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Abstract: Androgen deprivation therapy (ADT) and androgen receptor (AR)-targeted therapy are the
gold standard options for treating prostate cancer (PCa). These are initially effective, as localized and
the early stage of metastatic disease are androgen- and castration-sensitive. The tumor strongly relies
on systemic/circulating androgens for activating AR signaling to stimulate growth and progression.
However, after a certain point, the tumor will eventually develop a resistant stage, where ADT and AR
antagonists are no longer effective. Mechanistically, it seems that the tumor becomes more aggressive
through adaptive responses, relies more on alternative activated pathways, and is less dependent on
AR signaling. This includes hyperactivation of PI3K-AKT-mTOR pathway, which is a central signal
that regulates cell pro-survival/anti-apoptotic pathways, thus, compensating the blockade of AR
signaling. The PI3K-AKT-mTOR pathway is well-documented for its crosstalk between genomic
and non-genomic AR signaling, as well as other signaling cascades. Such a reciprocal feedback loop
makes it more complicated to target individual factor/signaling for treating PCa. Here, we highlight
the role of PI3K-AKT-mTOR signaling as a resistance mechanism for PCa therapy and illustrate the
transition of prostate tumor from AR signaling-dependent to PI3K-AKT-mTOR pathway-dependent.
Moreover, therapeutic strategies with inhibitors targeting the PI3K-AKT-mTOR signal used in clinic
and ongoing clinical trials are discussed.

Keywords: prostate cancer; androgen receptor; castration-resistance; AR antagonist resistance; PI3K;
PKB/AKT; mTOR

1. Introduction

Over decades, prostate cancer (PCa) has been ranked as the most diagnosed malig-
nancy and as the second leading cause of cancer-related mortality of men in many Western
countries [1–3]. An increased risk of developing PCa is associated with multiple factors
including age, heredity, race/ethnicity, and geography. PCa is an endocrine-related disease,
in which male hormone androgens play an important role in PCa progression through
activation of the androgen receptor (AR) [4,5]. This makes AR a major therapeutic target
for PCa therapy. Yet, after a certain period of time with treatment, the tumor will eventually
develop a resistance.

The relapse, or re-progression, of the tumor, usually via adaptive responses, relies on
activated alternative pathways besides AR signaling [6–10]. This includes activation of
PI3K-AKT-mTOR signaling, which is a well-known pathway that regulates multiple signal
transductions and biological processes such as transcription, protein synthesis, metabolism,
autophagy, cell proliferation, apoptosis, angiogenesis, migration, etc. [11–16]. In this review,
we highlight the role of PI3K-AKT-mTOR signaling as a resistance mechanism for PCa
therapy in both AR dependent and independent manners. We illustrate the transition
of the prostate tumor from AR signaling-dependent towards PI3K-AKT-mTOR pathway-
dependent. Moreover, therapeutic strategies with inhibitors targeting PI3K-AKT-mTOR
signal used in clinic and ongoing clinical trials are reviewed.
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2. PI3K-AKT-mTOR Signaling
2.1. PI3K

PI3K, or phosphatidylinositol-3-kinase, is a plasma membrane-associated protein
kinase that serves as a junction between the upstream growth factor/cytokine signals and
the downstream intracellular signal transduction [11]. Among the three classes (I–III),
class IA is most commonly linked to human cancer, including PCa [17]. This class of PI3K
(referred to later as PI3K) is a heterodimer, which is formed by two functional subunits, a
catalytic subunit (p110α, β, or δ isoform) and a regulatory subunit (p85α, p55α, p50α, p85β,
or p55γ isoform) [18]. The catalytic subunit p110β is suggested to be the most relevant
isoform to PCa progression and resistance due to an association with basal AKT (protein
kinase B) activation in PCa models [17,19,20].

Usually, an activation of PI3K is mediated through receptor tyrosine kinases (RTKs),
however, G-protein-coupled receptors and oncogenes, such as small GTPase RAS, can also
activate PI3K, depending on the interaction context and the specificity towards PI3K sub-
units [21–24]. Once activated, PI3K phosphorylates phosphatidylinositol-4,5-biphosphate
(PI(4,5)P2) to generate phosphatidylinositol-3,4,5-triphosphate (PIP3). In addition, PIP3 can
be further converted to phosphatidylinositol-3,4-biphosphate (PI(3,4)P2) by Src homology
2 (SH2) domain containing inositol polyphosphate 5-phosphatase 1/2 (SHIP1/2) [25].

On the one hand, PIP3 activates intracellular signaling by recruiting and binding to a
variety of proteins, including phosphoinositide-dependent kinase 1 (PDK1) and AKT, that
contain pleckstrin homology (PH) domain [26]. This recruitment leads to the phosphoryla-
tion of AKT by PDK1 resulting in AKT activation. On the other hand, phosphorylation
and activation of AKT by PDK1 can be facilitated by PI(3,4)P2 [25]. Notably, PIP3 can be
inhibited via dephosphorylation by the tumor suppressor PTEN [27], whereas PI(3,4)P2
can be inhibited by both PTEN and INPP4B [28]. In PCa, loss or inactivation of PTEN and
INPP4B seems to be common [17,18,29,30].

2.2. AKT

AKT belongs to a family of serine/threonine protein kinases and is the most fa-
mous downstream effector of the PI3K. Yet, AKT can also be activated by other kinases
independent of PI3K signaling, such as by IKKε, SRC, ACK1, TANK binding kinase 1,
DNA-dependent protein kinase, and ATM [31], suggesting multiple crosstalk situations in
the tumor cells. Activation of AKT has been shown to drive PCa formation in vivo [11,32].
Moreover, phospho-proteomic analysis showed that AKT was commonly found to be active
in metastatic tumor samples collected from rapid autopsy [17,33]. AKT is fully activated
when it is phosphorylated at both Thr308 and Ser473 sites. However, phosphorylation at ei-
ther site alone is also sufficient for AKT to partially mediate a subset of downstream cellular
signaling [34,35]. Activated AKT regulates multiple cellular processes by phosphorylating
several targets, including TSC2, GSK3, FOXO, ASK1, IKKα, CHK1, p27, p21, RAF1, BAD,
MDM2, PRAS40, eNOS, AMPK, and WNK1 [36]. These downstream effectors link AKT
activity to control protein synthesis, transcription, cell survival, apoptosis, proliferation,
autophagy, and metabolism.

2.3. mTOR

Mammalian target of Rapamycin or mTOR is a serine/threonine protein kinase and is
one of the major downstream effectors of AKT signaling. Interestingly, mTOR is expressed
at higher levels in PCa compared to benign samples [17,37]. mTOR interacts with different
proteins and forms two distinct complexes, mTORC1 and mTORC2. mTORC1 is comprised of
mTOR, mLST8, DEPTOR, TTI1, TEL2, RAPTOR, and PRAS40, while mTORC2 is a complex
of mTOR, mLST8, DEPTOR, TTI1, TEL2, RICTOR, mSIN1, and PROTOR1/2 [18]. Notably,
mTORC1 is sensitive towards Rapamycin-mediated inhibition, whereas mTORC2 is not.

