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Wastewater discharge to the environment or its reuse after sanitization poses a concern
for public health given the risk of transmission of human viral diseases. However,
estimating the viral infectivity along the wastewater cycle presents technical challenges
and still remains underexplored. Recently, human-associated crAssphage has been
investigated to serve as viral pathogen indicator to monitor fecal impacted water bodies,
even though its assessment as biomarker for infectious enteric viruses has not been
explored yet. To this end, the occurrence of potentially infectious norovirus genogroup I
(GI), norovirus GII, hepatitis A virus (HAV), rotavirus A (RV), and human astrovirus (HAstV)
along with crAssphage was investigated in influent and effluent water sampled in four
wastewater treatment plants (WWTPs) over 1 year by a PMAxx-based capsid integrity
RT-qPCR assay. Moreover, influent and effluent samples of a selected WWTP were
additionally assayed by an in situ capture RT-qPCR assay (ISC-RT-qPCR) as estimate
for viral infectivity in alternative to PMAxx-RT-qPCR. Overall, our results showed lower
viral occurrence and concentration assessed by ISC-RT-qPCR than PMAxx-RT-qPCR.
Occurrence of potentially infectious enteric virus was estimated by PMAxx-RT-qPCR
as 88–94% in influent and 46–67% in effluent wastewaters with mean titers ranging
from 4.77 to 5.89, and from 3.86 to 4.97 log10 GC/L, with the exception of HAV that
was sporadically detected. All samples tested positive for crAssphage at concentration
ranging from 7.41 to 9.99 log10 GC/L in influent and from 4.56 to 6.96 log10 GC/L in
effluent wastewater, showing higher mean concentration than targeted enteric viruses.
Data obtained by PMAxx-RT-qPCR showed that crAssphage strongly correlated with
norovirus GII (ρ = 0.67, p < 0.05) and weakly with HAstV and RV (ρ = 0.25–0.30,
p < 0.05) in influent samples. In effluent wastewater, weak (ρ = 0.27–0.38, p < 0.05)
to moderate (ρ = 0.47–0.48, p < 0.05) correlations between crAssphage and targeted
viruses were observed. Overall, these results corroborate crAssphage as an indicator
for fecal contamination in wastewater but a poor marker for either viral occurrence and
viral integrity/infectivity. Despite the viral load reductions detected in effluent compared
to influent wastewaters, the estimates of viral infectivity based on viability molecular
methods might pose a concern for (re)-using of treated water.
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INTRODUCTION

The microbiological analysis of raw and treated wastewater has
become a hot topic in recent years due to the emerging concerns
on the disease/pathogen epidemiological tracking (known as
wastewater-based epidemiology, WBE) and on the safety of
wastewater discarding and reusing. Monitoring of wastewater has
already been implemented with success for a long time on the
tracking of chemical pollutants, drug spread within communities,
and antibiotic resistance genes (ARGs) (Mercan et al., 2019; de
Oliveira et al., 2020). Over the last years, molecular analysis
detection of viruses in wastewater samples has allowed disease
surveillance as for poliovirus during the global eradication
program (Asghar et al., 2014), re-emerging zoonotic pathogens
such as hepatitis E virus (Miura et al., 2016; Cuevas-Ferrando
et al., 2020), human enteric viruses (Hellmér et al., 2014; Prevost
et al., 2015; Santiso-Bellón et al., 2020), and very recently severe
acute respiratory syndrome coronavirus 2 (SARS-CoV-2) (Bivins
et al., 2020b; Randazzo et al., 2020).

Human enteric viruses are the causative agents of viral
gastroenteritis, hepatitis, and other diseases which predominantly
transmit through the fecal–oral route (Oude Munnink and van
der Hoek, 2016). Viral spread is mainly associated to person-
to-person contact and ingestion of contaminated food and
waters since enteric viruses are shed at huge concentrations
of up to 1013 particles per gram by both symptomatic
and asymptomatic individuals (Carter, 2005; Bosch et al.,
2008; Okoh et al., 2010). Group A rotavirus (RV), norovirus
genogroups I (GI) and II (GII), hepatitis A virus (HAV), and
human astrovirus (HAstV) are the main causative agents of
water−associated viral gastroenteritis and hepatitis outbreaks
worldwide (Bosch et al., 2008).

Human enteric viruses show higher resistance to
decontamination treatments generally applied by wastewater
treatment plants (WWTPs) such as chlorination and UV
radiation (Gerba et al., 2018). Consequently, reclamation in
WWTP does not usually achieve total removal of viral particles
from sewage (Ramírez-Castillo et al., 2015) and they are
commonly found in effluent water samples analyses (Sano et al.,
2016; Farkas et al., 2018).

