
Remote Sensing of Nitric Acid and Temperature via Design of
Experiments, Chemometrics, and Raman Spectroscopy
David V. Russell, Luke R. Sadergaski,* Jeffrey D. Einkauf, Laetitia H. Delmau, and Jonathan D. Burns*

Cite This: ACS Omega 2024, 9, 45600−45609 Read Online

ACCESS Metrics & More Article Recommendations *sı Supporting Information

ABSTRACT: This study presents an effective method for the
quantification of nitric acid (0.1−9 M) and the temperature (20−
60 °C) through optimal experimental design, chemometrics, and
Raman spectroscopy. Raman spectroscopy can be deployed using
fiber-optic cables in hot cell environments to support processing
operations in the nuclear field and industry. Chemical operations
frequently use nitric acid and operate at nonambient temperatures
either by design or by circumstance. Examples of Raman
spectroscopy for the quantification of nitric acid with applications
in the industrial field are profuse. However, the effect of
temperature on quantification is often ignored and should be
considered in real-world scenarios. Statistical design of experiments
was used to build training sets for partial least-squares regression and support vector regression (SVR) models. The SVR model with
a nonlinear kernel outperformed the top partial least-squares models with respect to temperature and resulted in percent root-mean-
square error of prediction of 1.8% and 2.3% for nitric acid and temperature, respectively. The D-optimal design strategy decreased
the sampling time by 75% compared to a more traditional seven-level full factorial option. The new method advances chemometric
applications within and beyond the nuclear field and industry.

1. INTRODUCTION
The field of used nuclear fuel recycling has a distinct need for
fast, accurate, and online analysis of actinides, fission products,
and acid concentrations.1,2 Offline methods are time-
consuming, require frequent maintenance or calibration, are
too bulky to be used within hot cells, and have sensitive
electronics that typically cannot withstand high radiation fields.
Online monitoring can help users operating large-scale nuclear
fuel recycling schemes via increased safety (lower radiation
dose to workers), quicker data acquisition, deployment within
hot cells, safeguards and materials accountability, and other
similar benefits.1−3 Optical spectroscopy techniques, such as
Raman spectroscopy, can be deployed remotely to provide
elemental and molecular information on processing streams to
support used nuclear fuel recycling operations.4−9 Dissolution,
solvent extraction, uranyl nitrate hexahydrate cocrystallization,
and routine operations demand that temperature is accounted
for to ensure robust monitoring applications.10−13 These
optical spectroscopy techniques also support various industrial
and chemical operations by indicating temperature, concen-
tration, and pKa/pH values of acids.14−19

Nitric acid, although typically reported as a strong acid,
behaves like a weak acid when present in concentrations
greater than 10−2 M and does not fully dissociate (<99.9%).20

As acidity and temperature of the medium increase, less
dissociation of nitric acid occurs.20,21 Therefore, the dissoci-
ation constant varies based on environmental conditions,

thereby affecting the solution composition (i.e., H+, NO3
−,

HNO3).
22 Yet, the temperature variable is either overlooked in

many proof-of-principle studies, or instead physicochemical
measurements (e.g., pH, temperature, and conductivity) are
incorporated in hierarchical models requiring additional probes
(e.g., thermocouples).1,4,14−17,23,24 The effects of temperature
on nitric acid, the corresponding Raman spectra, and resulting
chemometric models are not well-studied.25,26 The research
community would benefit from experimentally and statistically
determining the influence of dynamic temperature levels on
the accuracy and validity of nitric acid measurements by
Raman spectroscopy and developing a way to systematically
account for temperature changes.

Supervised chemometric models, such as partial least-
squares regression (PLSR), are well-suited for handling
colinear and confounding spectral features encountered in
complex systems with changing temperature.2,4,17,19,23−25

Another supervised method, support vector regression
(SVR), is a type of support vector machine useful for both
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linear and nonlinear regression tasks using various kernel
functions. PLSR and SVR models are used for predictions and
are built with training sets that cover the anticipated conditions
(i.e., concentrations and temperature). Few studies have
investigated whether any benefit is gained from using
traditional multivariate full factorial (FF) designs, which
require intensive sample preparation and analyses, in
comparison with more modern D-optimal designs that are
useful for minimizing sample set size needed to train a model
for temperature predictions.27−29 The temperature response is
inherently nonlinear and covarying,6,23 and the number of
samples needed to train a model and the type of model needed
to account for such features have not been established.

