first to include neural activity with such a

short latency following the stimuli in statistical analyses. We suggest that future meditation

research would benefit from focusing on this anticipatory activity, particularly using tasks

designed to probe the activity more directly (eg.[74, 75–77]).

These results have clinical implications—research indicates that aversive stimuli cause

altered visual processing within 60–120 ms [82]. Individuals with anxiety also show stronger

neural responses to negative emotional images within the 80 ms C1 period [83]. This early

response to aversive stimuli and early over-activation in anxious individuals reflects early sen-

sory processing bias that may be impossible for the higher order functions to later modulate.

The clinical benefit of mindfulness may involve alteration to attentional mechanisms that

allow modulation of early neural processing, reducing emotional reactivity before emotional

reactions are elicited. This may explain why mindfulness has amongst its strongest clinical

effects on anxiety [84].

Strengths, limitations and future directions

Although a strength of the current study is the selection of a well-matched control group, the

main limitation is the lack of ability to draw conclusions about causation due to the lack of an

active control group. It may be that individual differences such as personality factors that pre-

dispose that group towards mindfulness meditation are ultimately responsible for the differ-

ences. Previous longitudinal research has indicated that mindfulness meditation does alter

neural activity [13, 14, 16, 85]. While this does not confirm that the results of the current study

are due to mindfulness meditation, the positive results from previous research suggest that it is

at least possible that the current results are due to mindfulness meditation rather than factors

that predispose individuals towards meditation. Nonetheless, it is difficult to control for poten-

tial self-selection biases among those who have chosen to meditate versus those who have not

[86]. An active control group involving an intervention that does not modulate the potential

mechanisms of action of mindfulness meditation would control for potential self-selection

biases and other potential confounds such as group membership. However, recruiting an

active control group matched for the extended amounts of practice time as our meditation

group is difficult (although long term athletes may be one solution [87]). Without an active

control group, a parsimonious and robust interpretation of the current conclusions (and those

of other cross-sectional studies of experienced meditators) is that differences relate to “leading

a life that involves meditation” but the research offers no information as to whether meditation

is causal in the differences.

Related to this point, the current study included a range of different meditation techniques

that fit under the umbrella term “mindfulness meditation”. While steps were taken to ensure

techniques were attention based and body focused (using Kabat-Zinn’s definition—“paying

attention in a particular way: on purpose, in the present moment, and nonjudgmentally” [47]

and screening to ensure practices were involved focused attention on the breath or body), it

may be that different techniques result in differences in the attentional processes being trained

[12, 88]. However, a strength of the current study is the confirmation that both the meditation

and control groups showed consistent topographical activation patterns prior to performing

between-group comparisons (with the TCT test). As such, when neural activity was averaged

across the group, the meditation group showed differences in attention related neural activity
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that were demonstrated to be consistent within the group. This suggests that even though dif-

ferent meditation practices may train different attention functions, there were still consistent

changes from the umbrella definition of “mindfulness meditation” to neural activity related to

attention. The within group consistency is also important, because it eliminates the possibility

that differences in within-group variability could explain between-group differences, despite

absence of signal within one of the groups (because the signal was variable in that group and

averaged out to zero).

Future research would do well to examine the commonalities and differences between

altered neural activity in mindfulness meditators across different tasks. This is necessary to

answer questions about whether the neural effects of mindfulness meditation are process-

driven or domain-specific [9]. Our suggestion is that the changes that result from meditation

reflect enhancement not of one specific neural process, but of the modulation of a range of

oscillatory activity, in order to strengthen the weakest link in the chain of neural processes. As

such, we would expect that the process most pressured by a specific task may demonstrate

enhanced function in meditators who have improved attentional function. We recommend

including easy and hard conditions for research comparing meditators to controls. This would

enable identification of neural processes that are upregulated to enable performance in the

hard condition, allowing determination of whether that process is specifically affected by

enhanced attention in mindfulness meditators.

A propositional integrative interpretation

Overall, the results show differences in both anticipation of sensory processing and top down

attention related differences in neural activity in mindfulness meditators, in alignment with

previous research [13, 14, 16, 85]. The altered topographies suggest that different neural assem-

blies are recruited in meditators to perform the same task but with increased accuracy, rather

than the same neural assemblies being more strongly activated.

We suggest that the differences in meditators reflect improved attentional function, and

this improved attentional function provides enhancements to neural processes that are maxi-

mally taxed in the task, or processes that are the ‘weakest link’ in achieving task-oriented goals

[2, 81, 89]. This improved attentional function provides increased support to the processes

most likely to fail in the chain of neural activity that takes place from stimulus processing to

behavioural response, reducing the chance of failure at those most vulnerable points and

enhancing the probability of successful task performance. For example, in the current study

the more frontally distributed P3 in the meditators may reflect an increase in the inhibition of

potentially interfering neural activity that is not related to task demands [29]. Similarly, the

pre-C1 topography differences in meditators may reflect enhanced neural activity related to

the anticipation of visual processing, in order to improve the probability that these sensory

processes would lead to the correct discrimination of the two stimuli, enabling higher accuracy

of Go or Nogo responses. This adaptive adjustment to provide extra resources to neural pro-

cesses that are maximally taxed by task requirements has been shown previously with cued

attentional manipulations, but has not yet been shown as a result of attention training [2, 81,

89].

In this context, differences between meditators and controls are likely to be task-specific

rather than neural activity or region-specific. For example, fronto-midline theta activity gener-

ated by the anterior cingulate cortex has been shown to differentiate meditators from controls

while participants are resting or meditating [90, 91]. However, tasks that do not lead to modu-

lations in theta oscillations, but do challenge other frequencies (such as alpha) are unlikely to

show differences between meditators and controls in theta activity (and may be more likely to
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show differences in alpha activity). As such, tasks other than that used in the current study are

likely to demonstrate different effects from meditation depending on the neural processes

most taxed by the task, for example alpha modulation enhancements to reduce somatosensory

distraction [92], or theta synchronisation to stimulus in attentional blink tasks [14]. Indeed,

the current sample of meditators showed an alternative profile of differences compared to con-

trols than the differences found in the current study when they performed both a colour and

emotional Stroop task (Raj et al. in preparation) and an N-back task with a tactile distractor

(Wang et al. in preparation), and no differences in error processing [93]. These differences in

comparisons between meditators and controls dependant on the neural processes most chal-

lenged by the task may occur even for subtle differences in task design, for example equiproba-

ble Go/Nogo tasks may reveal differences in attentional processes as per the current results,

compared to Go/Nogo tasks with more frequent Go trials which may reveal differences in

response inhibition processes. This interpretation may provide an explanation for the variation

in findings between studies comparing meditators to controls, as different neural processes are

engaged by different tasks and varied task parameters. We hope that the results of the current

study can be interpreted and contextualised within this framework, in combination with future

research, to provide a more sophisticated understanding of how neural activity differs in

meditators.

Supporting information

S1 File. Table A. Previous mindfulness research using the Go/Nogo task. Figure A. Source

reconstruction during the well-known P100 occipital ERP, averaged across the 50 to 150

ms window across both groups using sLORETA and minimum norm imaging, uncon-

strained to cortex (to minimise assumptions). This was performed to demonstrate our

source analysis was reliable even in the absence of individual MRI templates [61]. Note that

the average does not depict positive or negative voltages, just whether a region was activated.

Figure B. Single electrode ERP waveforms for both groups and conditions. These are

depicted for comparison with traditional ERP analyses. Note that no statistics have examined

data from single electrodes.
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