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Host cells undergo complex transcriptional reprogramming upon infection. Epigenetic
changes play a key role in the immune response to bacteria, among which DNA
modifications that include methylation have received much attention in recent years.
The extent of DNA methylation is well known to regulate gene expression. Whilst
historically DNA methylation was considered to be a stable epigenetic modification,
accumulating evidence indicates that DNA methylation patterns can be altered rapidly
upon exposure of cells to changing environments and pathogens. Furthermore, the action
of proteins regulating DNA methylation, particularly DNA methyltransferases and ten-
eleven translocation methylcytosine dioxygenases, may be modulated, at least in part, by
bacteria. This review discusses the principles of DNA methylation, and recent insights
about the regulation of host DNA methylation during bacterial infection.
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INTRODUCTION

DNA methylation refers to the addition of a methyl group to the DNA cytosine residues at the fifth
carbon position (5mC), which is a common epigenetic mark in many eukaryotes and often found in
the sequence context CpG (i.e., regions in the DNA where a cytosine nucleotide is followed by a
guanine nucleotide along the 5’ to 3’ direction) (1). The methylation process is promoted by the
DNA methyltransferases (DNMTs), of which DNMT3A and DNMT3B mediate de novo DNA
methylation, establishing a pattern of methylation that is then sustained by the maintenance
methyltransferase, DNMT1 (2). DNMT2 is not involved in DNA methylation, but rather mediates
methylation of RNA (3), and therefore is further not discussed in this review. The process of DNA
methylation can be reversed passively through cell division or actively catalyzed by ten-eleven
translocation (TET) methylcytosine dioxygenases family proteins, and a subsequent nucleotide
excision and repair process, called DNA demethylation (4). There are three members in the TET
family, namely TET1, TET2 and TET3, all sharing a conserved catalytic domain in their C terminus
(5). DNA methylation is generally associated with transcriptional silencing, although this paradigm
has been challenged by recent studies showing that DNA methylation can both positively and
negatively regulate gene expression depending on the position where it occurred (6).
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Both innate and adaptive immune responses contribute to
protection of the host against bacterial pathogens (7). The innate
immune system functions as the first line of defense against
invading pathogens and is composed of innate immune cells
(including basophils, dendritic cells, eosinophils, Langerhans
cells, mast cells, monocytes, macrophages, neutrophils and
natural killer cells) and some stromal cells, such as epithelial
cells that sense bacteria by their surface or endosomal pathogen
recognition receptors (PRRs). Toll-like receptors (TLRs), RIG-I-
like receptors, NOD-like receptors and C-type lectin receptors
are among the large array of PPRs that are able to detect
pathogens by recognizing microbial components known as
pathogen-associated molecular patterns, among which
lipopolysaccharide (LPS), flagellin and lipoteichoic acid (8, 9).
Upon recognition of bacteria or bacterial components, innate
immune cells initiate intracellular signaling cascades to induce
functional changes and to elicit the production of immune
effectors, such as cytokines, chemokines and antimicrobial
peptides, that directly or indirectly contribute to host
antibacterial defense and inflammatory responses. When
bacterial pathogens evade host innate immunity, adaptive
immune responses can contribute to defense mechanisms. T
and B cells are dominant players in adaptive immunity, activated
through presentation of bacterial antigens by antigen-presenting
cells. Innate and adaptive immune responses do not act
independently, but coordinated actions of these two systems
are required for efficient elimination of bacterial invaders.
Furthermore, in order to prevent collateral damage both innate
and adaptive immune responses need to be tightly regulated at
different levels (10). Modification of DNA methylation in host
cells, induced by infectious agents, has been implicated in the
induction and regulation of the immune response to bacteria.

DNA methylation has been considered to be relatively stable
when compared with other epigenetic modifications, such as
those involving histones, but recent findings have documented
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that DNA methylation can occur faster than previously thought,
particularly when cells are exposed to changing environments,
including contact with pathogens during infection (11).
Importantly, accumulating evidence indicates that pathogens
can alter DNA methylation and/or regulate the expression and
function of DNA methylation modifiers such as TETs and
DNMTs, resulting in altered expression of important host
genes involved in immune responses (11). These alterations in
DNA methylation or its related factors can either contribute to
protective host immunity to eliminate pathogens or benefit
pathogens to evade immune responses for persistence within
the host. This review summarizes current understanding of the
effects of DNA methylation on host immune responses and
pathogen elimination during infection.
DNA METHYLATION

Two families of proteins directly contribute to the DNA
methylation pathway: the DNMTs promote and maintain
DNA methylation, while the TETs catalyze demethylation via
multiple steps (Figure 1). DNA methylation is established by the
de novo methyltransferases DNMT3A and DNMT3A with the
help of catalytically inactive DNMT3L in mammals, whilst
the maintenance of DNA methylation is mediated by DNMT1
and its obligate partner ubiquitin-like plant homeodomain and
RING finger domain 1 (UHRF1), which preferentially recognizes
hemimethylated CpGs during cell division (12).

Although DNA methylation is reported to be stable, DNA
demethylation has been widely observed during development
and activation of mammalian cells. Possible mechanisms
underlying DNA demethylation have been reviewed by other
researchers (13–16); we here only briefly introduce the broadly
recognized passive and active routes. Passive demethylation
occurs in the absence of the DNA methylation maintenance
FIGURE 1 | DNA methylation cycle. DNMTs catalyze the addition of a methyl group to the fifth carbon position of cytosine to generate methylated cytosine (5mC),
which is maintained by DNMT1 (green arrow); 5mC is oxidized to 5-hydroxymethylcytosine (5hmC), which can be further oxidized to 5-formylcytosine (5fC)
and 5-carboxylcytosine (5caC) by TETs. The higher oxidized cytosine bases 5fC and 5caC can then be converted back to their unmodified state directly by thymine
DNA glycosylase (TDG) and subsequently base excision repair (BER) processing; these oxidative steps contribute to active demethylation (red arrow). Passive
demethylation removes 5mC from all forms of methylcytosine due to absence or reduction in DNMT levels and function (blue arrow).
July 2021 | Volume 12 | Article 696280
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machinery (DNMT1/UHRF1) during DNA replication, which
leads to dilution of 5mC, or removal of 5mC due to absence or
reduction in DNMT levels and function (17). Active
demethylation is mostly dependent on the oxidation of 5mC
by TETs, that oxidize 5mC to 5-hydroxymethylcytosine (5hmC),
which can be further oxidized to 5-formylcytosine (5fC) and 5-
carboxylcytosine (5caC). These oxidized cytosine bases (5hmC/
5fC/5caC) may facilitate DNA demethylation by impairing the
binding and/or activity of enzymes regulating the maintenance
methylation machinery (DNMT1/UHRF1) which impairs
remethylation during DNA replication (13). The higher
oxidized cytosine bases (5fC/5caC) can be efficiently excised by
thymine DNA glycosylase (TDG), followed by the base-excision-
repair (BER) pathway, which accounts for the major DNA
demethylation mechanism. Interestingly, TETs might not
decrease methylation levels, but specifically prevent aberrant
methylation spreading into CpG islands (CGIs) (18), and
DNMTs might also contribute to active DNA demethylation in
conditions of low methyl group sources (19).
REGULATION OF DNMTs

