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Abstract

Metabolomics is concerned with characterizing the large number of metabolites present in a biological system using
nuclear magnetic resonance (NMR) and HPLC/MS (high-performance liquid chromatography with mass spectrometry).
Multivariate analysis is one of the most important tools for metabolic biomarker identification in metabolomic studies.
However, analyzing the large-scale data sets acquired during metabolic fingerprinting is a major challenge. As a posterior
probability that the features of interest are not affected, the local false discovery rate (LFDR) is a good interpretable
measure. However, it is rarely used to when interrogating metabolic data to identify biomarkers. In this study, we employed
the LFDR method to analyze HPLC/MS data acquired from a metabolomic study of metabolic changes in rat urine during
hepatotoxicity induced by Genkwa flos (GF) treatment. The LFDR approach was successfully used to identify important rat
urine metabolites altered by GF-stimulated hepatotoxicity. Compared with principle component analysis (PCA), LFDR is an
interpretable measure and discovers more important metabolites in an HPLC/MS-based metabolomic study.
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Introduction

As a newly emerging field of the ‘omics’ domain based on the

exhaustive profiling of metabolites, metabolomics has been widely

employed to monitor global metabolic changes taking place in

biological systems. More recently, HPLC/MS methodology, either

alone or in combination with NMR analysis, has been used to

characterize large numbers of metabolites, yielding a ‘metabolic

fingerprint’ of the biological system under investigation [1–8].

When HPLC/MS technology is used for metabolic fingerprinting

[9,10], the unique mass-charge (m/z) value and retention time of

compounds are used to construct a metabolic fingerprint that will

undergo statistical analysis. This procedure includes biomarker

identification by multivariate analysis of metabolic data sets [11].

As with all the ‘omics’ technologies, multidimensionality is a

characteristic of metabolic data [12]. Thus, the major challenges

confronting researchers are the analysis of large-scale data sets

produced from metabolic fingerprinting and the selection of

appropriate multivariate methods to find biomarkers effectively

and precisely.

As a pattern recognition method, principle component analysis

(PCA) is often used in the process of biomarker detection [13].

PCA is a dimension reduction technique [14,15]. It is of particular

utility if the original dataset is multidimensional, as PCA reduces

the number of features to a manageable size. The reduced dataset

can then be further analyzed by cluster analysis or various

classification methods [16].

However, PCA is a relatively simple and crude method when

used in biomarker detection studies [17]. PCA cannot provide

quantitative evidence to determine whether a particular metabo-

lite is a biomarker, whereas mathematical-statistical methods can

provide such evidence. Considering the metabolic biomarker

identification problem from the perspective of metabolic finger-

printing using HPLC/MS technology, we usually study m/z

values at different retention times simultaneously. Hence, the

metabolic biomarker identification challenge is a multiple

hypothesis testing problem. The local false discovery rate (LFDR)

represents the posterior probability that the null hypothesis is true

[18]. In other words, with regards to metabolic biomarker

identification, LFDR is the posterior probability that the features

of interest are not changed between the control and case groups at

different retention times.

The LFDR is rarely employed to find biomarkers in

metabolomic studies. In this study, the LFDR method was

successfully applied for HPLC/MS data analysis, as biomarkers

of Genkwa flos (GF)-induced hepatotoxicity were identified in rat

urine. Compared with PCA, LFDR is interpretable measure and

finds more important metabolites. Using the LFDR estimation

method to address the problem of biomarker identification, we

could not only find biomarkers but also effectively interpret them.

For example, if a metabolite with an LFDR estimate of less than

0.05 is detected as a biomarker of a particular treatment, then

there is a greater than 95% probability that the metabolite is truly

affected by the medical treatment. However, a biomarker detected

via PCA cannot provide such interpretable evidence. A novel

point made in this study that one can take the LFDR estimation

method into account when addressing the metabolic biomarker

identification problem. From a statistical point of view, the
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challenge of biomarker detection is a multiple hypothesis testing

problem.

Materials and Methods

Ethic Statement
The study was approved by the Education and Research

Committee and the Ethics Committee of Shenyang Pharmaceu-

tical University (approval # SPU20104432). Animals were

maintained and experiments were conducted in accordance with

the Institutional Animal Care and Use Committee, Shenyang

Pharmaceutical University, and with the 1996 Guide for the Care

and Use of Laboratory Animals (Institute of Laboratory Animal

Resources on Life Sciences, National Research Council, National

Academy of Sciences, Washington DC).