This work aims to answer three key questions: (1) Can
Raman spectroscopy be leveraged to simultaneously measure
the temperature and nitric acid concentration? (2) How many
temperature levels are needed to account for spectral
nonlinearity in a multivariate regression model for robust
temperature predictions, and (3) can a nonlinear SVR model
outperform a linear PLSR model? This work addresses a major
gap in the current literature and provides a valuable method for
robust nitric acid measurements by Raman spectroscopy in
systems with dynamic temperature.

2. METHODS AND MATERIALS
2.1. General Materials. All chemicals were commercially

obtained (ACS grade) and used as received, unless otherwise
stated. Concentrated nitric acid (70%) was purchased from
Sigma-Aldrich. All solutions were prepared by using deionized
water with a resistivity of 18.2 MΩ·cm. Samples were prepared
gravimetrically using a Mettler Toledo model XS204 balance
with an accuracy of ±0.0001 g in volumetric glassware.

2.2. Raman Spectroscopy. An iHR320 imaging spec-
trometer (Horiba Scientific) with a resolution of approximately
3 cm−1, equipped with a Synapse 2048 × 512 charge-coupled
device, was used to collect Stokes−Raman spectra with a 1200
grooves per millimeter grating. A 532 nm laser (Cobolt Samba
150) was operated at 100 mW and connected to a general-
purpose Raman probe (Spectra Solution Inc.) using a 2 m, 105
μm core diameter multimode fiber. Quartz sample cuvettes
were placed in a Quantum Northwest qpod 2e temperature-
controlled cuvette holder (Avantes) with an accuracy of 0.05
°C. Sample temperature was confirmed with a waterproof dip
thermometer (VWR) for several samples to benchmark the
time required to reach a steady temperature. Spectra were
collected in triplicate using a 1 s integration time and the
average of four accumulations from 500 to 3849 cm−1. For
each sample, spectra were collected at room temperature
(∼23.0 °C) and the target temperatures, after being allowed to
equilibrate for about 5 min at each level.

2.3. Data Analysis. The Vektor Direktor (v2.0) software
package from the KAX Group was used for PLSR, SVR, and
preprocessing. Four latent variables (LVs) were used in each
PLS model as the points marking the last significant decrease
in root-mean-square error (RMSE). PLSR models were built
by using a NIPALS algorithm describing either one Y variable
(PLS1) or more than one Y variable (PLS2). PLSR is a linear
function that iteratively finds the structure in X (i.e., spectra)
that is most predictive for Y (i.e., concentrations). A linear
function cannot always account for complex systems. SVR is a
machine learning algorithm that employs linear or nonlinear
kernel functions to map from the original space to a higher-
dimensional feature space. Two types of SVR models are

available in Vektor Direktor: epsilon-SVR (i.e., type 1) and nu-
SVR (i.e., type 2). Consistent values for epsilon (ε) and γ were
selected toward the center of the heat map in regions where
the cross-validation (CV) error was minimal. Moderate γ
parameters were selected to avoid overfitting (large γ) or
underfitting (small γ). The ε parameter describes the
boundaries of the fitting regression line or residuals. Each
method is based on a unique approach to minimize the error
function. Linear, 2D, and 3D polynomial lines and a radial
basis kernel were evaluated. Results from models built with a
3D polynomial line provided the best statistics.

Predictive models were built by using a standard normal
variate (SNV) transformation. SNV removes scatter effects
from spectra and centers and scales each spectrum using only
the data from that spectrum. A Savitzky−Golay derivative was
used to compute the first derivative of the spectra. A range of
adjacent variables and polynomial orders were evaluated.
Trimming the data to only include regions with important
peaks, X loadings, or regression coefficients did not improve
the regression models.

2.4. Design of Experiments. The training set concen-
tration matrices were created using Stat-Ease Design-Expert
(version 22.0.5) by Stat-Ease. Two multivariate models were
created: the more commonly used D-optimal model and a
more traditional seven-level split-plot or FF model (72 = 49
samples). Extra temperature levels (total of 10) were acquired
to determine whether a seven-level model provided an
adequate representation of complex temperature effects in
the Raman spectra (Table S1). Arbitrary values from 0 to 1
were used to generate the design, and it was scaled to the
analyte variables to cover nitric acid concentrations from 0.1 to
9 M and temperatures of 20−60 °C. A random number
generator in Microsoft Excel was used to generate the external
validation set of 25 unique nitric acid concentrations and
temperature levels within the design space. The D-optimal
design contained six required model points and an additional
six lack-of-fit points to achieve a fraction design space (FDS) of
0.99. FDS was calculated by mean error type, δ = 2, σ = 1, and
α = 0.05. These results indicate good prediction capability over
the factor range. The variable δ describes the maximum
acceptable half-width (i.e., margin of error), σ is an estimate of
the standard deviation, and α is the significance level used in
the statistical analysis. The D-optimal design samples, selected
using a quadratic process model, is shown in Table 1. Raman
spectra for the D-optimal set are shown in Figure S1.