The activation of mTORC1 signaling is triggered by AKT-mediated phosphorylation
of TSC2, which inhibits the TSC1/2 complex, leading to an activation of mTORC1 activator
GTP-bound RHEB [38]. Moreover, mTORC1 repressor PRAS40 (also in the complex) is
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inhibited by AKT-mediated phosphorylation [39–41]. Notably, AMPK, GSK3, WNT, and
energy signals can regulate TSC2 as well, linking the TSC2-mTORC1 pathway with other
signaling cascades [42,43]. Protein synthesis is the major biological process mediated by
activated mTORC1 signal via phosphorylation and activation of p70S6 kinase (p70S6K) [44]
and inhibition of 4EBP1 [45]. Activated mTORC1 also blocks autophagy by inhibiting the
autophagy inducing complex ULK1/ATG13/FIP200 [46–48]. Other biological processes
controlled by active mTORC1 include lipid synthesis, energy metabolism, and lysosome
biogenesis [38].

The activity of mTORC2 can be regulated by PI3K, RAS, AMPK, WNT, TSC1/2, and
p70S6K [49–53]. Notably, inhibition of mTORC2 activity by p70S6K leads to a negative
feedback regulation of the PI3K-AKT pathway, as mTORC2 facilitates AKT activation by
phosphorylating Ser473 [54]. In contrast to biological processes controlled by mTORC1,
active mTORC2 can phosphorylate several downstream effectors leading to cell survival,
cell cycle progression, and actin remodeling. Moreover, it has been suggested that mTORC2
is required for the development of PCa lacking PTEN [55]. In line with this, the knock-
down of PDK1 does not counteract enhanced PCa growth in PTEN-deficient transgenic
mice [56], reflecting the possibility of mTORC2-mediated AKT and/or compensatory
cascades activation.

Given the fact that the PI3K-AKT-mTOR pathway plays a critical role in control-
ling pro-survival cellular signals, it is possible that cancer cells, under therapeutic pres-
sures, adaptively hyperactivate the pathway and its downstream cascades to compen-
sate/overcome cellular stress. Pro-survival in general inhibits apoptosis, quiescence, and
senescence, while promotes cell cycle progression. This may lead to even more aggressive
cancer progression. In line with this, enhanced activity of PI3K-AKT-mTOR pathway cor-
relates with PCa progression in the clinic [37,57–60]. Since feedback mechanisms activate
pro-survival pathways, monotherapies using inhibitors of the PI3K-AKT-mTOR pathway
could be limited in their efficacy.

3. PI3K-AKT-mTOR Interplays in Genomic and Non-Genomic AR Signaling
3.1. AR and Genomic Signaling

Inhibition of AR signaling is a major therapeutic aim in PCa therapy. Interestingly,
the PI3K-AKT-mTOR pathway is well-documented for its crosstalk with AR signaling.
Importantly, it may serve as a junction between genomic and non-genomic AR signaling.

AR is a transcription factor in a family of nuclear hormone receptor proteins. In
general, inactive ARs reside in the cytoplasm of the cell and interact with chaperones and
co-chaperones, such as heat shock proteins (HSPs) [61]. This interaction prevents AR from
entering the nucleus. Canonically, initiation of the AR signaling begins with the binding
of androgen to the ligand binding domain (LBD) of AR, which leads to a conformational
change and AR activation (Figure 1). Hence, it can dissociate from chaperones, dimerize
with another activated AR molecule, translocate into the nucleus, and bind to canonical
androgen response element (ARE) for the regulating transcription of target genes. This is
considered as “genomic AR signaling” and is ligand dependent, which is thought to occur
over several hours [62]. Also, the activated AR can bind to non-canonical chromatin sites,
with enhanced binding especially in cases of therapy resistance [63,64].
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Figure 1. PI3K-AKT-mTOR interplays in genomic and non-genomic AR signaling. AR signaling can be classified into
genomic and non-genomic signaling. Genomic AR signaling involves the translocation of activated AR into the nucleus, the
binding to ARE of target genes, and the regulation of transcription activity. In contrast, non-genomic AR signaling does
not require AR translocation and DNA binding. In general, AR activation is initiated from the binding of androgen to the
receptor, which leads to conformational changes and dissociation of AR from chaperones such as HSPs. This is known as
androgen- or ligand-dependent genomic signaling (dark green arrows). However, in the absence of androgens, AR can
be activated via phosphorylation mediated by multiple cytoplasmic factors including AKT, a key biological processing
factor of the PI3K-AKT-mTOR pathway. Thus, it is considered as ligand-independent genomic AR signaling (light green
arrows). In turn, as non-genomic AR signaling (red arrows), the activation of AR can activate the PI3K-AKT-mTOR
pathway by interacting with PI3K and AKT. Activation of PI3K-AKT triggers downstream effectors, including mTOR
and other signaling cascades, leading to the promotion of growth, proliferation, survival, metabolism, migration, etc.
AKT, protein kinase B; AR, androgen receptor; ARE, androgen response element; EIF4E, eukaryotic translation initiation
factor 4E; GPCR, G-protein-coupled receptor; HSPs, heat shock proteins; mTORC1/2, mammalian target of Rapamycin
complex 1/2; P, phosphorylation; PDK1, phosphoinositide-dependent kinase 1; PI3K, phosphatidylinositol-3-kinase; PIP2,
phosphatidylinositol-4,5-biphosphate; PIP3, phosphatidyl-inositol-3,4,5-biphosphate; p70S6K, p70S6 kinase; RTK, receptor
tyrosine kinase; S6, ribosomal S6 protein; 4EBP1, 4E binding protein 1.

In the absence of androgens, genomic AR signaling can be regulated by cytoplasmic
cascades, including the PI3K-AKT pathway, which are activated by various growth fac-
tors and cytokines [11,65–67] (Figure 1). In such cases, AR undergoes posttranslational
modifications including phosphorylation, acetylation, methylation, ubiquitination, and
SUMOylation [68]. The AR activated by transduction factors will eventually translocate
into the nucleus and regulate target gene transcription.
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3.2. AR and Non-Genomic Signaling

AR signaling can also occur in a non-genomic manner triggered by androgen-bound
AR (Figure 1), which has been shown to occur rapidly within minutes [69,70]. In non-
genomic AR signaling, nuclear translocation and DNA binding of AR are not required.
The activated cytoplasmic AR rather interacts with or functions through other molecular
effectors in the cytoplasm or at the membrane lipid rafts [62,71–75]. This activates multiple
signaling cascades leading to cell proliferation, survival, anti-apoptotic, and migration.