Data Description
Data from HPLC/MS experiments was used to study the

changes in rat urine following GF-induced hepatotoxicity [19].

There were two separate data groups: GF-treated rats (case) and

healthy control rats (control). Fig. 1 depicts the representative

positive base peak intensity (BPI) chromatograms of urine samples

at 336 hour post-treatment for the case and control groups. The

main purpose of studying the effects of GF treatment was to

establish a methodology for biomarker identification. The

metabolomic data was imported into Micromass Markerlynx

software for data preprocessing, including peak alignment and

identification. The data presents the m/z values at different

retention times in the case and control groups. The explanatory

variable consists of metabolite-profiling data (m/z) from chroma-

tography experiments. The response variable is ranked by

retention time and m/z. Each data set contained 878 variables

in which retention time changed every 0.001 min from 0.3 to

7.6 min. Each metabolite (feature) was determined by the same

row data, while the differences between the control and case

groups were determined by the quantitative data.

Data Analysis Methods
PCA method. PCA is the most commonly used method in

metabolomic data analysis [20]. Let U be an n6m matrix of m/z

data denoted by (U1, U2, …,Um), with each being described by m

descriptors. From the original set of variables Ut, PCA constructs a

new set of uncorrelated and orthogonal variables Vi, which are

linear combinations of the mean-centered variables from the

original set of variables, also called loadings or principal

components, that explain most of the variability of the data. For

biomarker identification, the first two components are used to

discriminate best between the two groups [20]. For each loading

vector Vi, the corresponding eigenvalue tells us how much of the

variability of the data is explained by Vi. We projected the data

points onto the subspace spanned by the loading vectors and

computed their coordinates with respect to Vi, which is called

scores. Score plot could visualize the classification of data. After

the points were divided into two groups based on the scores plot,

Figure 1. Representative positive base peak intensity (BPI) chromatograms of urine samples at 336 h post-treatment: (A) GF-treated
group (B) Healthy control group [19].
doi:10.1371/journal.pone.0067451.g001
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we chose the points in loading plot that were far away from the

origin as potential biomarkers.

LFDR methods. Consider the hypothetical comparison H0

versus H1. Let p0 be the proportion of null hypotheses H0 that is

true, f0(t) be the density function of the statistic t when the null

hypothesis is true given data D, and f1(t) be the density function of

the statistic t when the alternative hypothesis is true given data D.

Therefore, the mixture density function of the data D is

f (t)~p0f0(t)z(1{p0)f1(t), ð1Þ

Based on Bayesian Theory, the LFDR is Computed with
the Equation

LFDR~P(H0 is truejD)~
p0f0(t)

f (t)
ð2Þ

where f(t) is defined in equation (1).

We presented the LFDR computational method based on

Bayesian theory. However, we cannot obtain the real LFDR from

equation (2) since we cannot obtain the population (i.e. the whole

biomarkers). Hence the LFDR estimation method is required to

address the multiple hypothesis testing problem. Efron [18,21]

introduced a semi-parametric LFDR estimation method that

approximates the LFDR of the i-th hypothesis comparison,

denoted as LFDRi, using equation

L̂LFDRi~
f0(zi)

f̂f (zi)
~

f0(zi)

p̂p0
:f0(zi)z(1{p̂p0):f̂f1(zi)

ð3Þ

where zi is the z-value of the i-th hypothesis comparison obtained

from p-value by normalized transformation, i.e. Zi~W{1(pi), W is

cumulative distribution function (CDF) of the standard normal

distribution N(0,1) and f̂f (zi)~p̂p0
:f0(zi)z(1{p̂p0):f̂f1(zi) is an

estimate of the mixture density function f (zi) using Poisson

regression. Finally, p̂p0 is an estimate of p0, which defined in (1).

Efron’s method [18,21,22] is broadly used in gene expression data

analysis because it requires a large number of hypothesis

comparisons to obtain a reliable LFDR estimator. Based on

microarray techniques, we can take hundreds or even thousands of

genes into consideration simultaneously. However, in the GF

studies, there are no such large numbers of candidate metabolites

to use for biomarker identification. Therefore, it is difficult to

obtain a reliable LFDR estimate using Efron’s method. A new

estimation method is required to address the biomarker problem.