2.5. Statistical Comparison. PLSR models were evaluated
by using calibration, CV, and validation (i.e., prediction)
metrics. RMSE of the calibration (RMSEC) and the RMSE of
the CV (RMSECV) are important when evaluating model
performance. Prediction statistics often include RMSE of the
prediction (RMSEP), percent RMSE of the prediction
(RMSEP %), bias, and standard error of prediction (SEP).
RMSEs for the calibration, CV, and validation were calculated
using eq 1

= = y y

n
RMSE

( )i
n

i i1
2

(1)

where yi is the predicted concentration, yi is the measured
concentration, and n is the number of samples. The RMSEP %
value was calculated by dividing the RMSEP by the median Y
matrix values using eq 2.
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= ×
y

RMSEP %
RMSEP

100%
m (2)

where ym represents the median value of each reference value
to ease comparisons. RMSE values are reported in analyte
units. SEP and bias values are important to consider, especially
when minimizing the training set size. SEP is corrected for bias,
whereas bias values lie either systematically above or below the
regression line. Bias values close to zero indicate a random
distribution along the regression line. Values of RMSEP % ≤

10% indicate acceptable performance, and values of RMSEP %
≤ 5% indicate strong performance.5 A Tukey−Kramer method
was used for the pairwise comparison of RMSEPs for PLSR
and SVR models built using different designs and described in
detail in the Supporting Information.28

3. RESULTS AND DISCUSSION
3.1. Raman Spectra. Raman spectra corresponding to

changes in the nitric acid concentration and sample temper-
atures are shown in Figure 1. The wide range of nitric acid
levels (0.1−9 M) resulted in multiple species (NO3

−, H+, and
HNO3) with concentration-dependent features.30,31 The
primary nitrate bands occurred near 1048 cm−1 (ν1 symmetric)
and 716 cm−1 (ν4 in-plane deformation), and other peaks
related to associated HNO3 molecules at elevated HNO3
concentrations were also identified [e.g., 968 cm−1 (ν6) and
1305 cm−1 (ν3 asymmetric)]. Figure 1a represents the Raman
band changes resulting from the nitric acid concentration, and
Figure 1b indicates the Raman shift caused by changes in
temperature. Figure 1 showcases the variation in spectra owing
to the change in nitric acid concentration, while also
highlighting the normally overlooked variation in spectra
owing to the temperature. The nitrate symmetric stretching
peak near 1048 cm−1 decreased in intensity and slightly red-
shifted with increasing temperature, and the shape of the
Raman water band near 2800−3800 cm−1 gradually changed.
The broad Raman water band corresponds to the combined
symmetric and asymmetric stretching vibrations of the OH

Table 1. D-Optimal Design Selected Samples with Space
Type and Build Type

sample
nitric acid concentration

(M)
temperature

(°C) space type
build
type

1 9.00 20.0 vertex model
2 0.10 20.0 vertex model
3 5.13 37.4 interior model
4 0.10 48.0 edge model
5 6.02 53.4 interior lack of fit
6 8.11 33.0 interior lack of fit
7 4.55 20.0 center

edge
lack of fit

8 9.00 46.2 edge lack of fit
9 2.77 60.0 edge model
10 9.00 60.0 vertex model
11 3.04 46.8 interior lack of fit
12 1.88 32.8 interior lack of fit

Figure 1. Raman spectra: (a) 0.1−9.0 M nitric acid samples at room temperature with SNV pretreatment and (b) 4.5 M nitric acid with varying
temperatures 20−60 °C.
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bonds. The band shifts around a temperature-induced
isosbestic point near 3520 cm−1 related to the proportion of
hydrogen-bonded and nonbonded OH valences in clusters of
hydrogen-bonded H2O molecules.8,16 Hydrogen-bonded OH
valences refer to OH bonds that are directly involved in
hydrogen bonding with neighboring water molecules. Hydro-
gen bonds constantly form between clusters of water
molecules, which means that water molecules can shift back
and forth between hydrogen-bonded and nonbonded OH
groups.