Several signaling molecules that are known to interact with AR include PI3K, AKT,
SRC, RAS/RAF, PKC, MAPK/ERK, etc. [62,76]. Interestingly, these molecules, such as AKT,
may serve as a junction between genomic and non-genomic AR signaling (Figure 1). Cross-
phosphorylation events between AKT and AR are an example. On one hand, androgen-
bound AR leads to an increase of AKT phosphorylation [77,78]. On the other hand, AKT
phosphorylates AR at Ser210, Ser213, Ser215, Ser791, and Ser792 in order to regulate AR
transcriptional activity and expression [68,79,80]. Thus, the downstream targets of those
activated cascades triggered by non-genomic AR signaling may as well interact with non-
ligand-bound AR and eventually lead to an overlapping scheme of ligand-independent
genomic AR signaling. This suggests that AR signaling can be compensated/overcome
easily when the cell encounters some selective pressures.

4. PI3K-AKT-mTOR in PCa Progression and AR-Targeted Therapy Resistance

Application of therapeutic strategies against PCa depends on stages and particular
situations of the disease. Also, the level of PCa diagnostic marker, prostate-specific antigen
(PSA), is included in consideration. Surgery to remove the prostate gland (radical prostate-
ctomy) may be the most effective option to remove the localized PCa that has low risk of
progression to metastatic disease [81]. However, in some cases, due to the age, health issue,
and refusion of patients, external beam radiation plus hormone therapy is rather chosen.

Localized PCa as well as the early stage of advanced/metastatic PCa are generally
androgen- and castration-sensitive (CSPCa) (Figure 2; left panel). Huggins and Hodges’s
clinical observation in 1941 suggested that PCa growth can be controlled by reducing the
level of androgens through castration [82]. Although basal activity of the PI3K-AKT-mTOR
pathway should exist, the castration-sensitive characteristic indicates that these tumors
are mainly relying on AR signaling. This observation brought up the current treatment
option of androgen deprivation therapy (ADT) as a standard systemic hormone therapeutic
strategy for PCa. ADT aims to lower serum testosterone concentration as much as possible
in order to minimize stimulation of PCa cells [83]. ADT inhibits androgen production
by blocking the hypothalamic-pituitary-testis feedback system with luteinizing hormone-
releasing hormone analogues, also termed chemical castration. Adrenal ablating drugs are
also used to decrease androgen synthesis from steroid precursors in the adrenal gland via
inhibiting cytochrome P450 enzymes [83]. Unfortunately, despite the initial effectivity of
ADT, the tumor in many patients gradually develops into a stage of castration-resistant
PCa (CRPCa) [84], which is usually at a metastatic level and a major cause of morbidity as
well as mortality.
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Figure 2. Transition from AR signaling-dependent to PI3K-AKT-mTOR pathway-dependent in PCa. PCa as a localized
disease and at the early stage of metastatic disease is androgen- and castration-sensitive. The tumor at these stages strongly
relies on systemic/circulating androgens for activating AR signaling to stimulate growth and progression (left panel).
This makes it easy to suppress the tumor with therapeutic approaches that target androgen synthesis and AR signaling.
However, after a certain period of time, the tumor will eventually develop a resistant stage called castration-resistance
(middle panel). At this stage, ADT and the first generation of AR antagonists are not any more effective due to several
hypothesized reasons, including intratumoral androgen synthesis, amplification of AR, activation of ligand-independent
genomic AR signaling (e.g., via PI3K-AKT-mTOR), etc. These mechanisms suggest that the tumor at this stage still relies on
AR signaling, although via adaptive responses, but could still be treated with second generation AR antagonists. Notably,
bipolar androgen therapy (BAT) with cycling treatment of ADT and supraphysiological androgen levels seems to be also
effective. Again, after a period of time, the tumor will become resistant to AR antagonist (right panel). Presumably, the
therapeutic pressure by AR antagonists will selectively lead to the accumulation of PCa cells that no longer express AR or at
least express mutated AR/AR splice variants (e.g., ARv7) lacking ligand binding domain. This makes the tumor insensitive
to AR antagonists and BAT. Independent of AR, the tumor at this stage fully relies on hyperactivation of multiple cellular
signaling cascades such as PI3K-AKT-mTOR and signaling of other nuclear hormone receptors (e.g., GR, PR, and ER). Along
with more advance stages of the disease, an aggressiveness of the PCa is enhancing, whereas the survival of the PCa patient
is reducing. AKT, protein kinase B; AR, androgen receptor; ARE, androgen response element; ARv7, androgen receptor
splice variant 7; ER, estrogen receptor; GPCR, G-protein-coupled receptor; GR, glucocorticoid receptor; HRE, hormone
response element; mCSPCa, metastatic castration-sensitive prostate cancer; mCRPCa, metastatic castration-resistant prostate
cancer; P, phosphorylation; PI3K, phosphatidylinositol-3-kinase; PR, progesterone receptor; RTK, receptor tyrosine kinase.

Several mechanisms have been proposed for an occurrence of CRPCa, including in-
creased intratumoral androgen synthesis, mutations of AR, amplification/overexpression
of AR, and crosstalk between AR and other signaling pathways such as PI3K-AKT-
mTOR [85,86] (Figure 2; middle panel). It seems that the tumor at this stage still relies on
AR signaling, which is adaptively activated via multiple mechanisms [6–10]. For example,
the activation of AR by AKT-mediated phosphorylation seems to generally occur in a low-
testosterone state [79,87]. Therefore, the inhibition of AR signaling with AR antagonists is
still applicable. Hence, in order to achieve the fully blockade of AR signaling, AR antago-
nists are often employed along with ADT to treat both CSPCa and CRPCa [88,89]. First



Int. J. Mol. Sci. 2021, 22, 11088 7 of 25

generation of AR antagonists, such as Flutamide and Bicalutamide, are used to treat CSPCa,
whereas second generation AR antagonists, such as Enzalutamide, Apalutamide, and
Darolutamide, are used against CRPCa. Yet, after a certain period of time with treatment,
PCa will eventually develop a resistance against AR antagonists.

Interestingly, in contrast to an objective of inhibiting AR signaling, an application
of using the supraphysiological androgen level (SAL) to treat CRPCa patients has been
proposed as an optional therapeutic strategy [90]. Although, monotherapy of testosterone
treatment showed disadvantages [91–93], combination therapy of SAL with ADT in a
so-called bipolar androgen therapy (BAT) provided promising outcomes in clinical tri-
als [94,95]. Importantly, it seems this therapy beneficially re-sensitizes CRPCa to AR
antagonist treatment [95]. It is hypothesized that a rapid cycling between SAL and a
depleted androgen level interfere with PCa cell adaptation on AR expression [90,96].