Let gh(t) be the probability density function admitted by the

noncentral distribution with noncentrality parameter valueh. t is a

statistic obtained from the data. For the hypothesis comparison i

(i = 1, …, M), we defined the three-component parametric mixture

model (three-component PMM) as

g(ti; h1,h2,p0,p1)~p0g0(ti)zp1gh1
(ti)z(1{p0{p1)gh2

(ti): ð4Þ

We assume that all statistics satisfy the same three-component

PMM. Then, for M hypothesis comparisons

g(t1, � � � ,tM ; h1,h2,p0,p1)~P
M

i~1
g(ti; h1,h2,p0,p1), ð5Þ

where g(ti; h1,h2,p0,p1) is defined in equation (4). Therefore, the

log-likelihood function with the k-component PMM is

log L(h1,h2,p0,p1)~ log g(t1, � � � ,tM ; h1,h2,p0,p1)

~
XM
i~1

log
Xk{1

j~0

g(ti; h1,h2,p0,p1)

" #
:

ð6Þ

The LFDR of the i-th hypothesis comparison is estimated by

L
_

FDR~
p̂p0g0(ti)

g(ti; ĥh1,ĥh2,p̂p0,p̂p1)
, ð7Þ

where ĥh1,ĥh2 and p̂p0,p̂p1 are maximum likelihood estimates of h1,h2

and p0,p1 in equation (6).

The calculations performed with data analysis by LFDR

estimation method are shown below.

The hypothesis comparison of the ith metabolite is

H0 : Di~0 vs: H1 : Di=0,

where Di is the difference of m/z at retention time i. In what

follows, the process of data analysis is shown.

N Compute the statistic of m/z at all retention times

Let xi1,xi2, …,xim be the m/z in the control at retention time

and yi1, yi2, …, yim be the m/z in the case at retention time i. The

statistic ti at retention time i is computed by

ti~(�yyi{�xxi)=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S2

y=nzS2
x=m

q
, ð8Þ

where �xxi and �yyi are the sample mean of m/z in the control and

case, respectively, at retention time i; S2
xand S2

y are the sample

variance of m/z in the control and case, respectively, at retention

time i. Therefore the statistic ti satisfies the Student’s t-distribution.

N Define the mixture density function g(t)

We assume all statistic t is satisfy the same three-component

PPM shown in equation (4), where g0 is the density function of

central t-distribution; gh1
and gh2

are the density function of

noncentral t-distribution with noncentral parameters h1 and h2.

N Estimate LFDR

The LFDR of retention time i, termed LFDRi, is estimated by

p̂p0
:g0(ti)=ĝg(ti), whereĝg(ti)~p̂p0

:g0(ti)zp̂p1
:gĥh1

(ti)z(1{p̂p0{p̂p1):

gĥh2
(ti);p̂p0,p̂p1,ĥh1,ĥh2 are the maximum likelihood estimator (MLE)

of p0,p1,h1,h2 with the likelihood function log L(p0,p1,h1,h2; t1,

t2, � � � ,tN )~
PN
i~1

( log g(ti)), N is the number of retention times.

Simulation. To compare the biomarker identification capa-

bilities of LFDR and PCA, a database was built. We constructed

peak data for 200 candidate markers, with 15 markers identified as

potential biomarkers. For each marker, 6 samples in the case

group and 6 samples in the control group were used. The data is

simulated as follows. For each marker of the first 15 markers which

were designed as potential biomarkers, we generated 6 samples in

the control group from central t-distribution and 6 samples in the

case group from the non-central t-distribution with the noncen-

Identification of Metabolic Biomarker in Rat Urine
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trality parameter 2. For each of the remaining 185 candidate

markers, we generated 12 samples (6 for each group) from the

central t-distribution. The PCA and LFDR estimation methods

were used to identify potential biomarkers. The PCA score loading

plots are shown in Figure 2. The LFDR plot is depicted in Figure 3.

The LFDR is the posterior probability that the features of interest

are not changed between the case and control groups at different

retention times.

Fig. 2 shows the score and loading plots. It can be seen from the

PCA score plot (Fig. 2A) that a clear separation of the control and

case groups was achieved. In Fig. 2B, a marker is considered as a

potential biomarker if its corresponding point in the loading plot is

far enough away from the origin. Thus, metabolites 4, 6, 9, 11,

and 12 are potential biomarkers, while metabolites 1–3, 5, 10, 13,

14, and 15 are not potential biomarkers. The LFDR of markers 1,

4–9, and 11–14 is less than 0.05 (Fig. 3), which means the

probability that markers 1, 4–9, and 11–14 are not changed is less

than 0.05. Thus the metabolites 1, 4–9, and 11–14 are potential

biomarkers using the LFDR method. It can be concluded that the

LFDR method is better at identifying biomarkers than the PCA

method.