As the nitric acid molarity increased, the water band (2800−
3800 cm−1) intensity decreased and shifted toward higher
frequencies (Figure 1a). This shift has been seen in previous
studies.2,10,32−34 At the same time, the primary nitrate and
nitric bands near 1048 cm−1 (ν1 symmetric), 1305 cm−1 (ν3
asymmetric), and 716 cm−1 (ν4 in-plane deformation) became
sharper and more pronounced. This trend has also been shown
in previous literature.12,35,36 Temperature-induced variation,
although not as pronounced, is also present in the ν1
symmetric band (∼1048 cm−1) and the water band (2800−
3800 cm−1). In this case, as temperature increases, the water
band shifts toward higher frequencies while the nitric acid
band shifts toward lower frequencies and loses intensity, which
has been observed in previous literature as well.26,30

Elevated temperatures affect the dissociation constant of
nitric acid and thus the resulting Raman spectra. Figure 2
shows the Raman spectra of a 9.0 M nitric acid sample: (a)
represents the spectra with points of interest labeled; (b)
represents the Raman shift variation of the 638 cm−1 (ν7) and
688 cm−1 (ν5) nitric acid peaks and the 716 cm−1 (ν4 in-plane
deformation) nitrate peak, (c) represents the Raman shift of
the 958 cm−1 (ν6) nitric acid peak and the 1048 cm−1 (ν1

symmetric) nitrate peak, and (d) represents the Raman shift of
the 1305 cm−1 (ν3 asymmetric) nitric acid peak. The figure
includes 20, 40, and 60 °C as representative temperature
points to showcase the general trends that were present. These
variations highlight the covarying relationship of several nitric
acid bands with increasing temperature.

Figure 2b reveals three peaks of interest: the two HNO3
peaks at 638 and 688 cm−1 (ν7 and ν5, respectively) and the
NO3

− peak at 716 cm−1 (ν4). As the temperature increased
from 20 to 60 °C, the nitric acid peak intensities increased,
whereas the nitrate peak decreased to a lower intensity.
Likewise, in Figure 2c, including the 958 cm−1 (ν6) HNO3
peak and the 1048 cm−1 (ν1) NO3

− peak, and in Figure 2d,
including the 1305 cm−1 (ν3) HNO3 peak, the same trend was
observed. This inverse relationship between the nitric acid and
nitrate peaks supports the scientific literature regarding the
decrease in the dissociation constant of nitric acid based on
both high molarities and temperatures26,30,31 These observa-
tions from Figure 2 can be explained by a decrease in the
dissociation constant, or an increase in the pKa, of nitric acid
with increased temperature.26 Because the temperature and
nitric acid concentration both affect the spectra in overlapping
regions, both variables must be accounted for when building
high-fidelity multivariate models.

3.2. Designed Training Sets. This study used design
parameters that represent temperatures and nitric acid
concentrations found within uranyl nitrate hexahydrate
recrystallizations.10−12 Training set size and composition are
important in chemometric model development, and the
designed experiments provide a robust and user-friendly
option for selecting sample sets within a statistical framework.
The primary goal of a designed approach is generating a

Figure 2. (a) Raman spectra of 9.0 M nitric acid, (b) Raman shift focused on the 638 cm−1 (ν7) and 688 cm−1 (ν5) nitric acid peaks and the 716
cm−1 (ν4 in-plane deformation) nitrate peak, (c) Raman shift focused on the 958 cm−1 (ν6) nitric acid peak and the 1047 cm−1 (ν1 symmetric)
nitrate peak, and (d) Raman shift focused on the 1305 cm−1 (ν3 asymmetric) nitric acid peak, with 20, 40, and 60 °C as representative temperature
points.
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balanced sample distribution in the design space to ensure
adequate coverage throughout, including vertex, edge, and
interior locations. Two experimental designs (i.e., FF and D-
optimal) were used to select sample concentrations and
temperature levels within the same two-factor space. FF
models provide a more sequential approach that typically
requires more experimental analysis time because many more
samples are needed compared with the D-optimal counter-
part.29 A seven-level split-plot or FF design resulted in 49
samples, and the D-optimal design resulted in just 12 samples.
The designed sample concentrations and temperatures used in
the calibration model are showcased in Figure 3, along with 25

points randomly generated for the validation set. Randomly
chosen validation samples offered good variation of temper-
ature levels and concentrations to evaluate model prediction
performance.

Requiring the least number of samples, the points chosen by
the D-optimal multivariate model spread throughout this
design space and allow for a broad overview of the effects of
temperature and nitric acid concentration on the spectra with a
minimum number of samples.1,2,9,23 Optimal design strategies
are typically more efficient and amenable to incorporating
many additional factors in future work to account for even
more complex systems [e.g., uranium(VI), fission products,
and corrosion products].7 An optimal design approach has
been applied to the selection of concentration matrices in
numerous studies. However, temperature levels may not
necessarily be treated the same as concentration levels.
Because of the inherent nonlinear spectral response to
temperature, additional levels may be required to accurately
estimate the response over the entire design space, and the
FDS assumption of 0.99 by using a quadratic process model
may not provide sufficient coverage. Instead, a higher-order
model (e.g., cubic) with additional terms may be required to
describe the temperature response and better capture the
potential curvature in the spectral response.