DNMT proteins are recruited to certain locations in the genome
where they catalyze the transfer of methyl groups from
S-adenosyl-L-methionine (SAM) to the C5 of cytosine to
establish 5mC. During this process, the activity of DNMTs can
be regulated at the following levels (Figure 2).

First, by the Abundance of DNMTs
The expression and stability of DNMTs can be regulated by
transcriptional regulation and post-translational modifications
(PTMs), respectively. Numerous pathways have been shown to
induce or inhibit expression of DNMTs, and the extent of their
expression can be further regulated by multiple epigenetic
Frontiers in Immunology | www.frontiersin.org 3
regulatory mechanisms (20). Proteolytic degradation of DNMT
proteins can be promoted or inhibited by PTMs. Acetylation and
ubiquitination of DNMT1 either protect from or promote
proteolytic degradation (21, 22). Phosphorylation of Ser143
stabilizes DNMT1 (23), whilst methylation of Lys142 and
Lys1096 promotes its proteolytic degradation (24, 25).

Second, Through the Function/Activity
of DNMTs
DNA methylation by DNMTs is dependent on their catalytic
activity, which is largely regulated by PTMs or isoform variation
of DNMTs. SUMOylation of DNMT1 increases the catalytic
activity of this enzyme on genomic DNA (26); SUMOylation of
DNMT3A, however, abolishes its capacity to interact with histone
deacetylases (HDACs) (27). DNMT1 is an auto-inhibitory
protein that is activated upon binding to unmethylated
cytosines (28, 29). The same auto-inhibitory characteristic was
also found for DNMT3A, the activation of which is induced by
histone H3 (30); this is might be the reason why the histone H3
N-terminal tail with an unmethylated Lys4 (H3K4) is required for
de novo DNA methylation (31). In addition, the activity of
DNMTs can be affected by isoform variation (32, 33), and other
regulatory proteins, such as the microprocessor component
DROSHA that interacts with DNMT1 to ensure its full
methyltransferase activity (34).

Third, Through Recruitment of DNMTs to
the Genome
To successfully perform DNA methylation, DNMTs are first
recruited to the targeted DNA motif, and this recruitment is
affected by both the features of the target DNA motif and factors
that influence DNMT recruitment to the genome. DNMTs can be
specifically recruited to DNA marked with unmethylated H3K4
via interacting with the ADD domain of DNMTs (35),
while methylated H3K4 repulses the binding of de novo
A B

FIGURE 2 | Factors that regulate the function of DNMTs and TETs. The function of DNMTs can be influenced at four levels: their abundance, their recruitment to
DNA, their catalytic activity, and the methyl group source (A). The function of TETs is regulated at three levels: their abundance, their recruitment to DNA and their
catalytic activity (B). For details see text. DNMTs, DNA methyltransferases; TETs, ten-eleven translocation methylcytosine dioxygenases; PTMs, post-translational
modifications; CGI, CpG islands; SAM, S-adenosyl-L-methionine.
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methyltransferases resulting in maintaining the hypomethylated
state of CGIs (36). CGIs marked by H3K27me3 are more
susceptible to de novo DNA methylation during differentiation
and in disease states such as cancer (37, 38). Gene body enriched
with H3K9me3 or H3K36 tri-methylation (H3K36me3) is also
reported to be favorable for DNMT3B recruitment, leading to
hypermethylation at these regions that functionally relate to gene
transcription initiation, proper splicing and compact chromatin at
active genes (37, 39, 40). The affinity of DNMT3A and DNMT3B
for DNA can be further enhanced by DNMT3L through the
formation of heterotetrametric complexes with either DNMT3A
or DNMT3B, resulting in more efficient DNA methylation (41,
42). A large class of proteins, including polycomb group protein
enhancer of zeste homolog 2 (EZH2) (43), Zinc-fingers and
homeoboxes 1 (ZHX1) (44), ubiquitin-like protein modifier
NEDD8 (45), zinc-finger protein ZBTB24, transcription factor
E2F6 and PU.1, and Sirtuins 1 and 2 (SIRT1/2), were reported
to recruit DNMTs to genes targeted for DNA methylation
mediated gene silencing (46–49). The binding of DNMT1 to
hemimethylated cytosines is selectively promoted by UHRF1
(50), but this binding is prevented by a DNA aptamer named
Apt. #9 that competes with the hemiDNA for binding to DNMT1
(51). Besides protein molecules discussed above, some RNAs were
also reported to affect the recruitment of DNMTs (52–54).

Fourth, the Methyl Group Donors
Determine the Direction of the DNA
Methylation Pathway
SAM is the major source of methyl groups for DNA methylation.
The addition of folate/folic acid to provide methyl groups was
reported to maintain DNAmethylation and/or prevent the loss of
global DNA methylation in health and disease (55, 56). However,
factors that lead to less SAM decreases the transfer of methyl
groups to DNA and RNA (57). In the absence of SAM, DNMT3a
and DNMT3b can exhibit DNA dehydryoxymethylase activity, by
directly converting 5hmC and 5caC, but not 5fC, to unmodified
cytosines (58, 59). In some cases, DNMT1 is able to mediate
oxidation of cytosine with formaldehyde, forming 5hmC (60),
which further can participate in the DNA methylation cycle.
REGULATION OF TETs

The presence and catalytic activity of TETs are necessary for
DNA demethylation, but their function is affected by multiple
regulatory mechanisms that (amongst others) modulate
substrate accessibility, enzymatic activity, expression levels and
genomic targeting of TETs. Factors that are of importance for the
regulation of activity of TETs are the following.