In the context of the exacerbated water shortage, the use
of reclaimed water for irrigation, recreational, or industrial
applications has become a strategy to tackle this critical problem
(Barcelo and Petrovic, 2011). From a public health perspective,
monitoring not only the occurrence but also the infectivity of
viral human pathogens may permit to estimate the adequacy
of current water reclamation systems. To approach this issue,
targeting specific human viral pathogens or a properly selected
indicator constitutes alternative strategies to pursue.

Traditionally, methods based on cell culture have been used
in clinical virology to test for viral infectivity, which show
considerable limitations when applied in environmental samples
because of the co-contamination of multiple virus species, the
absence of permissive cell lines for certain viruses, and the
cytotoxic effect of wastewater in cell culture (Gerba et al.,
2018; Randazzo et al., 2018a). In recent years, there has been
an enormous progress in detecting enteric viruses in water

samples by real-time polymerase chain reaction (qPCR) methods
(Katayama et al., 2008; Simmons and Xagoraraki, 2011; Farkas
et al., 2018). Even so, molecular assays do not discriminate
between viruses with infective capacity, inactivated viruses, and
free genome. To overcome this limitation, viability markers and
binding assays have been coupled to qPCR detection to evaluate
the integrity of the viral capsid as estimate for viral infectivity
also in water samples (Parshionikar et al., 2010; Kim et al., 2011;
Coudray-Meunier et al., 2013; Prevost et al., 2016; Randazzo
et al., 2016, 2018b,c; López-Gálvez et al., 2018; Tian et al., 2018;
Leifels et al., 2019, 2020; Shirasaki et al., 2020; Canh et al., 2021a).
Of note, such approach has been very recently implemented
for SARS-CoV-2 detection in wastewater (Canh et al., 2021b;
Cuevas-Ferrando et al., 2021).

Capsid integrity is a strong indicator of virus infectivity,
as virions with an accessible genome yield reduced qPCR
signals, improving the molecular estimation of virions (Leifels
et al., 2020). As an alternative, fecal indicator bacteria (FIB)
have traditionally been used to estimate fecal contamination
of environmental waters, even though surveillance data
demonstrated FIB may not always correlate with human enteric
viruses (Sano et al., 2016; Amarasiri et al., 2017; Sidhu et al.,
2017; Gerba et al., 2018). Recently, viruses such as crAssphage
(cross-assembly phage), tobacco mosaic virus (TMV), and
pepper mild mottle virus (PMMoV) have been suggested as
indicators for either human fecal contamination and viral human
pathogen removal throughout wastewater reclamations in the
WWTPs (Kitajima et al., 2014; García-Aljaro et al., 2017; Farkas
et al., 2019, 2020; Symonds et al., 2019; Bivins et al., 2020a;
Tandukar et al., 2020; Wu et al., 2020).

Thus, the primary goal of this study was defining the
occurrence of infectious human enteric viruses in influent and
effluent wastewater by rapid molecular methods and, secondly,
testing the hypothesis of whether crAssphage would serve as
indicator for viral infectivity.

To this end, we monitored, by PMAxx-RT-qPCR over a 1-
year period, the occurrence of intact capsid potentially infectious
RNA enteric viruses (i.e., norovirus GI and GII, HAV, RV, and
HAstV) and crAssphage in influent and effluent water samples
collected from four WWTPs in the Valencian Region (Spain).
Moreover, we compared in situ capture RT-qPCR (ISC-RT-
qPCR) and PMAxx-RT-qPCR assays as alternative estimates for
viral infectivity using influent and effluent samples of a selected
WWTP longitudinally over a year. Finally, this work contributes
on the expansion of the actual data pool on spatiotemporal viral
monitoring studies in raw and treated wastewater and increases
the significance of qPCR results for public health, economic,
and QMRA purposes.

MATERIALS AND METHODS

Sampling Site and Sample Collection
Influent (n = 48) and effluent (n = 48) wastewater samples were
collected regularly each month (from November 2018 to October
2019) from four WWTPs located in the Valencian region in
Spain (Figure 1). Reclamation processes applied in each sampled
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wastewater treatment plant are described in Table 1. Samples
were grabbed early in the morning (7–12 a.m.) by collecting 500–
1,000 ml of water in sterile HDPE plastic containers (Labbox
Labware, Spain). Collected samples were transferred on ice to the
laboratory, kept refrigerated at 4◦C and concentrated within 24 h
as reported below.

Escherichia coli Counts and
Physicochemical Characterization of
Influent and Effluent Wastewater
Samples
Influent and effluent wastewater samples were characterized by
determining significant physicochemical parameters. Escherichia
coliwas determined as the Most Probable Number (MPN)/100 ml
according to EN ISO 9308-2 (2014). The total alkalinity (referred
as TA) was determined by titration by measuring the UV-Vis
absorbance following the methyl orange method and expressed
in mg/L CaCO3. The chemical oxygen demand (COD, mg/L
O2) was determined by measuring the UV-Vis absorbance
on an AP3900 laboratory robot coupled with a DR3900
spectrophotometer (Hach) following the potassium dichromate
method. Total suspended solids (TSS) were determined by
filtration by using glass fiber filters and results expressed in
mg/L. Turbidity (Nephelometric Turbidity Unit, NTU) were
determined by TU5200 Laser Turbidimeter and the oxidation-
reduction potential (ORP, expressed in mV) by HQ 40D digital
multi meter (Hach, United Kingdom). Physicochemical analyses
and E. coli counts were performed at GAMASER laboratories
(Valencia, Spain).