3.3. Partial Least Squares Regression. Multivariate
PLSR models were created using spectra generated from the
seven-level FF and D-optimal designs separately. The
prediction performance of each model was evaluated by
predicting the 25-sample external validation set. The perform-
ance of each model was evaluated primarily by RMSEP, which
represents the average variation between the predicted and
reference values. Other important metrics included SEP and
bias values. RMSEP values represent the approximate ± error
associated with predictions, and a lower RMSEP indicates a
more reliable, accurate multivariate model.24 RMSE values
have the same units as the response variables. As the values for

Figure 3. Locations of the D-optimal, FF, and validation samples
within a two-variable design space.

Figure 4. PLSR model metrics of (a) RMSE against LVs, where the box indicates the optimal number of LVs, (b) regression coefficients against the
X-variable (cm−1), (c) explained Y-variance against the LVs, and (d) X-loadings against the X-variable (cm−1).
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nitric acid concentration and temperature have different units,
the RMSEP % is discussed for ease of understanding.

An initial test compared the prediction performance of a
PLS1 model built with four LVs and FF nitric acid levels at
room temperature (seven samples). This model was used to
predict the randomly selected validation set collected at room
temperature (25 samples) and the specified temperature levels
(25 samples). The RMSEP % value for the PLS1 FF model
predicting room temperature samples was 1.7%, and it was
much higher, at 8.6% for the samples at disparate temperatures
(data not shown here). This result confirms that changing the
temperature levels creates a significant source of deviation in
model predictions. However, the PLSR model that did not
include temperature levels still predicted nitric acid with
reasonable accuracy (i.e., below 10%), suggesting that the
model had some predictive power. The test confirmed that the
sample temperature affects the validity of multivariate model
predictions.

Next, PLS2 models were built for nitric acid and
temperature using the D-optimal and FF (seven-level) training
sets. PLS2 models can correlate spectral features to analyte
concentrations using two separate Y variables. The PLSR
model metrics of the seven-level FF PLS2 model are
showcased in Figure 4. Figure 4a represents the RMSE against
LVs and highlights the optimal number of LVs (four). Figure
4b showcases the regression coefficients against the X-variable
[Raman shift (cm−1)]. Figure 4c represents the explained Y-
variance against the LVs for both the D-optimal (concentration
and temperature prediction) and seven-level FF model
(concentration and temperature predicting). Finally, Figure
4d indicates the X-loadings against the X-variable (cm−1) for
LV-1, LV-2, and LV-3.

The last notable decrease in RMSECV occurred at four LVs,
which suggests that four LVs should be included in the PLS2
model. This result was consistent for both the D-optimal and
FF (seven-level) sets. Including four LVs is reasonable
considering the complexity of this system, which describes
coexisting species including H+, NO3

−, HNO3, H2O, OH, and
ion pairing.37−39 Regression coefficients describe how each X-
variable is weighted when predicting each Y-response. The
regression coefficients were reasonably smooth and gave
importance to realistic features in the spectra that are
consistent with a quality model. The explained Y-variance
plot was compared with the X-loadings to confirm whether the
model discerned realistic features in the spectra. The profiles of
the X-loadings looked like the original spectra, while
accentuating the variables that provide the most important
sources of information. With four LVs, 99.98% of the variation
in Y was explained. The first LV described 95.7% of the Y-
variance for nitric acid, and the loading gave importance to
features related to nitric acid. The second LV described 94.2%
of the Y-variance for temperature. The second X-loading gave
importance to the HNO3 peaks near 638 and 688 cm−1 (ν7 and
ν5, respectively), 958 cm−1 (ν6), and the 1305 cm−1 (ν3)
HNO3 peak. The water band shapes in the first and second X-
loadings were consistent with the HNO3 and temperature
features, respectively. The third LV likely described some
variation for both nitric acid and temperature by providing
adjustments that account for the convolution of HNO3 and
temperature-related peaks. Trimming the PLS1 and PLS2
models to include only the regions with significant (i.e.,
nonzero) loadings and regression coefficients marginally
improved RMSEP % (Figure 4).