First, the Abundance of TETs Can Be
Regulated at Transcriptional and
Post-Transcriptional Levels
The expression of TETs can be induced by multiple signaling
pathways, such as hydrogen sulfide (61), Myd88 signaling (62),
NF-kB signaling (63) and Forkhead box A1 (FOXA1) (64), and
frequently regulated at transcriptional level. IDAX (also known
Frontiers in Immunology | www.frontiersin.org 4
as CXXC4) and lysine demethylase KDM2A (65) negatively
regulate whilst transcription factors Oct4 and CEBPa
positively regulate TET2 protein expression (66–68). TET3 can
be negatively regulated by nuclear receptor TLX (69). More
recently, TETs were shown to be regulated by epigenetic
modifications involving long non-coding RNA ’s or
microRNA’s (70–73). The abundance of TETs can also be
regulated at protein level. TETs can be directly cleaved by
caspases (68) and calpains (74) or degraded through PTMs.
For instance, all three TET proteins can be monoubiquitinated
by the VprBP-DDB1-CUL4-ROC1 E3 ubiquitin ligase
(CRL4VprBP) (75), whilst MAPK-mediated phosphorylation at
Serine-99 of TET2 stabilizes this enzyme (76, 77). Moreover, the
14-3-3 proteins bind phosphorylated TET2 and protect Serine-
99 phosphorylation (78). Other modifications like (de)
acetylation of TETs have also been reported; for example,
acetylation of TET2 by p300 stabilizes this enzyme by
inhibiting ubiquitination (79), whilst deacetylation of TET2 by
the deacetylase SIRT1 promotes its ubiquitination degradation as
well as enhances its catalytic activity (80, 81).
Second, the Binding of TETs to Genomic
DNA Sequences Can Be Modulated
Similar to DNMTs, TET proteins also need to be recruited to the
genome for implementing their functions. TET1 and TET3 can be
recruited to genomic target sites through direct binding of their
respective CXXC domains to DNA (82). This binding process can
be influenced by several proteins. For instance, Lin28A recruits
TET1 to common genomic loci to regulate DNA methylation and
gene expression (83), thyroid hormone receptors stabilize the
association of TET3 to chromatin depending on the catalytic
activity of TET3 (84). In contrast to TET1 and TET3, TET2 is
recruited to genomic DNA by a distinct CXXC domain-
independent mechanism since TET2 does not have any
discernable domains that bind directly to DNA. Indeed,
numerous proteins have been discovered that promote or inhibit
binding of TET2 to DNA. IDAX/CXXC4, originally encoded
within an ancestral TET2 gene but separated from TET2 during
evolution, recruits TET2 to DNA sequences containing
unmethylated CpG dinucleotides located at promoters and CGIs
in genomic DNA (68, 85). Other molecules such as Wilms tumor
protein 1 (WT1) (86), early B-cell factor 1 (EBF1) (87), PRDM14
(88), RUNX1 (89), retinoic acid receptor (RAR) (90), SNIP1 (91),
Smad3 and Stat5 (61), TET2 interacting long noncoding RNA
(TETILA) (92) and transcription factors C/EBPa, Klf4, and
Tfcp2l1 (93) can interact with TETs and enhance the
recruitment of TETs to target loci. In addition, some proteins
like Methyl-CpG binding domain protein 3-like 2 (MBD3L2) (94),
DNMT1 (79), CXXC5 (95) and SALL4A (96) can further
strengthen or stabilize the binding between TETs and
methylated DNA targets. Besides factors modifying the
recruitment of TETs, the character of target DNA sequences can
also affect the binding of TETs. For example, low-methylated
regions (LMRs) of CpG-poor distal regulatory regions that are
occupied with DNA-binding factors are favorable for TET binding,
thereby maintaining low methylation levels in these regions (97).
July 2021 | Volume 12 | Article 696280
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Third, Dioxygenase Activity of TETs Is
Tightly Regulated
The dioxygenase activity of TETs is largely dependent on their
catalytic domain and any mutation or modification within this
region is likely to lead to a change in their function. Enzymatic
reactionsmediated by TETs highly rely on the cofactors oxygen, Fe
(II), and a-ketoglutarate (a-KG) (98). Therefore, any modification
in theproductionoractivityof these cofactors is expected to lead toa
functional change of TETs. Mutations in the genes encoding the
metabolic enzymes isocitrate dehydrogenases 1 and 2 (IDH1/2),
succinate dehydrogenase, and fumarate hydratase, result in
aberrant accumulation of metabolites such as 2-hydroxyglutarate
(2-HG), succinate and fumarate, respectively, which act as
competitors of a-KG to broadly inhibit the a-KG-dependent
enzymatic activity of TETs (99–101). Hypoxia, such as frequently
occurs in tumor tissues, leads to loss of TET activity (102). On the
otherhand, additionofascorbic acid (vitaminC),which isneeded to
reduce the oxidized iron species, enhances the catalytic activity of
TETs (103–105). Additionally, TETs activity has also suggested to
be affected by PTMs. Acetylation enhances TET2 function (79) and
phosphorylation of TET3 at the highly conserved Serine-1310 and
-1379 residues within its catalytic domain by cyclin-dependent
kinase 5 (cdk5) is required for its dioxygenase activity (106).
Moreover, the phosphorylation of TETs can be suppressed via O-
GlcNAcylation by the glycosyltransferase OGT (107).
DNA METHYLATION AND
GENE EXPRESSION