Virus Suspensions
Feces positive for norovirus GI, norovirus GII, and HAstV
(courtesy of Dr. Buesa from Hospital Clínico Universitario,
University of Valencia, Spain) were resuspended (10%, wt/vol)
in phosphate-buffered saline (PBS) containing 2 M NaNO3
(Panreac, Spain), 1% beef extract (Conda, Spain), and 0.1%
Triton X-100 (Thermo Fisher Scientific, Spain) (pH 7.2), vortexed
and centrifuged at 1,000 × g for 5 min. The supernatants
were extracted, the RNA stored at -80◦C in aliquots to be
used as positive amplification controls. The human RV strain
Wa (ATCC VR-2018), the cytopathogenic HM-175 strain of
HAV (ATCC VR-1402), and mengovirus vMC0 (CECT 100000)
were propagated in MA-104, FRhK, and HeLa cell monolayers,
respectively. Semipurified stocks were thereafter produced in the
same cells by low-speed centrifugations of infected cell lysates
(3,000 × g for 20 min). RNA extracted from infected cell
lysates was used as positive amplification control and mengovirus
(MgV) was used as process control as suggested in ISO 15216-
2:2019 (microbiology of the food chain) for sample concentration
validation (Randazzo et al., 2019).

Wastewater Concentration
Influent and effluent water samples were artificially inoculated
with approximately 7 log10 PCR units (PCRU)/L of MgV,
as process control. Samples were concentrated through an
aluminum hydroxide adsorption-precipitation method (AAVV,
2018; Randazzo et al., 2019). Briefly, 200 ml of sample was

adjusted to pH 6.0 and Al(OH)3 precipitate formed by adding
1 part 0.9 N AlCl3 solution to 100 parts of sample. Then, pH
was readjusted to 6.0 and sample mixed using an orbital shaker
at 150 rpm for 15 min at room temperature. Next, viruses were
collected by centrifugation at 1,700 × g for 20 min. The pellet
was resuspended in 10 ml of 3% beef extract pH 7.4, and samples
were shaken for 10 min at 150 rpm. Finally, the concentrate was
recovered by centrifugation at 1,900 × g for 30 min and the pellet
was resuspended in 1 ml of PBS and stored at -80◦C.

Viral Capsid Integrity Assays in
Wastewater Samples
To assess the intact capsid condition of enteric viruses in
influent and effluent wastewater, a main protocol based on capsid
permeability to PMAxx viability dye (PMAxx-RT-qPCR) was
used for all wastewater samples. Besides, an alternative method
based on the specific binding ability to porcine gastric mucin
(PGM) was run in parallel in samples from WWTP4 in order to
evaluate its unreported capsid integrity discrimination efficiency
on wastewater matrices.

For PMAxx-RT-qPCR, a previously optimized protocol was
applied prior to nucleic acid extraction and RT-qPCR detection
(Randazzo et al., 2016, 2018c; López-Gálvez et al., 2018).
Briefly, the photoactivatable dye PMAxxTM (Biotium, United
States) was added to 150 µl of each concentrated water sample
at 50 µM along with 7.7 mmol/L Triton 100-X (Thermo
Fisher Scientific, Spain) and incubated in the dark at room
temperature for 10 min at 150 rpm. Later, samples placed in
DNA LoBind 1.5 ml tubes (Eppendorf, Germany) were exposed
to photoactivation using a Led-Active Blue system (GenIUL,
Spain) for 15 min, and viral RNA was extracted and analyzed as
described hereafter.

The in situ capture assay (ISC-RT-qPCR) was performed as
previously reported (Wang and Tian, 2014; Falcó et al., 2019)
in 24-well plates with some modifications. Briefly, each well was
coated with 100 µl of PGM (100 µg/ml) in carbonate-bicarbonate
buffer (pH 9.6) at 37◦C for 1 h and then incubated overnight at
4◦C. After being washed five times with 300 µl of PBS containing
0.05% Tween 20 and 0.3% BSA (PBSTB), wells were blocked
with 300 µl of 3% BSA in PBS at 37◦C for 2 h. Next, wells
were washed five times with PBSTB, and 300 µl of concentrated
water samples and controls were added to the 24-well plate
and incubated at 37◦C overnight. Untreated viral suspensions
and those treated at 99◦C for 5 min were used as positive and
negative controls, respectively. Finally, after washing five times
with PBSTB, 100 µl of lysis buffer from the NucleoSpin RNA
virus kit (Macherey-Nagel GmbH and Co., Germany) was added
to each well. Then, viral RNA was extracted and analyzed as
described hereafter.