The results of the PLS2 analysis of the D-optimal and seven-
level FF designs and spectra are presented via RMSEC,
RMSECV, RMSEP, RMSEP %, SEP, and bias and are shown in
Table 2. The RMSEC values for nitric acid were similar;

however, the RMSECV values for the D-optimal model were
higher. Excluding one sample at a time during cross validation
increased the RMSECV, which suggests that the training set
was minimized effectively. The RMSEP, SEP, and bias values
for the D-optimal model were nearly identical to those of the
seven-level FF model for nitric acid shown in Table 2. The
RMSEP % and bias of the D-optimal nitric acid model
performed much like those of the seven-level FF model:
RMSEP % values were 1.8% and 1.9%, respectively. Although
two additional nitric acid levels were included in the D-optimal
design, far fewer temperature levels were included. The
RMSEC and RMSECV values for the D-optimal set were
higher than those for the seven-level FF set, suggesting that the
seven-level FF set model was more robust for temperature.
However, the RMSEP % temperature values for the D-optimal
and seven-level FF models were 6.9 and 7.3%, respectively.
This result emphasizes why RMSECV values are only an
estimate of the prediction performance of the model when
approaching the minimum number of samples in the training
set and why the D-optimal PLSR model (12 samples)
performed as well as the seven-level FF PLSR model (49
samples). The RMSEP values for the D-optimal model are
remarkable, especially considering the 75% shorter amount of
time required to collect the spectral data.

3.4. Support Vector Regression. PLSR is one of the
most traditional supervised regression methods and has been
applied to modeling Raman spectra in nitric acid systems.40

However, modeling temperature in this system is challenging,
and PLSR did not achieve the desired RMSEP % level of <5%
for temperature. Therefore, support vector machines were
evaluated for modeling the nonlinear and covarying spectral
features to determine whether a nonlinear model would
outperform the linear PLSR approach. SVR has advantages
over PLSR, in that is it less prone to overfitting, can handle
outliers well, and models nonlinear features.29 However, it
requires careful parameter selection for ε and γ values and
often larger data sets. However, few works have evaluated the

Table 2. PLS2 Model Calibration and Validation Metrics for
D-Optimal and Seven-Level FF Designsa

PLS2 metrics D-optimal seven-level FF

LVs 4 4
Calibration Statistics

RMSEC (HNO3) 0.092 0.086
RMSECV (HNO3) 0.19 0.090
RMSEC (temp.) 1.7 1.05
RMSECV (temp.) 4 1.36

Validation Statistics
RMSEP (HNO3) 0.078 0.085
RMSEP % (HNO3) 1.8 1.9
SEP (HNO3) 0.079 0.068
bias (HNO3) −0.011 −0.053
RMSEP (temp.) 1.38 1.46
RMSEP % (temp.) 6.9 7.3
SEP (temp.) 1.32 1.42
bias (temp.) −0.48 0.45

aAside from RMSEP %, HNO3 values are in mol/L and Temp. in °C.
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effect of minimized training sets on SVR performance. If SVR
provides a better prediction performance than PLSR but
requires many additional samples, then PLSR could still
provide a better option in certain circumstances.

SVR models were built for the D-optimal and seven-level FF
sets for comparison. Parity plots for the D-optimal and seven-
level FF models predicting HNO3 and the temperature are
shown in Figure 5. Parity plots are useful for comparing sample
predictions relative to the reference values. Samples falling
close to the 1:1 line represent accurate predictions. The
RMSEP, SEP, and bias values for the D-optimal model were
slightly higher than those for the seven-level FF model for
nitric acid concentration shown in Figure 5a,b. Although two
additional nitric acid levels were included in the D-optimal
design, far fewer temperature levels were included. The effect
of this discrepancy is visible in the RMSEP, SEP, and bias for
temperature prediction between the D-optimal model
compared to the seven-level FF model (Figure 5c,d). The D-
optimal and seven-level FF RMSEP % values for temperature
were 5.6% and 2.3%, respectively. This result suggests that the
D-optimal model had reduced prediction performance for
temperature compared with the seven-level FF. Therefore,
unlike PLSR, SVR performs better when incorporating more
temperature levels in the training set, resulting in improved
prediction performance and meeting the target RMSEP % of
<5% and an error of approximately ±0.5 °C.

Additionally, the biases of the D-optimal models for nitric
acid concentration and temperature prediction were ∼4 and
∼7 times as high as the seven-level FF models, respectively.
This result indicates that when utilizing SVR, although the D-
optimal model still has reasonable predictive power for nitric
acid and temperature, the much smaller calibration set size is
prone to bias. However, when minimizing the sample set size is

crucial, the D-optimal approach could provide adequate
predictive power for the intended purpose. Overall, by
comparing the RMSEP, RMSEP %, SEP, and bias values for
the SVR D-optimal and FF models, the SVR seven-level FF
model more accurately predicted both the concentration and
temperature with less bias, variation, and uncertainty.