DNA Methylation, DNA Demethylation and
Gene Expression
DNA methylation plays a critical role in the regulation of many
cellular processes, including X chromosome inactivation,
genomic imprinting, stem cell differentiation, chromosomal
conformation, chromatin structure, developmental stages and
transcriptional activation/repression of genes (108). DNA
methylation in the genome is not uniformly distributed: both
promoter and CGIs typically are hypomethylated, whereas the
extent of methylation in gene bodies is higher than that in
intergenic regions (2). While early studies suggested that DNA
methylation represses gene expression, a growing body of
evidence has indicated that DNA methylation has a dual role,
both inhibitory and permissive, depending on the genomic
region at which DNA methylation occurs (2). DNA
methylation of CpGs at promoters and enhancers that usually
remain unmethylated is mainly coupled with transcriptional
silencing (108, 109), but DNA methylation at the gene body
has been associated with enhanced gene transcription or
elongation (39, 110). DNA methylation can also indirectly
regulate gene expression by altering the chromatin accessibility
for transcription factors or by recruiting repressive proteins with
methyl-binding domains (111). For instance, DNA methylation
changes the accessibility of B cell enhancers for transcription
factors E2A and PU.1 and blocks the binding of transcription
factor erythroblastosis 1 (ETS1) at Ets binding site during B cells
Frontiers in Immunology | www.frontiersin.org 5
development (112, 113). In addition, DNA methylation closely
cooperates with other regulatory machineries to modify gene
expression, especially with histone modifications, which can
partially be mediated through methylcytosine-binding proteins,
such as MECP2 or MBD2, that are capable of recruiting histone
deacetylases or transcriptional repressors to methylated regions
(111, 114). DNA demethylation, on the other hand, is normally
positively correlated with gene transcription (13). However, the
precise relationship between DNA (de)methylation and gene
expression is complex and requires further investigation. For
instance, it is reported that microbe-induced changes in the
expression of some genes can occur prior to modification of
DNA methylation at their sites (11, 115) and that elevated DNA
methylation outside of gene promoters has been shown to
facilitate gene transcription to a larger extent than promoter
DNA methylation (116, 117).

DNMT Related Gene Expression
DNMTs can repress gene expression by increasing DNA
methylation at promoters and enhancers, resulting in reduced
binding of transcriptional factors to these positions or inducing
changes in the chromatin structure to make it less accessible for
transcription (2, 111). For instance, DNMT3B mediated DNA
methylation at the promoter regions of NF-kB responsive genes
decreases NF-kB recruitment to the promoters, suppressing the
expression of downstream genes (33). H3k6me3 selectively
recruits DNMT3B to gene bodies of actively transcribed genes,
thereby promoting DNA methylation and gene expression (37,
39, 110, 118). DNMTs can regulate gene expression not only via
directly modifying DNA methylation, but also through
mechanisms that are unrelated to DNA methylation but
achieved by cooperating with other regulatory machineries. All
three DNMTs (DNMT1, 3A and 3B) have been reported to
repress gene transcription through interacting with HDACs
independent of their catalytic activity (27, 119). DNMT3A-
mediated DNA methylation increases HDAC9 transcription by
repressing the inhibitory histone mark H3K27me3 at its distal
promoter (116). DNMTs work together with polycomb group
proteins for repression of their common target loci (43). The
tricarboxylic acid cycle metabolites succinate and fumarate
determine the catalytic activity of DNMTs; in turn, DNMT3B
has been reported to modulate mitochondrial metabolism for
maintaining articular cartilage homeostasis (120).

TET Related Gene Expression
TETs regulate gene expression directly by demethylation,
dependent on their catalytic activity, or indirectly through
interaction with other regulatory mechanisms, mostly
independent of their catalytic activity. All three TETs contribute
to dynamic demethylation during development, activation and
oncologic transformation, linked with wide transcription
reprogramming in cells during these processes (5, 121). In recent
years, more and more DNAmethylation independent functions of
TETs have been discovered, indicating that TETs closely work
togetherwith other epigenetic regulatorymechanisms in the setting
of infection. TET2 and TET3 have been shown to inhibit
proinflammatory cytokine expression by recruiting HDAC1/2 to
July 2021 | Volume 12 | Article 696280
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the promoters of cytokine encoding genes during bacterial and viral
infection, respectively (122–124). TET2 also mediated
transcriptional repression by facilitating the recruitment of the
polycomb Repressive Complex 2 to CpG dinucleotide-rich gene
promoters (125). TET1 can be incorporated in the SIN3A co-
repressor complex, resulting in transcriptional effects independent
of 5hmC (126), and this might be the underlying mechanisms of
TET1 mediated inhibition of IL1B transcription (127). The same
mechanismapplies toTET3regulated inhibitionof type I interferon
production during viral infection or poly(I:C) stimulation (124).
TET2 and TET3 facilitate OGT-dependent histone O-
GlcNAcylation by interacting with the enzyme O-linked b-N-
acetylglucosamine (O-GlcNAc) transferase (OGT) (128, 129).
Beyond oxidation of methylated cytosine in DNA, TET2 has also
been reported to promote mRNA oxidation during infection
derived sepsis, thereby destabilizing target mRNA (130); TET2
can suppress expression of endogenous retroviruses through a
similar mechanism (131).
MODIFICATION OF DNA METHYLATION
ASSOCIATED WITH INFECTION

The host response to an infection involves transcriptional
changes in different types of immune cells, which can affect
Frontiers in Immunology | www.frontiersin.org 6
their function to either promote host defense against invading
pathogens or benefit pathogen persistence. The transcriptional
reprogramming during infection is highly regulated and
epigenetic regulatory mechanisms are involved herein (132,
133) (Figure 3). Until recently, the extent of DNA methylation
was thought to be stable and resistant to environmental
stimulation. However, it is now well recognized that DNA
methylation can be altered in a brief time frame in response to
inflammation or infection and that these modifications in DNA
methylation can influence immune cell responsiveness (11). Two
possible mechanisms underlie infection induced alterations in
DNA methylation: infection can directly alter DNA methylation
by inducing or repressing DNA methylation enzymes (DNMTs
and TETs), and/or indirectly through inflammatory mediators
induced by the infection (134). Modification of host DNA
methylation associated with bacterial infection and the
consequent effects on immune responses were summarized in
Table 1 and detailed below.

Gut Microbiota and Intestinal Pathogens
Commensal bacteria contribute to the maintenance of intestinal
symbiosis by shaping host gene expression via epigenetic
modificat ion (187) . Gut microbiota-dependent and
-independent processes act together to form the postnatal
development of the transcriptome and DNA methylation
FIGURE 3 | Regulation of host DNA methylation of immune responses during infection. Figure representing a general overview of how infection can affect DNA
methylation. Note: not all infection modify DNA methylation; an overview of changes induced by specific pathogens is provided in the table. ① Infection induces DNA
(de)methylation at target genes; ② Infection alters the transcription of DNA methylation modifiers TETs and DNMTs; ③ Loss of DNMTs promotes infection induced
DNA demethylation at target genes; ④ TET proteins promote infection induced DNA demethylation at target genes; ⑤ TET proteins recruit HDACs for histone
modification at IL1B and IL6 promoters; ⑥ TET proteins oxidize 5-methylcytosine (5-mC) on SOCS3 messenger RNA (mRNA); ⑦ Infection alter metabolic products
that regulate the activity of TET proteins. “arrow” symbol represents promotion, “bar-headed arrow” symbol represents inhibition. DNMTs, DNA methyltransferases;
TETs, ten-eleven translocation methylcytosine dioxygenases; HDACs, Histone deacetylases; TFs, transcription factors; IL, interleukin; SOCS3, Suppressor of cytokine
signaling 3; ATP, Adenosine triphosphate; a-KG, a-ketoglutarate.
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TABLE 1 | Modification of DNA methylation induced by bacteria and its effects on immune responses.