On one hand, mutated AR within the LBD and AR splice variants that lack LBD may
be accumulated in CRPCa under selective pressure with AR antagonist treatment [97], and
thus, PCa becomes less sensitive to AR antagonists. On the other hand, PCa cells with no AR
expression may also be accumulated [98,99], and thus, the tumor progression is no longer
dependent on AR signaling, such as the neuroendocrine prostate tumor [100]. Those cells
may rely more on other nuclear hormone receptor signaling [101–103], or they may activate
other AR independent signaling cascades [18,104,105] (Figure 2; right panel). In such cases,
BAT also may not be effective anymore. Other therapeutic options that are not targeting AR
may be applied during this stage of disease including chemotherapy, signaling pathway
inhibitors, DNA damage repair pathway inhibitors, and immunotherapy [106,107].

Notably, after each therapeutic resistance stage from localized CSPCa to metastatic
CRPCa, it seems that the tumor becomes more aggressive through activated adaptive
responses, relies more on those alternative pathways, and becomes less dependent on AR
signaling. This includes hyperactivation and deregulation of PI3K-AKT-mTOR signaling.
It has been reported that about 42% of localized-stage and 100% of advanced-stage exhibit
a deregulated PI3K-AKT-mTOR signaling pathway [11,18,108–110].

5. PI3K-AKT-mTOR Signaling Pathway as Resistance Mechanism to Therapy of PCa
5.1. Deregulation of PI3K-AKT-mTOR Signaling in PCa

An oncogenic role of PI3K-AKT-mTOR signaling as well as common genetic alterations
in this pathway are well-documented [18]. Thus, it is not surprising that the deregulation of
this pathway would mediate resistance against therapy and support the tumorigenesis of PCa.

5.1.1. PTEN Loss of Function

One of the most common genetic alterations in prostate malignancies is the loss of
tumor suppressor PTEN, which acts as a gatekeeper of the PI3K-AKT-mTOR pathway by de-
phosphorylating PIP3 back to PI(4,5)P2, leading to the inhibition of cell growth [17,18,29,111].
Inactivation of PTEN by deletion or mutations correlate strongly with enhanced PI3K-AKT-
mTOR signaling, high Gleason score, and poor prognosis in advanced PCa [60,112–114]. It
may occur in up to 50% of CRPCa cases [115]. Functional studies in vivo suggest PTEN
loss as a genetic driver of murine prostate epithelium to become aggressive and locally
invasive PCa, which has the ability to eventually acquire castration-resistance character-
istics [116–120]. Importantly, PTEN loss links the development of CRPCa with androgen
insensitivity, and perhaps also with AR antagonist insensitivity. It has been shown that the
loss of PTEN de-represses EGR1 and c-Jun, which are negative regulators of AR activity,
leading to suppression of the transcription of androgen-responsive genes [118,121]. Yet,
the loss of PTEN still promotes cell growth. These findings reflect that the loss of PTEN,
which leads to the activation of PI3K-AKT-mTOR, could still promote PCa growth without
the need of androgen to transactivate AR target genes, such as in case of ADT. Further-
more, studies from both in vivo and in vitro of PCa have shown that the loss of AR or
treatment with AR antagonist Enzalutamide leads to enhanced AKT signaling [78,118,121],
supporting an activation of PI3K-AKT-mTOR signal to resist AR targeted therapy.
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5.1.2. PI3K Gain of Function

Other deregulation of the PI3K-AKT-mTOR pathway along with PTEN loss includes
gain of function of PI3K, AKT, and/or mTOR themselves either by mutation or amplifi-
cation. As an upstream effector of the pathway, mutations in PIK3CA encoding catalytic
subunit p110α of PI3K is more common than the other isoforms. It has also been reported
that approximately 30% of CRPCa patients harbor p110α mutations [117]. Consistently,
Pearson et al. (2018) has summarized across nine PCa genomic datasets and showed that up
to 28% of cases exhibit high-level amplification [114]. Although an anti-proliferative as well
as anti-tumor activity has been observed with p110α-specific PI3K inhibitors [122–124], the
question remains whether p110α is the major target in PCa therapy. This is due to a study
of Pten loss-induced prostate tumor formation in mice, showing that the genetic deletion of
Pik3cb encoding p110β isoform, but not deletion of Pik3ca, inhibits tumorigenesis together
with reduction of Akt phosphorylation [19]. Thus, it suggests that p110β and not p110α
may be more important isoform in PCa. Unlike p110α and β, the mutation and amplifica-
tion of the p110δ isoform are infrequently detected in PCa patients [18]. Yet, the inactivation
of p110δ inhibited PI3K-AKT signaling as well as cell proliferation in p110δ-highly ex-
pressed CRPCa cells [125], suggesting a potential target for a certain PCa subpopulation.
In addition to alterations of the PI3K catalytic subunit, either genetic alterations or deletion
of a regulatory subunit such as p85α may in part promote PI3K-AKT-mTOR signaling. On
the one hand, the p85 regulatory subunit of PI3K suppresses p110 activity in the absence of
stimuli, and on the other hand, p85-p110 heterodimerization is required after RTK activa-
tion for stimulating PI3K-AKT-mTOR signaling [18,22]. Importantly, it has been reported
that both the p110β catalytic subunit and the p85α regulatory subunit are also essential for
AR transactivation and PCa progression [126].

5.1.3. AKT Gain of Function

Moving down to the key downstream effector of PI3K, gain of AKT function supports
oncogenic, pro-survival/anti-apoptotic, and therapeutic resistant roles of this factor in PCa.
Activation of AKT leads to the inhibition of cell death in the human CSPCa LNCaP cell line
as well as promotes tumor growth and castration-resistance in transgenic mice [32,127].
Interestingly, gain of function of AKT seems to associate more with a high-level of AKT
amplification than a mutation of AKT, since AKT amplification is more frequently de-
tected [18]. In line with this, genetic alterations of well-known AKT regulators such as
PDK1, PHLPP1/2, and PP2A may contribute also to the gain of AKT function [128,129].
An activation of AKT can be detected by the phosphorylation levels of Ser473 and Thr308.
Surprisingly, either AR agonist at SAL used in BAT or the AR antagonist Enzalutamide
used in clinic not only inhibit cell proliferation, but also enhance AKT phosphorylation in a
cell culture model [78], rendering human CSPCa LNCaP cells to become apoptotic resistant.
This in vitro model may represent an initial development of AR-independent CRPCa.