The different prediction metrics for the PLSR and SVR
models (Figure 4 and Table 2, respectively) were then
statistically tested via Tukey−Kramer analysis. The full list of
comparisons performed is shown in Table 3. The Tukey−
Kramer pairwise method was used to confirm whether any
statistical differences existed between the PLSR models (D-
optimal vs seven-level FF), between the SVR models (D-

Figure 5. SVR parity plots of (a) D-optimal model predicting nitric acid, (b) seven-level FF multivariate model predicting nitric acid, (c) D-optimal
model predicting temperature, and (d) seven-level FF multivariate model predicting temperature.

Table 3. Total Model Comparisons Performed via Statistical
Methodologies where M Indicates HNO3 Concentration,
and T Indicates Temperature

Tukey−Kramer statistical
comparisons

RMSEP %
values

statistical
significance

PLSR D-Opt (M) vs PLSR 7-L (M) 1.8 vs 1.9 yes
PLSR D-Opt (T) vs PLSR 7-L (T) 6.9 vs 7.3 no
SVR D-Opt (M) vs SVR 7-L (M) 2.1 vs 1.8 no
SVR D-Opt (T) vs SVR 7-L (T) 5.6 vs 2.3 yes
PLSR D-Opt (M) vs SVR
D-Opt (M)

1.8 vs 2.1 yes

PLSR D-Opt (M) vs SVR 7-L (M) 1.8 vs 1.8 yes
PLSR 7-L (M) vs SVR D-Opt (M) 1.9 vs 2.1 yes
PLSR 7-L (M) vs SVR 7-L (M) 1.9 vs 1.8 yes
PLSR D-Opt (T) vs SVR D-Opt (T) 6.9 vs 5.6 no
PLSR D-Opt (T) vs SVR 7-L (T) 6.9 vs 2.3 yes
PLSR 7-L (T) vs SVR D-Opt (T) 7.3 vs 5.6 yes
PLSR 7-L (T) vs SVR 7-L (T) 7.3 vs 2.3 yes
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optimal vs seven-level FF), and between the PLSR and SVR
methodologies. Statistical significance via Tukey−Kramer
analysis was decided by the 95% confidence interval for the
difference in bias between two models and the SEP ratio of the
two models; if the difference in bias contained 0 and the SEP
ratio contained 1, then the models were considered statistically
similar.28 The confidence intervals are shown in Figure S2. The
statistical differences were based primarily on differences in
bias because the SEP confidence interval always contained 1
(Figure S2).

Each comparison listed in Table 3 was statistically
significant, except for the comparisons of PLSR D-Opt (T)
vs PLSR 7-L (T), SVR D-Opt (M) vs SVR 7-L (M), and PLSR
D-Opt (T) vs SVR D-Opt (T). The PLSR D-optimal models
outperformed PLSR seven-level models in terms of nitric acid
and temperature prediction. SVR seven-level models out-
performed SVR D-optimal (T) models in predicting temper-
ature but had no statistically significant difference with
predicting nitric acid concentration. The SVR seven-level
models outperformed the PLSR seven-level models on both
nitric acid and temperature prediction, whereas the SVR D-
optimal model, although not statistically different with respect
to nitric acid concentration prediction, outperformed the PLSR
D-optimal model for temperature predictions. The PLSR
methodology yielded equal or slightly better RMSEP % scores
for all D-optimal and seven-level comparisons of nitric acid
concentration prediction except for the PLSR and SVR seven-
level model comparison (see Table 3). However, the opposite
trend occurred regarding temperature. In every instance, the
SVR models vastly outperformed the PLSR models with
respect to temperature prediction, except for the instance of no
statistical difference between the PLSR and SVR D-optimal
models (Table 3). The RMSEP % values of some PLSR
models were 300% higher than those of the corresponding
SVR models for temperature prediction. PLSR models,
specifically the PLSR D-optimal model, outperformed other
models for nitric acid concentration, whereas the SVR models,
specifically SVR seven-level FF model, were better for
predicting temperature.

3.5. Sample Set Size and Statistics. A total of 10
temperature levels were acquired to evaluate how the sample
set size influences predictions for nitric acid and temperature
(Table S1). Although the initial hypothesis assumed that seven
levels were sufficient to describe the nonlinear temperature
response, experimental confirmation was required to determine
how many samples were needed to model nonlinearity in the
spectral response caused by temperature. SVR models were
built with varying samples (21−70) in the training set. The set
with 70 samples corresponded to 10 temperatures at each of
the 7 nitric acid concentrations. A temperature level was
excluded at each level until just 3 temperature levels were
applied to the 7 nitric acid concentrations for a total of 21
samples.