Bacteria Effect on DNA methylation Impact on immune response References

Gut microbiota Altered DNA methylation in IECs Changed expression of genes related to immunity and
metabolism in IECs

(135–137)

Hypermethylation of TLR4 in IECs Suppressed response to LPS and commensal
microbiota, maintaining intestinal homeostasis

(138, 139)

Demethylation in IECs mediated by TET2/
TET3

Maintained intestinal homeostasis and inhibition of acute
inflammation in experimental colitis

(137, 140)

Polymicrobial Altered DNA methylation in whole blood
leukocytes

Changed gene expression in whole blood leukocytes of
septic patients

(141, 142)

Altered DNA methylation in monocytes Increased IL-10 and IL-6 levels and organ dysfunction in
septic patients

(143)

Altered expression of DNMTs and TETs Increased disease severity in septic patients or
experimental septic mice

(130, 144,
145)

Helicobacter pylori Aberrant DNA methylation in gastric
mucosae caused by infection induced
inflammation

Increased risk of gastric cancer (134, 146–
149)

Aberrant DNMT activity in gastric tissues Increased susceptibility to infection (55, 150)
Mycobacterium tuberculosis Altered DNA methylation in dendritic cells

and macrophages in vitro and in vivo
Altered transcription of genes involved in immune
response

(11, 151,
152)

Aberrant DNA methylation in monocytes Increased disease severity (153–155)
Demethylation at the promoter region of
Nlrp3 in macrophages

Increased NLRP3 inflammasome activation and
downstream release of IL-1b and IL-18

(156)

Aberrant methylation at the TLR2 promoter
in human blood leukocytes

Negatively regulated TLR2 expression; increased
bacterial burden and disease severity

(154)

Escherichia coli Aberrant DNA methylation by altered DNMT
activity in T cells

Dysregulation of immune responses to bacterial infection
induced lung injury

(157, 158)

Increased DNMT1 activity in uroepithelial
cells

Downregulation of CDKN2A (tumor suppressor gene)
and increased risk of bladder cancer consequently

(159, 160)

Decreased DNMT3A activity in porcine
mammary epithelial cells

Enhanced immune response (161)

Downregulation of TET1 in THP1
macrophages

Reduced NF-kB signaling pathway and inhibition of
macrophage M1 polarization

(162)

Salmonella Altered DNA methylation in chicken cecum
and blood leukocytes

Changed expression of immune and metabolic genes (163, 164)

Enhanced DNA methylation at the
promoters of TLR4, TLR21 and TLR2-1 in
chicken blood leukocytes

Reduced MyD88 signaling and increased susceptibility
to Salmonella enterica

(165, 166)

Pseudomonas aeruginosa Altered DNA methylation at NODAL in
bronchial epithelial cells

Changed airway homeostasis (167)

Aberrant function of DNMT3B Increased susceptibility to infection (168, 169)
Methicillin-resistant Staphylococcus aureus Reduced DNMT3A in macrophage and

neutrophils
Reduced IL-10 production and increased inflammatory
responses in patients; Increased susceptibility and
mortality in murine models

(170)

Modified DNA methylation signatures in
circulating immune cells

Increased disease severity in patients (171)

Campylobacter rectus Hypermethylation of Igf2 in mouse placenta Down-regulation of Igf2 and aberrant placental growth (172)
Porphyromonas gingivalis Decreased DNMT1 expression in gingival

epithelial cells
Increased antibacterial responses by promoting b-
defensin 2 and CC chemokine ligand 20 expression

(173)

Anaplasma phagocytophilum DNA hypermethylation in neutrophils
potentially by promoting DNMT3A
expression

Reduced neutrophil antibacterial functions (174)

Bacterial products Effect on DNA methylation Impact on immune response References
LPS Aberrant DNA methylation at TLRs,

inflammatory cytokines (IL6, TNF)
Dysregulation of cellular responses to LPS stimulation (175–178)

Increased DNMT1 activity in macrophages Enhanced inflammatory responses by hypermethylation
of anti-inflammatory factors such as KLF4, miR-145 and
SOCS3

(178–180)

Downregulation of TET1 in macrophages Inhibition of NF-kB signaling and decreased
inflammatory responses

(162)

Increased Tet2 expression in myeloid cells Decreased IL-6 production and reduced inflammation in
vivo

(63, 122)

Staphylococcal enterotoxin B Modified DNA methylation of some genes
with important roles in immunity in nasal
polyp explants

Potentially altered immune responses related to T-cell
maturation/activation

(181)

(Continued)
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signatures of intestinal epithelial cells (IECs) early after birth.
The formation of microbiota related “functional” methylation
sites might impact long-term gene expression signatures in IECs
(135, 136). Furthermore, some intestinal genes, related to innate
immunity, phagocytosis, endothelial homeostasis and tissue
metabolism are influenced by microbiota through DNA
methylation (136). For instance, exposure of colonic epithelial
cells to commensal bacteria results in Toll-like receptor (TLR)4
gene hypermethylation and transcriptional downregulation,
thereby suppressing responsiveness to LPS (138, 139). More
importantly, TET2/3 in IECs contribute to enhanced
demethylation induced by microbiota under homeostasis and
during acute inflammation (137). Besides IECs, the development
and function of immune cells at nonmucosal sites, such as the
bone marrow, peripheral lymph nodes and spleen, are also
suggested to be regulated by microbiota via DNA methylation
(188). On the other hand, TET2 deficiency in hematopoietic cells
can lead to a microbiota-dependent impairment of gut
barrier (140).