RNA Extraction and Virus Quantification
Nucleic acids from each water sample were extracted following
the NucleoSpin R© RNA virus kit (Macherey-Nagel GmbH
and Co., Germany) manufacturer’s instructions with some
modifications. In short, 150 µl of each concentrated sample was
added with 25 µl Plant RNA Isolation Aid (Ambion, United
Kingdom) and 600 µl of lysis buffer from the NucleoSpin R©
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FIGURE 1 | Geographical localization of wastewater treatment plants in Valencian region (Spain) and their population coverages included in the study. Diamonds on
the figure are scaled according to population (inhabitants, inh).

RNA virus kit and subjected to pulse-vortexing. Then, the
homogenate was centrifuged for 5 min at 10,000 × g for
debris removal. The supernatant was subsequently processed
according to the manufacturer’s instructions. Presence of
norovirus GI and GII, HAV, HAstV, RV, and MgV was
detected in 96-well plates using the RNA UltraSense One-
Step kit (Invitrogen SA, United States), while crAssphage
occurrence was performed using the qPCR Premix Ex TaqTM

kit (Takara Bio Inc.) on the LightCycler R© 480 instrument
(Roche Diagnostics, Switzerland). Moreover, undiluted and
10-fold diluted nucleic acid were tested in duplicate to
check for inhibitors.

TABLE 1 | Reclamation processes of wastewater treatment plants.

Step Treatment WWTP 1 WWTP 2 WWTP 3 WWTP 4

Coarse screening X X X

Fine screening X X

Pretreatment Sifting X X X X

Flow homogenization tank X X

Grit removal X X X X

Grease removal X X X X

Primary Physicochemical treatment X X

treatment Decantation X X X

Activated sludge X X

Extended aeration X X

Secondary Nitrogen removal X X X X

treatment Phosphorus removal X X

Coagulation—Flocculation X

Filtration X

Tertiary UV X X

treatment Chlorination X X

Different controls were used in all assays, including a
concentration control to monitor the process efficiency of
each sample (spiked MgV), a negative nucleic acid extraction
control, and positive and negative RT-qPCR controls. Primers,
probes, and RT-qPCR conditions used in this study are listed in
Supplementary Table 1.

Standard curves were determined using the Public Health
England (PHE) Reference Materials for Microbiology for
norovirus GI (batch number 0122-17), norovirus GII (batch
number 0247-17), and HAV (batch number 0261-2017) and
reported as genomic copies (GC), while standard curves for
RV, MgV, and HAstV were generated by amplifying 10-fold
serial dilutions of viral suspensions in quintuplicates and
calculating the number of PCR units (PCRU). Standard DNA
material for crAssphage standard curve generation relied
on a customized gBlock gene fragment (Integrated DNA
Technologies, United States) containing target sequence for
CPQ_064 crAssphage primers set (Stachler et al., 2017). All
(RT)-qPCR determinations followed quality control and
quality assurance criteria included in EMMI Guidelines
(Borchardt et al., 2021).

Statistical Analyses
Statistical data processing was performed using GraphPad
Prism (GraphPad Software, La Jolla, CA, United States).
The results were not normally distributed, so non-parametric
Spearman’s rank correlation analyses were performed to
evaluate the strength of relationship between viral titers
alone, and in combination with physicochemical parameters.
In all cases, values of p < 0.05 were deemed significant.
Effects of wastewater treatment plant’s covered population,
flow intake, and tertiary treatment (UV or chlorination) on
crAssphage titers were analyzed by using the GraphPad Prism
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FIGURE 2 | Occurrence of intact capsid enteric viruses and crAssphage in influent and effluent wastewater samples over a 1-year period. Capsid integrity was
assessed by PMAxx-RT-qPCR. Colored bars represent mean Log10 GC/L values of two technical RT-qPCR replicates for each concentrated sample. Error bars
indicate standard deviation.

software. Correlation analyses among potentially infectious
enteric viruses, crAssphage, E. coli, and physicochemical
parameters were performed using viral loads, calculated as
the product of viral titer per water flow for each WWTP.
No log transformation was applied on data as Spearman’s
rank correlation is invariant under monotone transformations
like the logarithm.

RESULTS

Occurrence of Intact Capsid Enteric
Viruses and CrAssphage in Influent and
Effluent Wastewater Over a 1-Year
Period
Influent and effluent wastewater samples from four WWTPs
located in the Valencian region (Spain) were processed
by PMAxx-RT-qPCR over a 12-month period (2018–
19) to determine the occurrence of potentially infectious
norovirus GI, norovirus GII, HAV, RV, and HAstV, along with
crAssphage (Figure 2).