One underlying mechanism of AR antagonist-induced AKT phosphorylation could be
the regulation of FKBP5 transcription, which is an AR-transactivated target. As an HSP90-
associated co-chaperone that regulates the responsiveness of steroid hormone receptors,
FKBP5 has been shown to negatively regulate AKT signaling by stabilizing the protein
phosphatases PHLPP1/2 [121,130]. This means suppression of AR-mediated transactiva-
tion of FKBP5 enhances AKT phosphorylation. It is also suggested that ADT stimulates
AKT signaling for prostate tumor survival partly through FKBP5 downregulation [121,131].
Hence, reduced expression of FKBP5 during ADT or AR-targeted therapy would lead to
enhanced AKT activation and may facilitate the resistance to those therapies. In line with
this, an increased level of AKT phosphorylation correlates with high Gleason grade and
poorer survival in CRPCa [57,132,133]. Moreover, in combination with PTEN loss and
high Gleason score, increased phosphorylation level of AKT can also be used to predict
biochemical recurrence after radical prostatectomy [134].
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5.1.3.1. mTOR Gain of Function

Genetic alterations of mTORC1/2 upstream regulators TSC1/2 can lead to mTOR
gain of function. On one hand, deletion of Tsc1 in murine prostate epithelium causes
prostate neoplasia, which is associated with elevated mTORC1 signaling [135]. On the
other hand, the combined loss of heterozygous Tsc2+/− and Pten+/− is sufficient to promote
mTOR activation and prostate tumorigenesis in vivo [136]. Apart from upstream regula-
tors, genetic alterations of mTORC1/2 components themselves should not be overlooked.
Interestingly, although the frequency of genetic alterations of other components is low in
PCa, DEPTOR gene amplification appears to be frequently detected in up to 21.4% of cases
and correlates with worse disease/progression-free survival [18]. This is surprising, since
DEPTOR is actually an endogenous suppressor of mTOR kinase activity. One possible
explanation would be that DEPTOR upregulation suppresses the feedback inhibition of
mTORC1-p70S6K signal towards mTORC2 and PI3K, resulting in turn in an increased
activation of AKT and mTORC1-independent functions [137–139]. Another important
factor is RICTOR, a main component of mTORC2, which makes mTORC2 insensitive to
Rapamycin. It has been reported that Rictor is required for prostate tumorigenesis induced
by Pten loss in mice [55]. This is supported by in vivo studies showing that loss of Rictor
suppresses Pten-deleted PCa growth. Therefore, it suggests that the oncogenic alteration of
RICTOR that causes mTORC2 gain of function could potentially facilitate PCa progression.

5.2. PI3K-AKT-mTOR as a Pro-Survival/Anti-Apoptotic Signaling

The most important key player for the pro-survival/anti-apoptotic role of PI3K-
AKT-mTOR pathway appears to be AKT. It exerts multiple mechanisms to control cell
survival and apoptosis by interacting directly with proteins of the apoptotic pathway or by
regulating transcription factors that transcribe apoptotic-controlled genes [140].

One of the direct substrates of AKT is BAD, which is a pro-apoptotic factor and a
member of the BCL-2 family of proteins that binds to and inhibits anti-apoptotic factor
BCL-2 or BCL-XL. Inactivation of BAD occurs through phosphorylation at Ser136 by active
AKT [141], leading to an activation of BCL-2 or BCL-XL and cell survival. In CRPCa, it has
been reported that PI3K-AKT signaling is activated by the clinically used AR antagonist
Enzalutamide, facilitating cells to evade apoptosis via BAD inactivation [142]. This suggests
one possible mechanism of how CRPCa cells become AR antagonist resistant.

Other apoptotic pathway regulators that interact and become phosphorylated by
AKT are the cell death protease Caspase-9 and apoptosis signal-regulating kinases ASK1,
MLK3, and SEK1 [140]. AKT phosphorylates Caspase-9 at Ser19 and inhibits its protease
activity [143]. AKT phosphorylates on Ser83 of ASK1, Ser674 of MLK3, and Ser78 of SEK1,
causing these factors to be inactive [144–147]. These AKT activities result in the inhibition
of apoptosis induction and promotion of cell survival.

In PCa, AKT-mediated ASK1 inhibition may be critical for cell survival. It is suggested
that the HSP90 chaperone is required for AKT-mediated phosphorylation and inhibition of
ASK1 [145]. Interestingly, the HSP90 inhibitor sensitizes CSPCa LNCaP cells to apoptosis
under the treatment with SAL used in BAT [78]. In line with this, SAL-treated LNCaP cells,
although at the growth arrest stage, exhibit apoptotic resistance by enhancing the AKT-
mTOR pathway. In CRPCa and AR antagonist-resistant CRPCa, AKT-mediated ASK1 also
seems to be important. It has been shown in C4-2 as well as PC3 cells that disabled homolog
2-interacting protein (DAB2IP) coordinates both PI3K-AKT and ASK1 pathways for cell
survival and apoptosis [148]. Gain of function of this protein can suppress the PI3K-AKT
pathway and enhance ASK1 activation, leading to cell apoptosis, whereas loss of function
of DAB2IP leads to opposite effects. Loss of DAB2IP has also been shown to accelerate PCa
growth in vivo [148]. Notably, loss of DAB2IP is often detected in androgen-independent
PCa [149,150].

Apart from directly regulating the proteins of the apoptotic pathway, AKT is able to
regulate cell survival and anti-apoptosis via transcription factors. This includes phospho-
rylation of FOXO1/2/3/4, IκB kinase, MDM2, CREB, YAP, and AR. By phosphorylating
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FOXO, IκB kinase, and CREB, AKT indirectly controls transcription machinery of apoptosis
regulating genes by suppressing pro-apoptotic factors of the BCL-2 family, as well as
promoting anti-apoptotic factors of the BCL-2 family and caspase inhibitors [140]. Phospho-
rylated YAP by AKT suppresses apoptosis mediated by p73-regulated pro-apoptotic gene
transcription [151]. Moreover, AKT-induced phosphorylation and translocation of MDM2
from the cytoplasm to the nucleus. Thus, AKT results in an inactivation/degradation of p53
and thereby antagonizes p53-mediated pro-apoptotic transcriptional regulation [152–154].

Interestingly, the PI3K-AKT pathway inhibits not only apoptosis but also triggers
G1/S cell cycle progression. It is known that AKT phosphorylates and inhibits GSK3β
to prevent cyclin D1 degradation [155]. Moreover, the PI3K-AKT pathway also directly
affects the cell cycle inhibitor p21Waf1/Cip1 and p27Kip1 by phosphorylation that causes
cytoplasmic accumulation and inhibition of the access to the cyclin-CDK targets [156,157].

As a downstream effector of the PI3K-AKT-mTOR pathway, mTORC1/2 are also
involved in cell survival and anti-apoptosis regulation [14]. Via multiple signaling cascades,
including AKT activation as described in previous sections, mTORC2 is well-linked to
a role regarding cell survival/anti-apoptosis [158–160]. Unlike mTORC2, mTORC1 is
more well-known for its role in ribosomal biogenesis and protein translation, yet these are
important processes for cancer cell survival and proliferation [161].