Many intestinal pathogenic bacteria have been suggested to
cause aberrant DNA methylation in host cells. In this context.
Helicobacter (H.) pylori is one of the most investigated enteric
pathogens. H. pylori is able to change DNA methylation directly.
High levels of aberrant DNA methylation in H. pylori–infected
gastric mucosae have been associated with gastric cancer risk
(146). Indeed, several tumor suppressing genes were found
downregulated in gastric mucosae through H. pylori–infection
induced hypermethylation. DNA methylation at the promoter
region of trefoil factors, which regulate mucosal repair and
suppress tumor formation in the stomach, was found increased
early after H. pylori infection and throughout gastric tumor
progression (189). Similarly, hypermethylation of DNA repair
protein O6-methylguanine DNA methyltransferase (MGMT)
and reduced levels of MGMT were common in the gastric
epithelium of H. pylori infected patients, increasing mutagenesis
in H. pylori-infected gastric mucosa (190). Other important genes
like CX32 and CX43 were also repressed by H. pylori induced
hypermethylation (191). DNA hypermethylation in the context of
H. pylori infection was partially reversible after eradication of this
bacterium or administration of a DNA demethylating agent,
5-aza-2-deoxycytidine, resulting in decreased the incidence of
Frontiers in Immunology | www.frontiersin.org 8
gastric cancers induced by H. pylori infection (190, 192). Single
nucleotide polymorphisms in DNMT1 were reported to be
genotypic markers for predicting genetic susceptibility to H.
pylori infection (150), whilst the addition of folic acid to
promote the activity of DNMTs was able to counteract H. pylori
induced DNA demethylation (55), suggesting a direct role for
methylation related factors herein. More recent evidence suggests
that H. pylori induced inflammatory responses rather than the
bacteria itself cause aberrant DNA methylation in the gastric
mucosa (147). DNA hypermethylation induced by H. pylori
infection was associated with down-regulation of genes involved
in cell cycle progression control and DNA repair, thereby
increasing the risk for gastric cancer (148). Mechanisms
implicated in DNA hypermethylation during H. pylori infection
include inflammation associated with the infection (134, 149) and
altered expression or activity of DNAmethylation related enzymes
(62); as an example, IL-1b is able to induce TET2 expression in
macrophages via IL-1R-Myd88 signaling (62).

Polymicrobial Infection and Sepsis
Sepsis is defined as life-threatening organ dysfunction resulting
from a dysregulated host response to infection (193) and one of
the leading causes of death globally (194). Sepsis is associated
with changes in DNA methylation patterns in blood leukocytes
of critically ill patients, and the majority of the differentially
methylated region-associated genes were differentially expressed
(141). Functional analysis showed that these sepsis related
alterations in DNA methylation involved inflammatory
pathways participating in both the innate and adaptive
immune response, as well as in cell adhesion and cell junctions
(141, 195). Likewise, the altered DNA methylation profiles in
monocytes of septic patients correlated with increased IL-10 and
IL-6 levels, as well as with organ dysfunction (143). Analysis of
the CpG methylation status in blood cells of neonates with sepsis
showed differential methylation of several CpGs located in
functionally important genes including a group of PCDHB
genes that play vital roles in leukocyte cell adhesion and the
Wnt signaling pathway when compared to health (142). Another
investigation indicated that the DNA methylation pattern of
CpG sites in the promoter region of the calcitonin-related
polypeptide a (CALCA) gene might be used as an epigenetic
TABLE 1 | Continued

Bacteria Effect on DNA methylation Impact on immune response References

Peptidoglycan and lipoteichoic acid Suppressed DNMT activity and
hypomethylation of global DNA

Enhanced inflammatory responses (182)

Rv2966c from Mycobacterium tuberculosis;
Mhy1, Mhy2, and Mhy3 produced by
Mycoplasma hyorhinis

Hypermethylation of host genes by acting
as DNA methyltransferase

Interference with host immune response (183–185,
212)

Extracellular vesicles secreted by P.
aeruginosa

Modified DNA methylation at enhancers of
immune-related genes in human lung
macrophages

Abnormal innate immune response (203)

Bacterial metabolite folate Increased DNMT activity with altered DNA
methylation in host cells

Unknown (186)
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biomarker for bacterial sepsis in preterm newborns (196). Sepsis
associated DNA methylation signatures in either specific genes
or at genome-wide level have potential as diagnostic tools for
predicting sepsis outcome or distinguishing sepsis subtypes. For
instance, methylation of the NF-kB binding site in the
Aquaporin5 (AQP5) promoter diminishes the binding of
NF-kB and increased the expression of AQP5 in blood cells of
septic patients is associated with substantially greater 30-day
mortality (197). Similarly, DNA methylation signatures in
critically ill adults can distinguish septic and nonseptic
patients, and can associate with clinical traits including severity
of illness, need for vasopressors, and length of stay (141). These
changes in DNA methylation likely at least in part are caused by
sepsis-induced changes in the levels of enzymes mediating DNA
methylation, as indicated by decreased DNMT1 and increased
TET2 mRNA levels in blood leukocytes of sepsis patients (144).
However, de novo DNMT mRNAs (DNMT3A and DNMT3B) in
extracellular vesicles in blood were much higher than in healthy
controls and strongly correlated with disease severity; DNMT
mRNA levels were higher in septic shock patients than in sepsis
patients without shock (145). In sepsis models, the inhibition of
DNA methyltransferases by Decitabine attenuated NF-kB
activation, downregulated inflammatory cytokine levels,
inhibited the progression of sepsis and improved survival in
mice with severe sepsis induced by cecal ligation and puncture
(198). The presence of TET2 impaired survival in mice with
sepsis by promoting emergency myelopoiesis and a cytokine
storm through oxidation of 5-mC in Socs3 mRNA resulting in
destabilization of this mRNA (130). Collectively, DNA
methylation could be a potential diagnostic tool or biomarker
for sepsis, and manipulation of DNA methylation enzymes
might be a novel strategy in the treatment of sepsis.

Specific Pathogens
Mycobacterium tuberculosis
Mycobacterium tuberculosis (MTB) infection has been reported
to change DNA methylation at global level and at specific target
CpGs both in vivo and in vitro. An in vitro study showed that
MTB infection can lead to rapid changes in DNA methylation in
non-proliferating cells, in parallel with the transcriptional
response (11). Altered DNA methylation in macrophages was
predominantly found at non-CpG dinucleotide sites during MTB
infection (151), and the mycobacterial protein Rv2966c might be
responsible for this type of DNA methylation change (183).
Macrophages isolated from MTB infected patients also showed
altered DNA methylation profiles of the promoter sequences of
many cytokines and their receptors (152). For instance,
demethylation at the promoter region of NLRP3 by MTB
infection activates the NLRP3 inflammasome and increases IL-
1b and IL-18 release (156). Peripheral blood mononuclear cells
from TB patients are characterized by DNA hyper-methylation
of genes critical to mycobacterial immunity resulting in
decreased mycobacteria-specific and non-specific immune
responsiveness (153). Aberrant methylation of certain CpG
sites over the TLR2 promoter negatively regulated TLR2
expression in NK cells/monocytes of patients with active
pulmonary TB and correlated with the bacterial burden and
Frontiers in Immunology | www.frontiersin.org 9
disease severity (154); likewise, increased DNA methylation in
monocytes from tuberculosis patients was suggested to reflect
disease severity (155). Collectively, these results suggest that
DNA methylation profiles of leukocyte subsets might be used
as clinically prognostic tools for TB.