It is worth to report that preliminary spiking experiments
using murine norovirus (MNV, surrogate for human
norovirus) and HAV assessed the effect of the wastewater
concentration method on viral infectivity. According to
the determination of the tissue culture infectious dose
(TCID50/ml), no significant differences (p > 0.05) were

observed among spiked and concentrated titers for both tested
virus (data not shown).

The recoveries of MgV, spiked as viral process control,
ranged between 1.18 and 37.80% (Supplementary Table 2); thus,
results of targeted viruses were validated according to Haramoto
et al. (2018) and the criteria included in the ISO 15216-1:2017
(recovery of control ≥1%). Viral titers of targeted viruses were not
adjusted depending on the recovery of the concentration control
(MgV) as back-calculation is not recommended (Haramoto
et al., 2018). Norovirus GI, norovirus GII, and RV titers were
4.77 ± 0.65, 5.28 ± 0.63, and 5.08 ± 0.85 log10 GC/L in
influent samples, and 3.86 ± 0.45, 4.13 ± 0.38, and 4.28 ± 0.64
log10 GC/L in effluent samples, respectively. HAstV showed the
highest mean viral concentration among the five enteric RNA
viruses in both influent (5.89 ± 0.68 log10 GC/L) and effluent
(4.97 ± 0.43 log10 GC/L) samples. Moreover, HAstV was detected
in 93.75% of influent water samples and in 50.0% of the effluent
samples (Table 2). Overall, 93.8, 95.8, and 87.5% of influent
samples (n = 48) and 52.1, 45.8, and 66.7% of effluent samples
(n = 48) were positive for norovirus GI, norovirus GII, and RV,
respectively. Finally, HAV was detected in 12 and 4.17% of the
influent and effluent samples, respectively, and showed the lowest
concentrations of 4.05 ± 0.56 log10 GC/L in influent samples and
3.60 ± 0.25 log10 GC/L in effluent samples. CrAssphage showed
concentrations up to 3–4 log10 GC/L higher than targeted enteric
RNA viruses ranging from 7.41 to 9.99 log10 GC/L in influent
and from 4.56 to 6.96 log10 GC/L in effluent water samples,
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TABLE 2 | Positive samples and percentiles of intact capsid enteric viruses
assessed by PMAxx-RT-qPCR and in situ capture (ISC-)RT-qPCR assays in
influent and effluent wastewater samples collected over a year from a selected
wastewater treatment plant (WWTP4).

Virus Wastewater sample PMAxx-RT-qPCR ISC-RT-qPCR

Norovirus GI Influent (n = 12) 10 (83.3%) 7 (58.3%)

Effluent (n = 12) 7 (58.3%) 3 (25%)

Norovirus GII Influent (n = 12) 12 (100%) 9 (75%)

Effluent (n = 12) 6 (50%) 1 (8.3%)

RV Influent (n = 12) 11 (91.7%) 6 (50%)

Effluent (n = 12) 9 (75%) 8 (66.7%)

HAstV Influent (n = 12) 12 (100%) 12 (100%)

Effluent (n = 12) 7 (58.3%) 6 (50%)

RV, rotavirus; HAstV, human astroviruses.

respectively. All samples tested positive for crAssphage and a
mean decrease of 2.73 ± 0.68 log10 GC/L was observed in effluent
compared to influent samples.

Considering enteric virus, our data showed mean log removals
of 2.58, 3.70, 2.39, and 3.08 for norovirus GI, norovirus GII, RV,
and HAstV, respectively (Figure 3).

Viral removal separately calculated according to tertiary
treatment, indicated log decreases of 3.65, 2.37, and 3.18 for
norovirus GII, RV, and HAstV in UV-treated effluent wastewater
(WWTP1 and WWTP3). Chlorination treatments in WWTP2
and WWTP4 determined log removals of 2.42, 2.97, and 3.75 for
norovirus GII, RV, and HAstV. Viral removal differed between
UV and chlorination showing 3.00 and 3.25 mean log reductions
for UV, and 2.16 and 2.31 for chlorination for norovirus GI and
crAssphage, respectively (Figure 3). None of the targeted viruses
showed a sharp seasonal pattern (Figure 2). Extended data on
viral quantification are presented in Supplementary Table 2.

Comparing PMAxx-RT-qPCR and
ISC-RT-qPCR Assays
In order to assess the efficiency of two alternative capsid integrity
assays, PMAxx-RT-qPCR, and ISC-RT-qPCR were compared
for detecting potential infectious norovirus GI, norovirus GII,
HAstV, and RV in wastewater samples collected from a selected
WWTP (n = 24). HAV was not tested by ISC-RT-qPCR because
of its sporadic detection.