Several studies have implicated mTORC1 in apoptosis and cell survival regula-
tion [162–165]. For example, it has been described that mTOR regulates cell survival
after etoposide treatment in acute myeloid leukemia cells (AML) [162]. Furthermore, a
recent study showed that inhibition of mTORC1 improved the killing of AML cells by
chemotherapy in a time-specific manner [165]. In mouse embryonic fibroblasts (MEFs),
mTORC1 can control mitochondrial dynamics and cell survival via MTFP1 [164]. In
PCa cells, SAL-treated cells that are apoptosis resistant are accompanied by enhanced
phosphorylation of both AKT and ribosomal S6 proteins [78], suggesting an enhanced
mTORC1 activity under SAL condition. In line with this, inhibition of AKT does not abolish
SAL-induced S6 phosphorylation, suggesting an AKT bypassing mechanism by activated
AR. Interestingly, the phosphorylation state of ribosomal S6 protein, a target of mTORC1
downstream effector p70S6K, is implicated with cell survival [166–168]. MEFs carrying
S6P-/- are sensitive to TRAIL-, etoposide-, and MG132-induced apoptosis [167,168]. This
suggests that several factors within the PI3K-AKT-mTOR pathway possess, individually in
an autonomous manner, pro-survival activity.

6. Targeting PI3K-AKT-mTOR Signaling in PCa

Since the PI3K-AKT-mTOR pathway is commonly activated in advanced stages of
PCa, this pathway may represent a potential target to effectively inhibit PCa growth and
to overcome resistance of AR targeted therapy [11,169]. Many inhibitors for this pathway
have been tested as monotherapy or in combination with other agents in preclinical and
clinical trials as discussed below and summarized in Table 1.
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Table 1. PI3K-AKT-mTOR pathway inhibitors used in clinical trials.

Target Agent Phase Regimen Population Status Registry

Pan-PI3K
inhibitors

BKM120
(Buparlisib)

I +Abiraterone acetate
(CYP17A1 inhibitor)

CRPCa progressed on
Abiraterone acetate Completed NCT01634061

I +Abiraterone acetate Docetaxel -pretreated
metastatic CRPCa Terminated NCT01741753

II Monotherapy
Metastatic CRPCa

progressed following ADT
and chemotherapy

Terminated NCT01385293

II Monotherapy
High-risk, localized

prostate cancer prior to
radical prostatectomy

Terminated NCT01695473

PX866
(Sonolisib) II Monotherapy Metastatic CRPCa

progressed following ADT Completed NCT01331083

Dual PI3K/
mTOR

inhibitors

BEZ235 I +Abiraterone acetate CRPCa progressed on
Abiraterone acetate Completed NCT01634061

GDC-0980 II +Abiraterone acetate Docetaxel pre-treated
CRPCa

Active, not
recruiting NCT01485861

LY3023414 II +Enzalutamide Metastatic CRPCa Completed NCT02407054

AKT
inhibitors

AZD5363
(capi-

vasertib)

I Monotherapy Metastatic CRPCa Completed NCT01692262

I +Enzalutamide or
Abiraterone Metastatic CRPCa Completed NCT04087174

I/II
+Docetaxel and

Prednisolone
(glucocorticoid)

Metastatic CRPCa Active, not
recruiting NCT02121639

GSK2141795
(Upros-
ertib)

I Monotherapy
Castration-resistant, locally

advanced or metastatic
with/without PTEN loss

Completed NCT00920257

MK2206

II +Bicalutamide
(anti-androgen)

PCa patients with
biochemical relapse and
rising PSA after primary

therapy

Active, not
recruiting NCT01251861

I +Hydroxychloroquine Stage III PCa Active, not
recruiting NCT01480154

GDC-0068
(Ipatasertib)

II +Abiraterone acetate
and Prednisone

Metastatic or advanced
prostate carcinoma

Active, not
recruiting NCT01485861

Ib +Atezolizumab and
Docetaxel Metastatic CRPCa Recruiting NCT04404140

III +Abiraterone acetate +
Prednisone/Prednisolone Metastatic CRPCa Active, not

recruiting NCT03072238

Perifosine II Monotherapy
Metastatic

androgen-independent
PCa

Completed NCT00060437

mTORC1
inhibitors

Everolimus

II Monotherapy Metastatic CRPCa Completed NCT00629525

I +Radiation therapy Biochemical recurrence
after radical prostatectomy Completed NCT01548807

II +Pasireotide
(somatostatin)

Chemotherapy-naive
CRPCa Terminated NCT01313559

I/II
+Docetaxel,

Bevacizumab (VEGF
inhibitor)

Metastatic CRPCa Completed NCT00574769
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Table 1. Cont.

Target Agent Phase Regimen Population Status Registry

I/II +Docetaxel Metastatic CRPCa Completed NCT00459186

II +Carboplatin and
Predisone

Metastatic CRPCa
progressed after Docetaxel Completed NCT01051570

II +Bicalutamide Recurrent or metastatic
CRPCa after first-line ADT Completed NCT00814788

Temsirolimus

I/II +Bevacizumab Chemotherapy-treated
metastatic CRPCa Completed NCT01083368

II Monotherapy Chemotherapy-treated
metastatic CRPCa Terminated NCT00887640

II Monotherapy Chemotherapy-naive
metastatic CRPCa Completed NCT00919035

I +Vorinostat (HDAC
inhibitor) Metastatic CRPCa Terminated NCT01174199

I/II +Docetaxel CRPC receiving first-line
docetaxel Completed NCT01206036

I/II +Cixutumumab Metastatic CRPCa Completed NCT01026623

Dual
mTORC1/2
inhibitors

MLN0128 II Monotherapy Metastatic CRPCa Completed NCT02091531

AZD2014
I Monotherapy High-risk PCa before

radical prostatectomy Completed NCT02064608

I Monotherapy/+
Abiraterone acetate CRPCa Completed NCT01884285

+ indicates co-treatment of agent and indicated regimen. ADT, androgen deprivation therapy; CRPCa, castration-resistance prostate cancer;
PCa, prostate cancer.

6.1. PI3K Inhibitors

Inhibitors of PI3K can be divided/classified into pan-PI3K inhibitors and isoform-
specific PI3K inhibitors. Pan-PI3K inhibitors target the catalytic subunit of all three isoforms
of class IA PI3K. One potent oral pan-PI3K inhibitor is BKM120, which suppressed tumor
growth in PC3-xenograft mouse model [170]. An IC50 of BKM120 at 3.23 µM and 2.81 µM
has been documented for human CSPCa LNCaP cell line and AR antagonist-insensitive
CRPCa PC3 cell line, respectively [171]. The inhibitor showed evidence of partial response
in one out of 21 patients in a phase I first-in-men study, and seven patients remained
on treatment for ≥8 month [172]. BKM120 is currently under investigation in metastatic
CRPCa in a phase II study. PX866 is a synthetic derivative of wortmannin, which covalently
binds to Lys802 in the ATP catalytic site of the PI3K [173]. In a phase II study PX866 was
well tolerated in patients with recurrent or metastatic CRPCa, and 14 of 25 patients were
progression-free at 12 weeks [174]. However, the clinical use of pan-PI3K inhibitors in
monotherapies is limited by the compensatory increase in AR signaling [121].