Escherichia coli
Escherichia (E.) coli is a Gram-negative and common causative
pathogen in gastroenteritis, urinary tract infection, neonatal
meningitis, hemorrhagic colitis, peritonitis and pneumonia.
Several studies have documented modifications of DNA
methylation in host cells during E.coli infection. DNA methylation
within the promoters of a core set of CD4+ T-cell pathway genes
attenuated neonatal immune responses to pneumonia-induced
injury (157). Yet, DNMT inhibition by 5-aza-2-deoxycytidine
(DAC) augmented the number and function of regulatory T cells
thereby accelerating the repair of experimental lung injury (158),
suggesting that the altered DNAmethylationmight be caused by the
changes in the abundance or activity of regulatory enzymes during
E.coli infection. Moreover, E. coli induced alterations in DNA
methylation are frequently accompanied by changes in the
expression of genes encoding proteins that are required for
controlling bacterial infection. Uropathogenic E. coli infection
induces de novo methyltransferase activity and DNMT1
expression causing increased methylation of CDKN2A exon 1 and
downregulation of this tumor suppressor gene in uroepithelial cells,
which may increase the risk of bladder cancer (159, 160). However,
downregulation of de novo methyltransferase DNMT3A by E. coli
was accompanied by hypomethylation of some immune response
genes in porcine mammary epithelial cells (161). Additionally,
knockdown of TET1 in THP1 macrophages downregulated the
activity of the NF-kB signaling pathway activated by E. coli, thus
inhibiting macrophage M1 polarization (162). Avian pathogenic E.
coli infection led to changes of DNA methylation at gene body
regions in the spleen, which negatively correlated with the
expression of genes involved in the host inflammatory response
and other networks and pathways related to injury/survival (199).

Salmonella
Salmonella is the most frequently detected causative agent in
foodborne outbreaks worldwide. Salmonella (S.) typhimurium
and S. enteritidis are the most common serotypes associated with
foodborne diseases (200). The domestic chicken is an important
host of S. enterica, and some studies showed that S. enterica
infection alters DNA methylation in immune and metabolism
related genes in chicken cecum and blood leukocytes (163, 164).
Furthermore, enhanced DNA methylation levels at the
promoters of Tlr4, Tlr21 and Tlr2-1 of blood leukocytes is
related to reduced expression of genes in the MyD88 signaling
pathway and increased susceptibility to S. enterica infection (165,
166). Notably, although Salmonella is an important pathogen in
humans, knowledge of its capacity to modify DNA methylation
in human cells is lacking.

Pseudomonas aeruginosa
P. aeruginosa is one of the main causative pathogens in hospital-
acquired pneumonia and chronic airway infection associated
July 2021 | Volume 12 | Article 696280
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with cystic fibrosis (201). Bronchial epithelial cells (BECs) are
activated by and required for host defense against P. aeruginosa
infection (202). Recently P. aeruginosa was shown to inhibit
NODAL expression in BECs through methylation modification of
its promoter. Nodal is vital for regulating proliferation of BECs and
BEC-induced differentiation of T helper (Th) cells fromTh1 to Th2
and Th17, thus regulating the immunological balance of the airway
microenvironment (167). DNA methylation in human lung
macrophages can be modified by P. aeruginosa secreted
extracellular vesicles; DNA methylation modifications particularly
occurred at distal DNA regulatory elements, including enhancer
regions and DNase hypersensitive sites, and some CpGs associated
with cytokines such as CSF3 displayed strong negative correlations
between DNA methylation and gene expression (203). DNA
methylation enzymes are important for regulating host immune
responses against this bacterium infection, as indicated by the
association between genetic variants of DNMT3B and P.
aeruginosa infection in children (168). We recently identified a
role for DNMT3B in bronchial epithelial cells during P. aeruginosa
pneumonia (169). DNMT3B deficient human bronchial epithelial
cells produced more CXCL1 and related chemokines than control
cells when stimulated with P. aeruginosa. Mechanistically,
DNMT3B deficiency reduced DNA methylation at exon 1 of
CXCL1 and increased NF-ĸB p65 binding to the CXCL1
promoter. These in vitro findings were corroborated by studies in
mice with bronchial epithelial Dntm3b deficiency infected with
viable P. aeruginosa via the airways, which showed increasedCxcl1
expression in bronchial epithelium and CXCL1 protein release
together with enhanced neutrophil recruitment and accelerated
bacterial clearance. Additional studies using purified flagellin (an
important virulent factor expressed by Pseudomonas) and a
flagellin-deficient P. aeruginosa strain demonstrated that
bronchial epithelial DNMT3b impaired host defense during
Pseudomonas induced pneumonia at least in part by diminishing
mucosal responses to flagellin (169). In separate investigations we
showed that the DNA methylation eraser TET2 maintains
epithelium barrier function during acute P. aeruginosa infection
in mice (204).

Burkholderia pseudomallei
B. pseudomallei is an intracellular Gram-negative pathogen
causing melioidosis, a common cause of sepsis in Southeast
Asia and Australia. B. pseudomallei induced changes in DNA
methylation of human macrophage-like U937 cells in vitro,
particularly in the vicinity of genes involved in inflammatory
responses, intracellular signaling and apoptosis (205).

Methicillin-Resistant Staphylococcus aureus (MRSA)
MRSA infection significantly decreased DNMT3A in blood
leukocytes in vivo and in macrophage and neutrophils in vitro.
DNMT3A knockdown increased S. aureus induced IL-10
production by macrophages in vitro and pretreatment with DAC
increasedmortality in a S. aureusmurine sepsis model. However, a
DNMT3A polymorphism increased the capacity to resolve MRSA
bacteremia, potentially by reducing IL-10 production though a
DNAmethylation dependent mechanism (170). Indeed, persistent
and resolving MRSA bacteremia were associated with different
Frontiers in Immunology | www.frontiersin.org 10
DNA methylation signatures in circulating immune cells of
patients, particularly in neutrophils, and this distinct DNA
methylation patterns were able to predict persistent MRSA
bacteremia (171).