Overall, ISC-RT-qPCR provided lower estimates of viral
occurrence than PMAxx-RT-qPCR for all tested viruses, except
for HAstV, that showed 100% of positive samples in influent
samples regardless of the capsid integrity assay applied (Table 2).
Specifically, norovirus GI, norovirus GII, RV, and HAstV were
detected by ISC-RT-qPCR in 58, 75, 50, and 100% of influent and
in 25, 8, 67, and 50% of the effluent water samples. On the other
hand, PMAxx-RT-qPCR estimated the occurrence of norovirus
GI, norovirus GII, RV, and HAstV in 94, 96, 88, and 94% of
influent and in 52, 46, 67, and 50% of effluent samples.

Regarding viral concentration, viral titers based on PMAxx-
RT-qPCR assay resulted higher than those obtained by ISC-RT-
qPCR in 93.75% determinations (Supplementary Figure 1).

Escherichia coli Counts and
Physicochemical Parameters
The E. coli counts and physicochemical parameters of
influent and effluent wastewater samples are summarized
in Supplementary Table 3. E. coli ranged from 3.96 to 8.19
log10 MPN/100 ml and from below the detection limit to 5.96
log10 MPN/100 ml in influent and effluent samples, respectively.
Alkalimetric titration ranged from 58.30 to 744 mg/L CaCO3
and from 44.24 to 828 mg/L CaCO3 in influent and effluent
samples, respectively. COD ranged from 28.7 to 5,768 and from
11.6 to 108 mg/l O2 in influent and effluent samples, respectively.
Suspended solids ranged from 69.2 to 582.3 mg/l, and from
0.9 to 63.6 mg/l in influent and effluent samples, respectively.
Turbidity values ranged from 0 to 247 units in influent and from
0 to 30.02 units in effluent samples. The redox potential ranged
from 1.9 to 270.4 and from 1.2 to 224 mV in influent and effluent
samples, respectively.

CrAssphage as Fecal Viral
Contamination Indicator of Potentially
Infectious Enteric Viruses in Wastewater
Samples
To further investigate the relationship among crAssphage,
potentially infectious enteric virus, and physicochemical
wastewater parameters, data sets were subjected to correlation
analyses (Figure 4). Specifically, Spearman’s rank correlation rho
coefficients (ρ) were calculated for intact capsid viral loads (viral
titer × water flow) detected by PMAxx-RT-qPCR, E. coli counts,
and physicochemical parameters in both influent (n = 48) and
effluent (n = 48) wastewater samples (Figure 4). Resulting ρ

coefficients are described through this work as follows: weak
correlation (0.2–0.39), moderate correlation (0.4–0.59), strong
correlation (0.6–0.79), and very strong correlation (0.8–1). In
influent waters, crAssphage showed strong correlation with
intact capsid norovirus GII (ρ = 0.67), moderate correlation
with intact capsid norovirus GI (ρ = 0.40), and weak correlation
with HAstV, RV, and E. coli (ρ = 0.25–0.30). Among enteric
viruses, a moderate correlation resulted between norovirus GI
and norovirus GII (ρ = 0.56). None to poor correlations resulted
among enteric viruses and physicochemical parameters. When
analyzing effluent wastewater samples, crAssphage showed
moderate correlation with E. coli (ρ = 0.54) and intact capsid
HAstV (ρ = 0.48) and norovirus GI (ρ = 0.47). Weak correlations
resulted between crAssphage and RV (ρ = 0.38) and norovirus
GII (ρ = 0.34). In contrast, E. coli displayed no correlation with
any of the tested enteric viruses in effluent wastewater samples
(ρ = 0.01–0.15).

Effect of Wastewater Treatment Plant
Characteristics on CrAssphage Load
The effect of key characteristics (population coverage, flow intake,
and tertiary treatment) (Figure 1 and Table 1) on crAssphage
load was independently evaluated for each WWTP.

CrAssphage load levels in influent (p = 0.039) and effluent
(p = 0.007) wastewater statistically differed among WWTPs.
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FIGURE 3 | Enteric virus and crAssphage mean log removal (Log10 GC/L) for each wastewater treatment plant (WWTP) over a 1-year period. HAV, hepatitis A virus;
RV, rotavirus; HAstV, human astroviruses; asterisks (*) indicate complete viral removal as viral load was higher in effluent than in influent wastewaters; missing bars
are used for no detected virus in influent wastewaters.
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Univariate results showed that variability of crAssphage load
was statistically dependent on population coverage and on
flow intake (p < 0.05) for influent wastewater samples.
Interestingly, crAssphage concentration in effluent samples was
found to significantly differ depending on the tertiary treatment
(p = 0.016), suggesting that UV might be more efficient than
chlorination for crAssphage removal. This was also observed for
norovirus GI, but not for the remaining enteric virus (Figure 3).

DISCUSSION

The reuse of treated wastewater and its discharge into the
environment poses a challenge for public health, as reclamation
treatments needs to be adequate to provide water that is suitable
for its intended purpose (e.g., irrigation, recreational, or drinking
water). Governments and the scientific community agree on the
need for monitoring the viral population in wastewater even
though there is still much uncertainty on the analytical protocols
to use as well as the load reduction needed for ensuring a minimal
risk from exposure to reclaimed water (Gerba et al., 2018; Fenaux
et al., 2019).