Isoform-specific PI3K inhibitors, such as BYL719 and MLN1117, aim to specifically target
the p110 isoform to decrease side effects like insulin resistance and hyperglycemia. Targeting
p110 might be an effective treatment option since PIK3CA, the gene that encodes p110α, is
commonly altered in metastatic PCa. In line with this, both inhibitors indicated antiproliferative
and antitumor activity in cell lines and xenograft models with PIK3CA mutations [122,123].
However, compensatory effects by other PI3K isoforms can occur and will eventually lead
to an activation of other pro-survival pathways including re-activation of AR-signaling. This
highlights the need to target, in addition to blockage of androgen action, the androgen-
independent receptor activation as well as pro-survival cancer cell pathways.
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6.2. AKT Inhibitors

As key regulator of pro-survival pathways, AKT provides an attractive target for thera-
peutic interventions. AKT inhibitors can be categorized based on their mechanism of action
into six classes [175]. The first class comprises ATP-competitive inhibitors of AKT such as
Ipatasertib and AZD5363 [176]. This kind of inhibitors, unlike allosteric inhibitors, lead to
hyperphosphorylation of AKT at the Thr308 and Ser473 residues. Lipid-based AKT inhibitors
that prevent the generation of PIP3 by PI3K represent the second class. Different phosphatidyli-
nositol analogs, such as Calbiochem AKT inhibitors (Sigma Aldrich, Cat.-Nr.: 124005, St. Louis,
MO, USA ), and PI3K inhibitors, such as PX-866, use this mechanism of action [177]. The third
class consists of compounds named pseudo-substrate inhibitors, including AKTide-2 T and
FOXO3 hybrid [178,179]. The fourth class is made of allosteric inhibitors of the kinase domain
of AKT, such as MK-2206. Importantly, antibodies can also be used to inhibit AKT activity
and thus represent the fifth class. The last class of inhibitors targets the PH-domain of AKT to
interfere with the translocation of AKT to the plasma membrane and therefore blocking AKT
phosphorylation and activation. This class includes compounds such as PX-316 [175]. Despite
the large number of AKT inhibitors only allosteric and ATP-competitive AKT inhibitors have
so far reached the clinical phase for PCa.

Importantly, preclinical studies with the allosteric AKT inhibitor Perifosine reduced
proliferation and induced apoptosis and differentiation in PC3 [180] and PTEN-deficient
PCa cells [181]. In LNCaP and PC3 cells, an IC50 of Perifosine is ~5 µM, whereas DU145
cells exhibit an IC50 value of 15 µM [181]. Perifosine is an alkylphospholid that accu-
mulates in cell membranes; however, besides the AKT inhibitory properties, the exact
mechanism of action of this inhibitor remains unknown [17]. In men with CRPCa, Per-
ifosine was well-tolerated but lacked evidence of a radiographic or PSA response [182].
Another clinically tested allosteric inhibitor is MK-2206 [176]. This inhibitor predominantly
targets AKT1 (IC50 = 5 nM) and AKT2 (IC50 = 12 nM) with lower potency against AKT3
(IC50 = 65 nM) [183]. MK-2206 has in vitro and in vivo antitumor activity [183].

Recent studies suggest that active site AKT inhibitors may have greater antitumor
activity. In line with this hypothesis, the active site inhibitor AZD5363 was reported to
suppress proliferation and to increase apoptosis in PCa cell lines and the LNCaP xenograft
model [184]. An IC50 of AZD5363 in LNCaP cells is at nanomolar concentrations [185].
Moreover, a report from a phase I study has suggested that the combination of AZD5363
and AR antagonist Enzalutmide is tolerable and has antitumor activity [186]. The sensi-
tivity towards AZD5363 is correlated with the presence of PIK3CA mutations, AKT1E17K

mutations, or PTEN loss [185]. Especially, the combination of AZD5363 with Docetaxel led
in 70% of men with metastatic CRPCa to > 50% reduction of PSA levels illustrating the
potential of active site inhibitors in combination therapy [187].

The optimization of ATP-competitive AKT inhibitors led to the development of
Ipatasertib (GDC-0068), a highly selective AKT1-3 inhibitor with an IC50 value of 5, 18,
and 8 nM, respectively. Currently, Ipatasertib is evaluated in a phase 3 trial in combination
with Abiraterone and prednisolone in metastatic CRPCa (NCT03072238). Importantly, the
pan-AKT inhibitor GSK2141795 (Uprosertib) showed measurable responses in a phase I
study of seven patients, while six men had a stable disease [188]. Moreover, Uprosertib
as monotherapy was reported to be safe and well-tolerated at the recommended phase II
dose study [189]. These results demonstrate the clinical potential of AKT inhibitors in a
special subset of patients. However, a major issue of many AKT inhibitors is the relief of
negative feedback inhibition and activation of different RTKs [190]. Hence, inhibitors have
been developed that target the downstream mediators of AKT.

6.3. mTOR Inhibitors

The mTOR is an important downstream effector of the PI3K pathway, which integrates
extracellular signal transduction with metabolic processes representing a potent target
to control cellular growth. The allosteric mTORC1 inhibitors Rapamycin and its analogs,
including Everolimus and Temsirolimus (Table 1), were the first PI3K/AKT/mTOR path-
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way inhibitors that were assessed in clinical trials [169]. Pre-clinical studies of mTORC1
inhibitors were promising and reverted prostatic intraepithelial neoplasia (PIN) in mouse
models overexpressing AKT [191]. However, clinical trials using single mTORC1 inhibitors
lacked favorable clinical responses [192,193]. Rapamycin demonstrated successful inhibi-
tion of the mTORC1 target phospho-S6 in patients with intermediate to high-risk PCa, but
no significant effects on tumor cell proliferation, induction of apoptosis, or PSA levels were
observed [194]. This may be due to mTORC2 mediated compensation and activation of
AKT [169,195]. Further, Rapalogs showed incomplete inhibition of downstream effectors,
including EIF4E, since Rapalogs do not bind directly to and inhibit the catalytic core of the
mTOR kinase. Instead, they bind to FKBP12 to allosterically inhibit mTOR [196].