Campylobacter rectus
Placental and fetal infection with C. rectus in mice caused
hypermethylation in the promoter region of Igf2 in the
placenta, resulting in down-regulation of Igf2, which affects the
growth of the fetus by controlling both the placental supply of,
and the genetic demand for, maternal nutrients to the fetus (172).

Porphyromonas gingivalis
P. gingivalis, the major pathogen in chronic periodontits, modifies
DNMT1 expression and changes methylation at the promoter
region of several genes implicated in the innate immune response
against bacteria and during tissue remodeling, whilst the DNMTs
inhibitor DAC restores the expression of these genes in infected
gingival epithelial cells (173).

Anaplasma phagocytophilum
A. phagocytophilum is a Gram-negative bacterium with a strong
tropism for neutrophils that causes human granulocytic
anaplasmosis, a zoonosis transmitted by ticks. A. phagocytophilum
infection induces genome-wide hypermethylation in neutrophils
potentially by promoting DNMT3A expression (174). Furthermore,
inhibition of DNMTs by 5-azacytidine resulted in a partially
recovery of neutrophil antibacterial functions and decreased
bacterial growth (174).

Bacterial Products
DNAmethylation of immune cells can affect their responsiveness
to microbial products, as illustrated by strong correlations
between DNA methylation in human peripheral blood
mononuclear cells and IL-6 production elicited by various TLR
agonists (206). LPS is one of the major virulence factors of Gram-
negative bacteria and the most used molecule for studying
mechanisms underlying cellular immune responses. Recent
evidence has indicated that changes in DNA methylation
regulate LPS-induced immune responses and that modifying
DNMT activity influences cellular responses to LPS (175). One
way by which DNA methylation might influence LPS
responsiveness is by affecting the expression of TLR4, the LPS
receptor, as has been documented in intestinal epithelial cells (207).
However, themost frequently reportedmechanismsbywhichDNA
methylation regulates LPS induced responses are associated with
the function of DNAmethylation modifiers. Increasing the methyl
donor for DNA methylation by adding the S-adenosylmethionine
(SAM) precursor methionine attenuated LPS-induced
inflammatory responses in macrophages, whilst the DNMTs
inhibitor DAC partially suppressed inflammatory responses
induced by LPS in macrophages and other cell types (208, 209).
Furthermore, DAC reduced lung inflammation and injury by
inhibiting M1 macrophage activation in vivo (210). DNMTs were
altered in bovine endometrial cells and microglia upon LPS
stimulation and the expression of some inflammatory cytokines
such as IL-1b, IL-6 and IL-8 were negatively regulated by
July 2021 | Volume 12 | Article 696280
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methylation at their promoters (176, 177). Similarly, DNMT3Bwas
reported to inhibit pro-inflammatory cytokine production by
hypermethylation at their promoters or by downregulation of
PPARg expression (33, 211). Conversely, DNMTs mediated
hypermethylation at promoters of anti-inflammatory factors,
such as SOCS1, KLF4 and miR-145 – and as a consequence
thereof – their downregulation, exacerbates inflammatory
responses either in vivo or in vitro (178–180). The role of TET
proteins in LPS induced activation of immune cells was intensively
studied, revealing both inhibitory and stimulatory functions. TET1
is able to interfere with the NF-kB signaling pathway and
knockdown of TET1 resulted in decreased production of
proinflammatory markers by LPS/IFN-g-induced M1
macrophages (162). TET2 functions downstream of the NF-kB
signaling pathway by recruiting HDACs to the IL6 promoter
resulting in reduced IL6 expression in macrophages and
attenuation of inflammatory responses in murine endotoxemia
model (63, 122). Besides LPS, there are few other bacterial
compounds reported to affect DNA methylation in host cells.
Staphylococcus aureus enterotoxin B altered the DNA
methylation pattern in nasal polyp explants, most notably in
IKBKB and STAT5B, genes encoding proteins with important
roles in immunity (181). Likewise, peptidoglycan and lipoteichoic
acid from this bacterium are able to suppress DNMT activity,
resulting in enhanced inflammatory responses in bovinemammary
epithelial cells (182). While the majority of bacterial compounds
alter host DNA methylation by modifying the expression and
activity of DNA methylation enzymes, mycobacterial protein
Rv2966c by itself acts as a DNA methyltransferase that binds to
host specific DNA sequences and methylates cytosines
predominantly in a non-CpG context (183). Likewise, the swine
pneumonia pathogen Mycoplasma hyorhinis produces Mhy1,
Mhy2 and Mhy3, which can serve as mammalian DNMTs able to
modify host DNA methylation (184, 185, 212). Besides bacterial
components, bacterial metabolites might also affect host cell DNA
methylation after uptake by these cells. For instance, folate produced
by the commensal bacteria Bifidobacterium and Lactobacillus
contributes to the generation of SAM resulting in increased DNMT
activity and altered DNAmethylation in host cells (186).
Frontiers in Immunology | www.frontiersin.org 11
CONCLUSION AND PERSPECTIVES

Bacterial infection can alter the DNAmethylation pattern of host
cells, which may represent a strategy of pathogens to modify host
gene expression to avoid clearance and facilitate colonization
(213, 214). Changes in DNA methylation may also contribute to
short-term memory in innate immune cells (215). Most of our
current understanding of DNA methylation is derived from
research fields outside infection immunity, in particular cancer
and developmental immunology. Whilst awareness of the crucial
role of DNA methylation and the proteins involved herein in
regulating host immune defense against bacterial infection has
increased, much remains to be learned about the mechanisms by
which bacterial infection alters host DNA methylation and how
this interferes with immune responses. Additionally, compared
to a broad spectrum of bacteria that can modify host DNA
methylation, thus far only few bacterial components or products
have been reported to alter host DNA methylation, through
mechanisms that are incompletely understood. Therefore,
further research is warranted to reveal which bacterial effectors
and mechanisms are involved in modification of host DNA
methylation in bacterial infection. Expanding our knowledge of
the role of variations in the methylation of DNA in host immune
cells may not only enhance our understanding of host defense
and the pathogenesis of bacterial infection, but also may provide
clues for the development of novel therapeutics.
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