Capsid integrity is a strong indicator of virus infectivity
and can be a worthy tool to adjust existent workflows and
qPCR procedures to indicate the capability of viruses to
infect humans, thus enhancing risk assessment inferred from
monitoring programs (Leifels et al., 2020). However, the present
investigation did not address the question on how to use data
based on capsid integrity techniques as input for quantitative risk
assessment; this query needs to be specifically explored in future
work. A first step into this direction could be determining the
relationships of viral infectious titers estimated by capsid integrity
techniques and dose response resulting from clinical trials or
known outbreaks.

Presence of Potentially Infectious Enteric
Viruses and Indicators in Wastewaters
This study provides additional insights on the quantitative
occurrence of intact capsid enteric viruses in influent and effluent
samples, and their correlation with crAssphage as a proposed
viral water quality indicator.

We repetitively detected potentially infectious enteric viruses,
including norovirus GI, norovirus GII, HAstV, and RV, in both
influent and effluent in four different WWTPs over a year. This
was further confirmed analyzing longitudinally upstream and
downstream wastewater of a selected WWTP by two alternative
capsid integrity assays, PMAxx-RT-qPCR and ISC-RT-qPCR,
even though with different percentages (Table 2). Such release
of human enteric viruses in effluent wastewater is not surprising
as viral infectivity has been advised using different viability dye
pretreatments (Gyawali and Hewitt, 2018; Randazzo et al., 2019;
Canh et al., 2021a) and definitively demonstrated by cell culture
(Simmons and Xagoraraki, 2011). However, comparing the viral
titers determined by capsid integrity assays among WWTPs
may not be conclusive due to different ratios of infectivity
characterizing each population served by the sewerage system.
This aspect could be additionally hindered for effluent wastewater

FIGURE 4 | Spearman’s rho coefficients (ρ) of correlation analyses of intact
capsid enteric viruses loads, crAssphage, and physicochemical parameters in
influent and effluent wastewaters. TA, total alkalinity; COD, chemical oxygen
demand; TSS, total suspended solids; NTU, turbidity; ORP,
oxidation-reduction potential.

samples exposed to different reclamation treatments (e.g., UV vs.
chlorine) that distinctively affect viral morphology (e.g., nucleic
acid vs. capsid), finally leading to diverse estimate of infectivity
by capsid-integrity methods (Leifels et al., 2019).

Interestingly, a PMA-based capsid integrity assay was
recently applied to assess the potential infectivity of novel
HAV strains in treated wastewater in South Africa for which
cell culture techniques may result to be not permissive
(Rachida and Taylor, 2020).
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Our results show that titers of viral particles with intact
capsid in influent samples are comparable to those previously
determined by RT-qPCR alone (Da Silva et al., 2007; Katayama
et al., 2008; Kitajima et al., 2014; Montazeri et al., 2015; Haramoto
et al., 2018), which suggests a high proportion of potentially
infectious viruses, as expected.

However, capsid integrity RT-qPCR assays may not sharply
discriminate infectious and inactivated viruses when subtle
capsid alterations or genome damage occur because of the limited
access to free RNA, the interaction with other compounds (e.g.,
organic acids), and the ineffective photoactivation (e.g., due to
suspended solids, turbidity). These factors could differently affect
capsid integrity RT-qPCR assays especially in complex matrices,
such as wastewater, finally explaining the lower estimates for viral
infectivity resulted from ISC-RT-qPCR compared to PMAxx-
RT-qPCR. Thus, our findings further corroborate that PMAxx-
RT-qPCR generally overestimate infectious viral particles (Leifels
et al., 2015, 2020; López-Gálvez et al., 2018; Randazzo et al.,
2018b, 2019). Nonetheless, capsid integrity RT-qPCRs better
assess the potential risk of viral infection by providing more
accurate information than conventional RT-qPCR alone that
should be interpreted as a conservative approach.

Reduction of Potentially Infectious
Enteric Viruses and Indicators During
Wastewater Treatments
We observed reductions of 2–3 log10 on average between
upstream and downstream wastewater, which do not comply
with the most recent European legislation. Specifically, a ≥ 6
log10 decrease of rotavirus, total coliphages, or at least one of
them (F-specific or somatic coliphages) is indicated to validate
monitoring programs of reclaimed water used for agricultural
irrigation (Regulation (EU) 2020/741, 2020). However, specific
guidelines should be defined globally as pointed out by the
scientific community and water operators (Sano et al., 2016;
Gerba et al., 2017).

In recent years, crAssphage has emerged as viral water quality
indicator because of its specificity to human fecal pollution, its
high concentrations in sewage, and its global presence (Farkas
et al., 2019; Bivins et al., 2020a; Honap et al., 2020). Interestingly,
KWR (Netherlands) included crAssphage to normalize SARS-
CoV-2 titers in influent wastewater to monitor the COVID-19
pandemic (KWR, 2020), thus its potential as biomarker is not
fully explored yet.