The RMSECV, RMSEP, and bias were evaluated versus the
number of temperature levels in the training set for nitric acid
and temperature. If the RMSECV and RMSEP were relatively
balanced, within approximately a factor of 2, then the model
was considered robust, provided the bias was also reasonably
low. For nitric acid SVR models, the RMSECV and RMSEP
increased from 0.068 to 0.11 and from 0.078 to 0.086,
respectively, and the bias remained nearly constant. The slight
increase in RMSE values indicated that a full seven-level FF
model for temperature levels is not necessary to maintain

robust nitric acid predictions (<2% RMSEP %). A three-level
design provides enough variation in the data set to build a
sufficiently robust SVR model for nitric acid.

The RMSECV, RMSEP, and bias % values for temperature
predictions by the SVR model are shown in Figure 6. The

value bias % was calculated by dividing by the median Y value
and converting it to percent. With a decreasing number of
temperature levels in the model below seven levels, the
RMSECV, RMSEP, and bias % values for the temperature
increased substantially. By contrast, increasing the number of
temperature levels beyond 7 levels, did not significantly
improve the RMSCV, RMSEP, or bias. Thus, if temperature
predictions are important, then including seven temperature
levels in the calibration set for each nitric acid level is likely
necessary. The number of levels required to build a robust
regression model may increase with a wider temperature range.

Although several works have evaluated techniques for
monitoring water temperature by Raman spectroscopy, few
have extended the approach to more complex media (e.g.,
acid).26,31−36 The prediction performance for temperature in
nitric acid solutions was comparable to previous works focused
only on predicting water temperature, despite significant
multicollinearity between the nitric acid and temperature
spectral responses, owing to changes in pKa. Even if
temperature is not included in the training set, PLSR and
SVR regression models still have some predictive power. To
maintain robust nitric acid prediction performance, using three
temperature levels per sample, or the D-optimal approach, is
effective. A similar number of samples is also sufficient for
satisfactory temperature estimates. However, if additional
highly accurate temperature predictions are required for a
given process with respect to temperature, then as many as
seven temperature levels from 20 to 60 °C and a nonlinear
SVR modeling strategy are needed. The findings presented
here will be leveraged in systems with additional metal nitrates
(e.g., uranyl nitrate) and pursued in future work.7,41

Figure 6. RMSEC and RMSECV values for temperature predictions
with varying temperature levels in the FF calibration set for SVR
models. The dashed box corresponds to the number of samples for
balanced prediction performance.

ACS Omega http://pubs.acs.org/journal/acsodf Article

https://doi.org/10.1021/acsomega.4c08219
ACS Omega 2024, 9, 45600−45609

45607

https://pubs.acs.org/doi/suppl/10.1021/acsomega.4c08219/suppl_file/ao4c08219_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acsomega.4c08219/suppl_file/ao4c08219_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acsomega.4c08219/suppl_file/ao4c08219_si_001.pdf
https://pubs.acs.org/doi/10.1021/acsomega.4c08219?fig=fig6&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.4c08219?fig=fig6&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.4c08219?fig=fig6&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.4c08219?fig=fig6&ref=pdf
http://pubs.acs.org/journal/acsodf?ref=pdf
https://doi.org/10.1021/acsomega.4c08219?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


4. CONCLUSIONS
The multicollinearity in Raman spectra corresponding to nitric
acid concentrations (0.1−9 M) and temperature (20−60 °C)
was successfully modeled by PLSR and SVR. Determining how
to efficiently build and evaluate PLSR and SVR models with
dynamic temperature levels in acidic systems will benefit
numerous applications. The range of nitric acid concentrations
and temperature levels is highly relevant to nuclear fuel cycle
reprocessing and other industrial applications. PLSR and SVR
models were able to account for covarying and overlapping
spectral features caused by changes in the HNO3 dissociation
constant at elevated temperatures, which varied the propor-
tions of HNO3 and dissociated ions H+ and NO3

−. The D-
optimal PLSR approach matched the prediction performance
for nitric acid compared with a seven-level FF model to achieve
a 75% reduction in sample set size and slightly outperformed
the D-optimal SVR model. The seven-level FF nonlinear SVR
model outperformed PLSR models for temperature and
achieved strong RMSEP % values for both nitric acid (1.8%)
and temperature (2.3%). Fewer temperature levels were
required to maintain robust nitric acid predictions. The
designed approach in this work can be extended or augmented
in future work to include additional variables that may be
encountered in complex systems with even greater complexity
[e.g., uranium(VI), corrosion products, and fission products].
The analytical method developed here goes beyond the nuclear
field and can be applied in remote settings to determine the
nitric acid concentration and solution temperature from
Raman spectra with high accuracy.
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