Next, a new class of mTOR inhibitors blocking mTORC1 and mTORC2 activity
have been developed with the aim to prevent the feedback induction of AKT. The dual
mTORC1/2 inhibitors, such as MLN0128 and AZD2014, demonstrated improved efficiency
due to a more potent inhibition of downstream targets like 4EBP1, protein synthesis and
induction of cell cycle arrest in different cell lines [197]. In addition, MLN0128 prevented
not only PCa invasion and metastasis, but further induced apoptosis [198]. This inhibitor
has been previously tested in a phase II study in advanced CRPCa [199]. Interestingly,
AZD2014 inhibited migration, invasion, and EMT progression in Docetaxel-sensitive and
Docetaxel-resistant CRPCa cells more potent compared to Rapamycin. Note that, a much
lesser dose of AZD2014 (0.204 µM) than Rapamycin (6.49 µM) is also sufficient to exhibit
an IC50 in a human CRPCa C4-2 cell line [200]. Moreover, AZD2014 was more potent in
the inhibition of 4EBP1 and AKT phosphorylation than Rapamycin [200]. This inhibitor
was tested in men with high-risk PCa given prior to radical prostatectomy (NCT02064608).
Although completed, there is no published report for the outcome of this clinical trial yet.

Notably, one limitation of dual mTORC1/2 inhibitors is the loss of S6K-mediated neg-
ative feedback regulation leading to activation of PI3K signaling via RTK activation [169].
This led to trials with dual PI3K and mTORC1/2 inhibitors.

6.4. Dual PI3K and mTORC1/2 Inhibitors

Dual PI3K and mTORC1/2 inhibitors target all four p110 isoforms and both mTOR
complexes in order to achieve a more complete blockade of the PI3K-AKT-mTOR signaling
axis [11]. In preclinical studies, GDC-0980 and BEZ235 inhibited proliferation of multiple
cell lines and induced G1 arrest [201,202]. Moreover, GDC-0980 caused apoptosis in cell
lines harboring PIK3CA mutations or PTEN loss, causing direct activation of the PI3K
pathway [202]. IC50 of GDC-0980 with 0.036 µM and BEZ235 with 0.038 µM have been
documented in LNCaP cells, whereas 0.2 µM GDC-0980 and 0.06 µM BEZ235 are sufficient
to exhibit IC50 in PC3 cells [202,203]. Both inhibitors are well tolerated in the clinic with
mild side effects, including nausea, vomiting, diarrhea, and fatigue [204–206]. Currently,
GDC-0980 in combination with Abiraterone acetate is tested in CRPCa in phase I//II
clinical trials (Table 1).

The limited efficacy of monotherapy with PI3K/AKT/mTOR inhibitors is caused by
complex reciprocal feedback mechanisms that include the AR and interaction with other
signaling pathways. These findings urged towards the need to develop combination therapies.

6.5. Combination Strategies with PI3K-AKT-mTOR Inhibitors

The activation of the PI3K-AKT-mTOR pathway is implicated in resistance to chemother-
apy, for example, to docetaxel [207]. Mechanistically AKT is activated following chemotherapy-
induced double strand breaks. Thus, AKT promotes the survival of cancer cells triggering
anti-apoptotic pathways [208–210]. In line with this, inhibition of AKT has been indicated
to hypersensitize cells to different chemotherapeutic agents in pre-clinical trials [185,211].
The results are supported by previous xenograft studies, showing that AZD5363 signifi-
cantly enhances the activity of docetaxel [185]. Moreover, MK-2206 indicated synergistic
antitumor efficacy with docetaxel in PC3 xenograft models [183].
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Since it has been reported that a strong suppression of AR signaling by AR antagonists
causes reciprocal activation of PI3K-AKT, dual inhibition with ADT and PI3K, AKT, or
mTOR inhibitors may lead to more potent PCa growth inhibition [118,121]. In line with
this, the combination of Everolimus and Bicalutamide significantly reduced tumor growth
rates and tumor volume in LNCaP xenografts compared to Bicalutamide alone [212].
Moreover, this study suggests that combined targeting of AR and mTOR inhibitors can
restore sensitivity to anti-androgen therapy. However, clinical results of Everolimus plus
Bicalutamide in CRPCa have been contradictory. A phase II study reported low activity of
the combination treatment [213]. In contrast, another study showed a response in 18 out of
24 patients (75%) treated with Everolimus and Bicalutamide [214].

Promising results from a phase I/II study using Ipatasertib in combination with
Abiraterone demonstrated improved radiographic progression-free survival (PFS) and
overall survival (OS) in patients with CRPCa previously treated with Docetaxel compared
to single treatment [215]. Along with these observations, the PI3K inhibitor BEZ235 together
with the AR antagonist Enzalutamide resulted in an enhanced apoptosis rate in a PTEN
negative PCa [121].

Overall, the clinical application of monotherapy of the PI3K-AKT-mTOR pathway can be
limited by drug-resistance, dose-limiting toxicity, and complex reciprocal feedback such as in-
teraction with AR and other signaling pathways [216]. In addition, compensatory mechanism
by other factors leading to maintenance of the pathway can also be the reason [217]. Thus,
combined application of PI3K-AKT-mTOR inhibitors may have great potential for clinical ben-
efit. Yet, due to complexity of cellular signaling network and unique individual characteristic,
stratification of patients and particular biomarkers are needed to improve clinical efficiency of
these inhibitors. Current clinically relevant biomarkers include the status of PI3KCA, PI3KCB,
or AKT somatic alteration and PTEN loss of PCa patients [218]. However, further identifica-
tion/characterization of new biomarkers for patient selection in the clinic is still required to
enable the development of personalized therapy.

7. Conclusions

Several factors within the PI3K-AKT-mTOR signaling have pro-survival activity in
PCa cells. These factors can even act individually and independently from each other. Thus,
inhibition of one factor within this signaling cascade can lead to a feedback mechanism that
results in alternative pro-survival bypass pathways. Therefore, a combinatorial treatment
with the goal to inhibit the AR and more than one factor of the PI3K-AKT-mTOR signaling
could be beneficial. However, optimally, a patient stratification must precede such a
combinatorial therapy with suitable markers to detect which pro-survival factor is being
activated in order to use appropriate inhibitors in an individualized manner. This would
allow patient-oriented use of a target specific treatment for a personalized therapy.
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ARE androgen response element;
ASK1 apoptosis signal-regulating kinase;
BAT bipolar androgen therapy;
CRPCa castration-resistant prostate cancer;
CSPCa castration-sensitive prostate cancer;
DAB2IP disabled homolog 2-interacting protein;
HSP heat shock protein;
LBD ligand binding domain;
MEFs mouse embryonic fibroblasts;
mTOR mammalian target of Rapamycin;
mTORC1/2 mTOR complex 1/2;
PCa prostate cancer;
PDK1 phosphoinositide-dependent kinase 1;
PH pleckstrin homology;
PI3K phosphatidylinositol-3-kinase;
PI(4,5)P2 phosphatidylinositol-4,5-biphosphate
PI(3,4)P2 phosphatidylinositol-3,4-biphosphate
PIP3 phosphatidylinositol-3,4,5-triphosphate
PSA prostate-specific antigen;
RTK receptor tyrosine kinase;
p70S6K p70S6 kinase;
SAL supraphysiological androgen level;
SHIP1/2 Src homology 2 domain containing inositol polyphosphate 5-phosphatase 1/2
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