We detected crAssphage in all influent and effluent samples
at mean concentrations of 8.37 ± 0.55 and 5.64 ± 0.59
log10 GC/L, respectively. These concentrations in influent
wastewaters were roughly in line with the ones reported in
the United Kingdom (Farkas et al., 2019), United States (Wu
et al., 2020), and in a previous study conducted also in
Spain (García-Aljaro et al., 2017). Slightly lower titers were
reported in Thailand (Kongprajug et al., 2019) and in Italy
(Crank et al., 2020). On the contrary, higher concentration of
10.98–12.03 log10 GC/L in influent and 7.45–8.62 log10 GC/L
in effluent wastewaters were reported in Japan (Malla et al.,
2019). These discrepancies might be due to the population

served by WWTPs, the engineering characteristics of the
sewer system (e.g., retention times, treatments, etc.), and
the analytical method used for viral detection (wastewater
concentration procedure, the genomic target, standards used to
quantify viral concentrations), among other variables. Analyzing
some of those variables, we observed statistically significant
differences on crAssphage titers for served population, flow
intake, and among WWTPs. This finding is in accordance to a
previous report by Crank et al. (2020). Additionally, crAssphage
concentrations in effluent wastewater were significantly lower
when wastewater was exposed to UV than to chlorination.
Thus, we further corroborate existing bibliography indicating
the efficient viral disinfection applying UV light irradiation
(Ali, 1997; Mezzanotte et al., 2007; Shah et al., 2011; Zyara
et al., 2016). The increased mean removal in UV-treated
wastewaters compared to chlorinated effluents can be extended
to norovirus GI, but not for the other enteric viruses tested in this
study (Figure 3).

CrAssphage as Indicator for the
Potential Infectivity of Enteric Viruses in
Wastewater
The correlation between crAssphage and human viral pathogens
has been reported in recent studies investigating wastewaters
(Farkas et al., 2019; Malla et al., 2019; Crank et al., 2020; Tandukar
et al., 2020), sludge (Wu et al., 2020), and other fecal polluted
waters (Jennings et al., 2020). However, no information was
available to date on whether crAssphage would serve as indicator
for the potential infectivity of enteric viruses in wastewater. In
influent wastewater, we found crAssphage strongly correlated
to intact capsid norovirus GII and moderately to norovirus GI.
In effluent wastewater, crAssphage moderately correlated with
potentially infectious HAstV and norovirus GI.

Overall, the consistent detection of crAssphage in all influent
and effluent samples corroborates the phage as an indicator
for fecal contamination in wastewater. However, correlation
readouts do not solidly support the use of crAssphage as
indicator for the presence of potentially infectious enteric virus
in wastewater, which was the primary hypothesis tested in this
study. Thus, a strategy that targets each viral contaminant should
be preferred to the sole detection of phages and this applies for
both investigation and monitoring purposes.

The results of the present study also demonstrated that
E. coli, adopted in the current regulation as fecal biomarker,
and physicochemical parameters are not well suited as indicators
for the viral contamination of wastewater, according to previous
reports (Stachler et al., 2018; Ahmed et al., 2020).

Limitation, Perspective, and Future
Research
This study did not take into account environmental variables,
such as rainfall and temperature, among others, that could have
affected reported results.

Although analyzing the samples by RT-qPCR alone could
have served as baseline to check the performance of PMAxx,
previous studies already investigated the relationship of capsid
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integrity treatment on viral amplification signal reduction
(Randazzo et al., 2016, 2019; Cuevas-Ferrando et al., 2020).
Following a one-size capsid integrity treatment fits all approach
and assuming it could lead to lower signal reduction (e.g., virus
and matrix specificity: length and structure of genome targeted
by the qPCR assays, the influence of co-concentrated inhibitory
substances, etc.), we tested the hypothesis to adapt existent
workflows for improving risk assessment.

Also, the comparison of molecular results with cell culture
would have soundly confirmed our findings. However, viral cell
culture of environmental samples presents technical challenges
that are difficult to overcome (e.g., contamination, toxicity,
sensitivity), especially in a longitudinal monitoring study such
this one. A similar consideration can be done for crAssphage
(Shkoporov et al., 2018).

Our findings based on capsid integrity assays could boost the
development of advanced quantitative microbial risk assessment
(QMRA) models for determining the risk of infection in case
of treated wastewater reuse. This warrants further investigation
and constitutes the gap to fill in the future in order to better
quantify the human health risk, provide robust information for
decision-making, and support water quality regulation.

In conclusion, this work provides insights on the quantitative
occurrence of crAssphage and intact capsid enteric viruses in
influent and effluent wastewater, while correlation outcomes
indicated that crAssphage is a poor indicator for enteric virus
infectivity in reclaimed wastewater.
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