Results

The PCA analysis was carried out by an R package. An R

package named MLE-LFDR [23] was developed by the authors to

estimate LFDR to identify potential biomarkers.

Fig. 4 presents the results of PCA of the metabolic profiles of

samples of the GF-treated group and the healthy control group. It

is apparent from Fig. 4A that a distinct clustering of data points

from the GF-treated and healthy control groups has been achieved

in the PCA score plot. Points in the PCA loading plot (Fig. 4B)

stand for variables (marked by X), including their intensity and the

corresponding mass-retention time pair. We selected metabolites

as potential biomarkers if their corresponding points in loading

plots were far away from origin, as shown in Fig. 4B.

We estimated the LFDR at different retention times. The

LFDR plot is depicted in Fig. 5 with a threshold of 0.05 (dash line).

Fig. 5A shows the LFDR from 0 to 1 for the metabolic profiles of

the GF-treated and healthy control groups. In order to identify the

variable marked by retention time m/z pairs clearly, the LFDR

from 0 to 0.20 was presented in Fig. 5B. As seen in Fig. 5B, 15

variables presented below the dash line were selected as biomarker

candidate ions with retention time m/z pairs of (3.1_194),

(6.4_373), (0.8_229), (2.5_202), (2.4_180), (1.6_206), (3.1_242),

(1.5_233), (2.5_105), (2.0_190), (3.1_260), (3.1_242), (6.5_818),

(3.4_340) and (0.6_114). Based on the results in Fig. 5, Table 1 lists

all potential biomarkers using 0.05 as a threshold. In other words,

we selected a metabolite as a biomarker if its LFDR estimate was

smaller than 0.05, which represents a greater than 95% probability

that the m/z value of the biomarker is truly different between the

two groups.

Potential biomarkers are shown in Table 1 and 11 of them were

identified. Collision-induced dissociation experiment with collision

energy varied from 10 to 30 eV was performed. We next analyzed

the MS and MS/MS biomarker spectra of these candidates. We

conducted searches with the MS/MS spectra in journals, the

KEGG (http://www.genome.jp/kegg/), METLIN (http://metlin.

scripps.edu/), SciFinder (https://scifinder.cas.org/) and HMDB

(http://www.hmdb.ca/) database in order to identify the metab-

olites. Table 2 lists the biomarkers which correspond to the

potential biomarkers shown in Table 1. Because of the lack of

commercially available references and limitations of metabolite

databases, not all of the potential biomarkers were identified as

Figure 2. The PCA score plot and corresponding loading plot for the simulation data: (A) The score plot showing the separation between
the Case group(X) and the Control group (o) (B) Loading plot for potential biomarker recognition. Metabolites 4, 6, 9, 11, and 12 are identified as
potential biomarkers. Integers in red indicate biomarkers and integers in black indicate other markers.
doi:10.1371/journal.pone.0067451.g002
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Figure 3. LFDR plot for simulation data of the Case group and the Control group. Integers in red indicate potential biomarkers and
integers in black indicate other markers. 0.05 (dash line) is treated as the threshold for potential biomarkers identification. The integers below the
dash line are identified as potential biomarkers.
doi:10.1371/journal.pone.0067451.g003

Figure 4. The PCA score plot and corresponding loading plot for the metabolic profiles of the GF-treated group and the healthy
control group: (A) the score plot showing the separation between the GF-treated group (X) and the healthy control group (o). (B) Loading plot for
potential biomarker recognition. The metabolites marked by the blue X far away enough from the origin are identified as the potential biomarkers.
The metabolites marked by red X are difficult to determine whether they are the potential biomarkers. The red dot represents the retention time-m/z
pair 0.6_114.
doi:10.1371/journal.pone.0067451.g004

Identification of Metabolic Biomarker in Rat Urine
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biomarker. The potential biomarkers (3.4_340),(3.1_260),(3.1_242)

and (1.5_233) were not identified.

Discussion

Current statistical methods try to control two types of error

rates: the family wise error rate (FWER) and the FDR. The

Bonferroni correction method is a well-known p-value correction

method that is widely used to control the FWER during multiple

hypothesis testing. This correction method is simple and easy to

carry out. However, the Bonferroni correction method is too

conservative. It is also difficult to detect biomarkers if there are

many candidate metabolites (e.g., more than ten metabolites)

taken into consideration. The FDR is the expected ratio of the

number of false positives over the total number of rejections of the

null hypothesis. In 1995, Benjamini and Hochberg [24] intro-

duced a procedure to determine the null hypothesis rejection of

each hypothesis comparison. The BH method provides more

statistical power than the Bonferroni method. Nevertheless, the

FDR as a measure cannot be assigned to each hypothesis

comparison. For instance, we cannot estimate the FDR value for

each candidate metabolite when attempting to detect metabolic

biomarkers. Fortunately, the LFDR can solve this problem and be

assigned to each candidate metabolite.

Based on Fig. 2B, metabolites 4, 6, 9, 11 and 12 were easily

identified as potential biomarkers. In contrast, the other biomark-

ers (i.e., the number in red except 4, 6, 9, 11 and 12) were difficult

to be distinguished from other markers (i.e., the numbers in black)

because both biomarkers except 4, 6, 9,11 and 12 and other

markers were mixed together. Nevertheless, using the LFDR

method, we were able to detect 11 in 15 biomarkers correctly by

setting 0.05 as a threshold (see Fig. 3). Moreover, we were able to

identify all the biomarkers by increasing the threshold to 0.1. But

some biomarker candidates which were not designed as biomark-

ers were detected. However, the percentage of incorrect detection

by using LFDR is lower than that by using PCA.

Considering the metabolic profiles of the GF-treated and

healthy group data, as shown in Fig. 4B, 13 variables far away

from the center were selected as biomarker candidate ions (see the

results section). In contrast, for the 3 variables marked by

(6.5_274), (3.3_279) and (3.4_340), it was difficult to determine

whether they were far enough away from the origin or not.

However, when we set the threshold of the LFDR method to 0.05,

meaning that the probability that the m/z value of a biomarker

was truly different between the two groups must be at least 95%,

Figure 5. LFDR plot for the metabolic profiles of the GF-treated and healthy control groups. (A) LFDR from 0 to 1 (B) LFDR form 0 to 0.20.
The metabolites marked by blue X with retention time-m/z pair below the dash line are identified as the potential biomarkers. 0.05 (dash line) is
treated as the threshold for potential biomarkers identification.
doi:10.1371/journal.pone.0067451.g005

Table 1. LFDRs for the GF-treated group and the healthy
control group at different retention times.

ID
Retention Time
(min)

m/z
(Da) LFDR 1-LFDR

173 2.5 202 0.002 0.998

256 3.4 340 0.002 0.998

172 2.5 105 0.003 0.997

169 2.5 180 0.005 0.995

863 6.4 818 0.0102 0.9898

99 0.8 229 0.0112 0.9888

847 6.4 373 0.0112 0.9888

143 1.6 206 0.015 0.985

219 3.1 242 0.015 0.985

215 3.1 260 0.017 0.983

154 2 190 0.018 0.982

249 3.3 279 0.018 0.982

47 0.6 114 0.028 0.972

139 1.5 233 0.029 0.971

222 3.1 194 0.035 0.965

doi:10.1371/journal.pone.0067451.t001
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then 15 variables were detected as potential biomarkers including

3.4_340 (shown in Fig. 5 and Table 1). The retention time-m/z

pair of 0.6_114, a biomarker ‘‘citric acid’’ shown in Table 2, was

detected by using the LFDR method, but not the PCA method

(Fig. 4B). Thus, potential biomarkers can be detected more

precisely by using the LFDR method than the PCA method.

Conclusions
Based on PCA method, researchers only focus on points in the

loading plot that represent metabolites and determine that a

metabolite is a potential biomarker if its corresponding point in the

loading plot is far away enough from the origin. However, the

decision of what distance should be used as a cutoff is based on the

discretion of the researcher. Therefore, PCA cannot provide

quantitative evidence to support potential biomarker detection.

The LFDR in biomarker detection problems presents the posterior

probability that the m/z value of a biomarker is truly different

between experimental and control groups. It provides a quantitive

method to evaluate how likely a biomarker candidate is a

biomarker. Furthermore, based on biomarker detection in the

simulation data and the metabolic profiles of the GF-treated and

healthy group data, we were able to use the LFDR method to

detect some potential biomarkers that were difficult to be identified

by the PCA method. Thus our data suggests that the use of LFDR

for metabolite biomarker identification is practical and accurate.
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